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Abstract This work considers the solution of atomic three-electron integrals that
involve explicit inter-electronic separation factors. The traditional Sack expansion is
replaced by an alternative expansion, which avoids the breakup of the radial integrals
into a number of factors depending on the lesser and greater of the inter-electronic
separation distances. The present approach avoids the N! increase in the number of
required auxiliary functions, where N is the number of electrons. The new approach
leads to additional infinite summations, but these summations either converge very
quickly in a serial calculation, or can be effectively dealt with using the massively
parallel architecture of a graphics processing unit. The new auxiliary functions that
arise are discussed in detail.

Keywords Atomic three-electron integrals - Sack expansion - Hypergeometric
functions

1 Introduction

There has been considerable progress over the past several years on the evaluation
of the properties of atomic lithium and other related three-electron atomic species.
A principal approach involved in these computational efforts has been the Hyller-
aas method [1-8]. Earlier progress can be found in the reviews [9,10]. The hybrid
Hylleraas-CI technique and the exponentially correlated Gaussian approach have also
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proved to be very successful techniques [4,11-13]. There have also been extensions
of the Hylleraas approach using both Slater-type functions and Gaussian functions to
treat small molecular systems in a non-Born—Oppenheimer approach [12].

In the Hylleraas approach, the trial wave function involves an expansion in terms
of explicit factors of the electron—electron separation distance, r;;. In the conventional
Hylleraas expansion, the wave function for the S states of a three-electron atomic
system is expanded as

N
_ I Jp kK Iy mu np —g o ri—b,r—c,r3
Y(ry,rp,r3) =« E Cur r ry r r 3 ryy eI TR TS (1)
pu=1

where r; denotes an electron—nuclear separation, & is the antisymmetrizer, .4 is the
number of basis functions, and y,, is a spin eigenfunction. The constants a,,, b, and
¢, are >0, and the set of indices {i,, ju, ky, [, my, ny} are integers that are >0. It
can be shown that the expectation values for most properties of the atomic S-states
are reducible to three-electron integrals of the form

L, j.k.l,mn ab,c) =/r{r5r§r{2r;grg3e—““—brz—mdrldrzdrg, )

where a, b and c are >0, and the set of indices {i, j, k, [, m, n} are integers. For the eval-
uation of energy values and many other expectation values, the indices {i, j, k, [, m, n}
are each > —1. In this paper will investigate an alternative strategy to the evaluation of
the integrals appearing in Eq. (2). The motivation for seeking an alternative strategy is
discussed in Sect. 2. We also note that the /3 integrals arise in Hylleraas and Hylleraas-
CI calculations on systems with more than three electrons, along with related integrals
involving various angular factors.

The important work of Pachucki et al. [14] derives a closed form recursion formula
for the three-electron correlated integrals. However, accurate integral evaluation using
this closed form recursion scheme requires extended precision arithmetic. A significant
number of publications have appeared where a series expansion approach has been
employed to evaluate the required correlated integrals, and these can be evaluated in
double precision arithmetic, or for very large basis sets, quadruple precision arithmetic
might be required. It is not clear if the closed form recursion strategy can be extended
to systems beyond the three-electron case. To the best of our knowledge, that has not
been accomplished. Even if it can be, it is not clear what arithmetic precision level
would be required for accurate evaluation of the recursion formula.

The approach we discuss is a series scheme, which in our opinion, could be extended
to larger electron systems with appropriate treatment of the new auxiliary functions
that arise. The present approach discussed in our work avoids the N! growth in the
number of auxiliary function evaluations, and this is both novel, in comparison with
the standard series approach, and potentially important for calculations on larger N
systems. The difference in the precision level of the arithmetic required in the series
expansion method and the closed form recursion formula technique is a major distinc-
tion between the approaches.
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More complicated integrals with r;; factors in the exponentials have been studied
for the three-electron case and some limited analytic work has been done for the
four-electron case [15,16]. In a seminal publication, Puchalski et al. [5] have obtained
extremely high accuracy for the ground state of the lithium atom using a relatively
modest size basis set of exponentially correlated basis functions. Unfortunately, these
calculations required extended precision arithmetic for parts of the calculations, with
a factor of about 10?> more cpu time being required in comparison with a standard
Hylleraas basis set of the same size. In a very recent study [16], a stability analysis
was carried out for some of the exponentially correlated integrals that arise for the four
electron case. It was proved mathematically in [16] that extended precision arithmetic
is required for the accurate evaluation of some of the analytic formulas involving
higher powers on the pre-exponential terms, when exponentially correlated factors
form part of the integrand. Some work has appeared over the past few years for the
three electron case examining the role of compact expansions of exponential terms
with r;; factors. The convergence rate has been observed to be faster relative to similar
compact expansions [17,18].

The plan of the paper is as follows. In Sect. 2 we briefly sketch the derivation of
(i, j,k,l,m,n,a,b,c) in terms of the W-integral auxiliary function, and outline
the principal issue associated with this approach, emphasizing what happens as we
extend beyond the three-electron problem. In Sect. 3 we derive an expression for the /3-
integral using an alternative form of the Sack expansion for the Sack radial functions,
and reduce the I3-integral to a J3 auxiliary function. We then examine some special
cases of the J3 auxiliary function, namely the K5, J, functions (in Sects. 4 and 5),
K3, and a key special case of the K3 integral with one zero argument (in Sect. 6). We
show an important connection of the special case of the K3 integral with one zero
argument with the hypergeometric function 3 F>, and because this can be written as a
finite sum, we discuss this special function and a number of special cases in detail in
Sects. 7-13. In Sect. 14 we briefly discuss some simple closed form cases for the K3
integral with one denominator index equal to zero. In the following section we discuss
the general case of the K3 integral and obtain a series form for the representation of
this function. In Sect. 16 we evaluate the special case K3(i, j, k,/, 1, 1) in terms of
the hypergeometric function 3 F>. Section 17 develops a general connection between
the general K3 integral and the hypergeometric function 3 F. Section 18 discusses
a reduction formula of J3 to K3. Sections 19 and 20 discuss some aspects of the
numerical evaluation of the K3 and I3 integrals. A number of key recursion relations
for the functions K3 and J3 are developed in part II of this study. Part I also includes
the development of formulas that are more stable for the application of convergence
accelerator techniques. The focus of this paper is on the mathematical developments.
A future paper will discuss the numerical implementation strategy.

2 Reduction of the three-electron integral to auxiliary functions
In this section we concisely recap the standard reduction of the /-integrals to auxiliary

functions. The /3-integrals and some generalizations have received extensive discus-
sion in the literature [14,19-44]. We will restrict consideration to the case where the
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indices {i, j, k,l, m,n} are > —1. The cases where the indices {/, m, n} are allowed
to be —2, which are required for the evaluation of relativistic effects [45,46] and some
other properties [47,48], lead to significant additional complications, and some of
these problems have been addressed in the literature [49-57].

The Sack expansion [58] is given by

o
riy = Z Ryp, (ry, r2) Py (cos 012), 3)
11=0

where Pj, (cos612) denotes a Legendre polynomial and Ry, (r1, r2) is a Sack radial
function. Inserting the Sack expansion for each of the r;; factors in Eq. (2), leads to

LG, j kL, m,n,a,b,c) = Z Z Z

=0m;=0n;=0
IR(t, Jok.L,m,n,ly,my,ny,a,b,c)lq(l,my, ny),

“
where the radial integrals are given by

Ir(, j, k,l,m,n,ly,my,ny,a,b,c)
2,042,442 b
=/ ri P2 T TR Ry, (1, 12) R, (71, 73) Ry (12, 173)e ™9 702753 d o,

)

and the angular integrals by
Io(ly,my,ny) = / Py, (cos 012) Py, (c08 013) Py, (cos 623)d21d2:d 23, (6)

The angular integral can be readily evaluated by employing the standard expansion of
the Legendre polynomials in terms of spherical harmonics, leading to the result

6477381, m 81,1, myn,
QI + 1)2 ’

Io(l,my,n) =

@)

where §;,,, denotes a Kronecker delta. Inserting this result for Iq(/1, my, ny) into
Eq. (4) leads to

o0
L, j,k,l,m,n,a,b,c)= 647> Z 72113(1', Jiok,l,m,n,w,w,w,a,b,c),
= QCw+1)

®)
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where

IrG, j, k,l,m,n,w,w,w,a,b,c)

i Car b
=/ri+2rﬁ+ P52 R (71, 72) R (71, 73) R (r2, 13)e ™ 0273 0y dradrs.

)
The Sack radial function [58] can be written as
(O o) P —— ria<\ 2"
Ry (ri,m) = A T12<" 12> Awlu s (10)
(1/2)w =0 ri2>

where 12~ = min(r1, r2) and r12~. = max(rq, r2), and the coefficients a,,;, are given
by

(1)

Awluy =
where (o), denotes a Pochhammer symbol, defined in terms of the gamma function
I'(p) as

_I'lp+9)

(p)q=p(p+l)(p+2)-~-(p+q—l)—Tp). (12)

Inserting the expansions for the Sack radial functions into Eq. (8) leads to

(=1/2)y(—m/2)w(—n/2)y
Qw + 1)2{(1/2)y}3

oo
LG, j k. I,m.n a,b,c) = 64 D
w=0

00 00 00
X Z Awlu Z Awmy Z Auns
u=0 v=0 s=0

x{Wli+w1,l1 +1l—ws5,Ki+m+n—w3,a,b,c)

+Wli +w, 1+l —ws, Ki +m+n—ws3,b,a,c)

+WEKi+w3, 1 +wos+n, 1 +14+m—wi,c,b,a)

+Woi+w1,Ki+m—we,J1 +1+n—wy,a,c,b)

+ Wi+ w, Ki+n+ws, I +1+m —wy,b,c,a)

+WEK +ws, i +m+wg, ] +14+n—wr,c,a,b)},
(13)

where the W-integral is defined by
o o0 o
W(p.q.s,a,B,y) =/ x”e_‘”dX/ yqe_ﬁydy/ ez, (14)
0 X y
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and the notational simplifications,

L=i+2 h=j+2 K/ =k+2, (15)
w; =2u+2v+ 2w, wr =2u+2s+2w, w3 =2v+25+2w (16)
w4 =2u —2v, w5 =2u—2s, wg=2v—2s, a7

have been employed. The W-integrals have received extensive study, and there are
well-developed algorithms for the high precision evaluation of these auxiliary func-
tions [59-70].

This study was motivated by desire to circumvent the W-integral approach. To
apply the Hylleraas technique to a four-electron atomic system, the analogue of the
W -integrals is given by [64,65,71]

Wa(p,q,s,t,a,B,y,0)
o0 o0 o0 o0
:/ xpe*‘“dx/ yqef'gydy/ zseﬂ’zdz/ we "dw, (18)
0 X y z

and there are 4! combinations of these integrals to contend with. Our objective in this
work is to demonstrate an alternative strategy that circumvents this N! increase in
integral combinations as the number of electrons, N, increases. Other issues arise, and
these are addressed in later sections.

3 An alternative expansion for the radial integrals

We now consider an alternative approach to evaluate the radial integrals I (i, j, k, [, m,
n,w,w,w,a,b, c). Todo this we employ the following expansion for the Sack radial
function [58]:

(—1/2)y riry ad ( rirn )“
Rin(r1,r2) = wte | 3 ) 1
w2 T2) = S )P ;b "\ +n)? 4

where the coefficients by, are given by

4 (w=14), 1 +wy

ul (2 + 2w, (20)

bwlu =

The radial integral can be written as

—1/2) (=m/2) 0 (—1/2)w ~— - -
IR(iij’k?lvmanaw7 w,w,a,b, C) = ( / )wi(ll;’lz/) );)3( n/ )w walu wamu wans
w u=0 v=0 =0

ri+2+2w+u+vrj+2+2w+u+3rk+2+2w+v+s
></ 1 2 3 Wb g e dir. 21
(ri +

r2)2w71+2u (r1 + r3)2w7m+2u (ry + r3)2w7n+2s
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Employing the substitutions x = rj, y = rp, and z = r3, we introduce the auxiliary
function

00 OO OO xiyjzkefaxfbyfcz
5@, j,k,l,m,n,a,b,c) :/ / / ; dxdydz,
o Jo Jo (x+VE&+)"H+)"
(22)

where a, b, and ¢ are real numbers >0, and the indices {i, j, k, [, m, n} are integers
>0. There are additional constraints on the indices {i, j, k, [, m, n}, and these will be
discussed in detail later. Equation (21) can be now written as

IrG, j, k,I,m,n,w,w, w,a,b,c)

_ (2w (=m/D)u(=n/2) i b i ) i )

{(1/2),}3
x s +2w+u+v, 1 +2w+u+s, Ky +2w+ v+,
x2w —1+2u,2w—m+2v,2w —n+2s,a, b, c). (23)

The summation limits in Eq. (23) terminate at finite values when the indices {/, m, n}
are even integers because of a condition on one of the Pochhammer symbols that appear
in the definition of the by, bymy, and by,,s coefficients, but are each non-terminating
for odd integer values of the indices {/, m, n}. This latter case is the one of principal
interest in this work. Two strategies are employed to deal with the multiple summations
that appear. Convergence acceleration techniques can be judiciously applied to some
rearranged forms of the final equations obtained. This approach will be detailed in
part II of this work. The second method is to apply a graphical processing unit (GPU)
evaluation strategy. In this approach, we can in effect, compute all the required terms
in an individual non-terminating sum in essentially about the same time as it takes to
evaluate the terms in a terminating sum. This is due to the massively parallel structure of
the GPU device. The principal limitation of the current GPU devices is the restriction
to double precision arithmetic. With more wide-spread usage of GPU devices for
computational work, we expect this limitation to be removed. Further discussion on
the numerical evaluation strategy will be given in a future paper.

4 The auxiliary functions K, and J;
In this and the following sections the auxiliary functions required to evaluate Eq. (23)
are considered. We start with two elementary auxiliary functions which are special

cases of the J3 function defined in Eq. (22), and in the following sections discuss the
more complicated auxiliary functions. The first function considered is:

20, j, k) = (x—i—y)k dxdy, (24)
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with the constraints
i>0, j>0, i+j+1-k=>0. (25)

With the change of variables y = u — x followed by a change of integration order

leads to
o . o0 .
K> (i, j, k) =/ xldx/ (u—x)u% e
0 X

00 u o
:/ uikeﬂ’du/ (u —x)/ x"dx
0 0
:/ u"”“_ke_”du/ (1 —v)/v'dv
0 0
=@{(+j+1-KBGE+1,j+1

I
s RaRl ] (26)

where B(x, y) is the beta function, defined in terms of the gamma function by [72]

1 _ _ I (a)I (b)
a—1 b—1
B(a, b) :/0 7 (1 =) dr = —( % for Re(a) > 0 and Re(b) > 0. (27)

The generalization of the K7 (i, j, k) integral is as follows:

yje ax—by
D@, j, k,a,b) = / / Gt ——————dxdy. (28)

We now sketch the evaluation of J> (i, j, k, a, b). This auxiliary function can be directly
recast in terms of a two-dimensional version of the W integral in Eq. (14) (sometimes

referred to as the V auxiliary function), which has been discussed in the literature
[20,59]. With the change of variables x = uv and y = u — uv, Eq. (28) leads to

1 00
D, j.k.a.b) =/ v'(1 —u)fdv/ Ik granvmbu=ngy o (29)
0 0

LetL =G+ j—k-+1),then

1 i j
- v (1 —v)/
@i, j, k,a,b) =1L dv. 30
2074 a.0) /0 (av + b(1 —opt G0
For case (i), a = b, we have immediately from Eq. (30)

L
b, j ka,a)=a ""1Ky(, j k) = T BG+ 1+ D). (31)
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For case (ii), a # b, assume without loss of generality that a > b. Let a = ba with
o > 1. Then

Lt vi(l = v)/
J(i, j k,a,b) = bLH/O (1+(a—1)v)L+1d (32)

which can be rewritten using a binomial expansion, to give

i+s

D, j. k,a,b) = bL“ Z( )(_ )S/O 1+ (a — l)v)LHdU

J . s 1 i+s
B (-1) [+ (& — Do — 1]
B b_ Z ( ) (a — 1)its /0 1+ @— Do Y

(33)

where i denotes a binomial coefficient. Expanding the numerator using the bino-
mial expansion, leads to
i+s

J . s 1 i+s—t
-1 i+s5Y, o [N+ @ D]
= Z( ) 1)”5%( )( Y @ o @

_ i j (=D* f i+s 1) l(1+( — Dyt L=l gy
- bL+ = (a — 1)its = t 0 o v ’

Do, j k,a,b) =

(34
The integral appearing in Eq. (34) can be evaluated as
! oga ifm =0
/ 1+ (@ — DHv)" 'dv = . (35)
0 ey ifm #0
so that
(— 1)3 i+s ; + s ,
Bt jkea,b) = Z () @y 2 -1
log(a), 1fL—l—s+t=O
X . (36)
(O{i+x7t7L—1)

m, lfL—l—S+t7éo

When the integer arguments of J> increase in size Eq. (36) becomes progressively
more unstable for numerical evaluation. For example, for the casei = 11, j =9,k =
5,a = 2.3, b = 2.5, separate calculation of the positive and negative parts of Eq. (36)
establishes that 32 digits are loss when the positive and negative parts are combined to
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obtain the final value. In cases where the arguments for J, are large, the series expansion
formulas Eqgs. (39) and (40) given in the following section should be employed, and
these are both stable for numerical evaluation.

5 Alternative approach to evaluate J>(i, j, k, a, b)

In this section we consider an alternative scheme to evaluate the J, integrals. Without
loss of generality assume b > a. Since

e(—ax—hy) — e(b—a)xe—b(x—&-y)’ (37)

then with the change of variables bx = s and by = ¢, it follows that

s t/e 5 e s!
D@, j, k,a,b) = ey k+2/ / (s—i—t)k ———————dsdt. (38)

b;a) s
Employing a power series expansion for e( »")7, we can write

xithyjg—x—y
ye
i ok 0.0 = Z A e

—a\" K2(i + 1, N0}
bz+] piti—k+2 Z( ) w! (39)

The series expansion approach of Eq. (39) avoids the numerical instability issue that
can arise using Eq. (36) when using larger integer arguments.
Alternatively, if a < b < 2a, then

1 xlylHie=x=y
.. _ M
@, j, k,a,b) = PRy E =D / / Fp: ———————dxdy
1 —a\" K2, j+ . k)
— 1M
= E)( D ( - ) i (40)

Convergence acceleration techniques, for example, the Levin approach [73], are sig-
nificantly more numerically stable when applied to series with alternating signs, which
is the situation in Eq. (40). Sample values for the auxiliary functions K> and J; are
presented in Tables 1 and 2.
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Table 1 Sample values for the K; auxiliary function

Parameters Integral

i

~
>~

Ko (i, j. k)

3.333333333333333333333333333333333 x 107!
5.000000000000000000000000000000000 x 101
8.000000000000000000000000000000000 x 10~
2.0000000000000000000000000000000000 x 10!
1.0080000000000000000000000000000000 x 103
8.333333333333333333333333333333333 x 1072
2.5974025974025974025974025974025974 x 10!
10 8.791208791208791208791208791208791 x 102
5 5.000000000000000000000000000000000 x 10~2

[ LS T A R S
[, N~ N N S SO U

12

W D = NN = =

Table 2 Sample values for the J, auxiliary function

Parameters Integral

i j k a b Jo(i, j. k,a,b)

1 1 1 2.1 22 3.356180380735963591815495839220637 x 102
2 2 1 2.5 2.4 9.070834533153207178594989910647530 x 103
2 2 2 4.6 8.3 1.3056771755775946745334359397372531 x 10~4
7 2 1 2 2 9.843750000000000000000000000000000 x 10!
7 1 6 4.1 3 3.723111304304961806557743692113333 x 104
5 5 5 7.1 34 3.1345963054263156697195206503365255 x 100
12 2 10 1.9 2.7 1.2168099834546693558405517235994899 x 103
1 3 5 8.6 42 8.989063450970709757771637791857777 x 1073

6 The auxiliary function K3: the special case m =0,/ and n > 0

In this section we consider the evaluation of the auxiliary function

00 00 00 xiyjzke—x—y—z
K3(, j, k,1,m,n) =/ / / ; dxdydz, (41)
o Jo Jo (x+NE&x+)"y+)"

for the special case m = 0. This case will prove to be useful in a following
section. Because of the inherent permutation symmetry for the auxiliary function
Ks(i, j, k, I, m, n), we can select any one of the indices /, m, or n to be zero. With the
choice m = 0 and the change of variables y = uv and x = u — uv, and rearranging
the order of integration, we have

L ) [N ui+j—l+lzke—u—z
Ks(, j, k,1,0,n) =/ v/ (1 — v)’dv/ / ——dudz. (42)
0 o Jo (uv +2)"
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With the further change of variables u = xy and z = x — xy then

© 1 . 1 yitj—I+1(] _ y)k
K3(, j, k,1,0,n) = / x’+1+k+2_1_”e_xdx/ v/ (1 —v)'dv / yo rd-yn
JO 0 J0O

(I=yd—=wv)"
(43)
Set
T=i+j+k+2—-1—n, (44)
and consider the situation T > 0, hence
1 1 yitj—l+11 _ kK
. ; ; y (1—-y)
K3, j, k,1,0,n) = T!/ v/ (1 — v)’dv/ — " dy. (45)
/ 0 o (dT=y+yv”
Inserting the expansion
1 — (M)
—_— = —L Y1 = v)H, 46
=y =)’ MZ Y e

=0

into Eq. (45) leads to

0 1 1
K3(@i, j, k,1,0,n) = I!Z(Z—)'“/ v/ (1 —v)’ﬂ*du/ yitI=lE () — )k
i M Jo 0
47)

Fori 4+ j + 1 —1 > 0 we have that

o0
n
K3(i,j,k,l,0,n):t!z(u—)'”B(j—i-l,i+l+u)B(i+j+2—l+/L,k+l).

n=0
(48)
From Eq. (48) it follows by the symmetry of the kernel of the K3 function that
K3(k, j,i,n,0,1) = K3(, j, k,1,0,n), (49)

and hence

. — Dy ,, . . .
K3(k,],l,n,0,l)=r!27B(]+1,k+1~|—,u)B(j+k+2—n+,u,,1+1).
u=0 """
(50)
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The series in Eq. (48) can be written in term of the hypergeometric function 3 F». Using
the definition of the beta function given in Eq. (27), it follows that Eq. (48) can be
expressed as

o
rai+1 ri+j+2-1
Ksti, ok, 1, 0,m) = jtiy S @ TOHIHOTOH] 220000
= w! TG+j+24+wl@+j+k+3—-14+mw

(5D
Expressing the gamma functions in term of Pochhammer symbols yields
r¢+nDrGé+j+2-1
Ks Gy jo ko1, 0,m) = ikttt VOG22 1)
FGi+j+2TG+j+k+3-1)
5 i Wy (D +j+2=Dy
= wt G+j+2)uG+j+k+3-Dy
The 3 F> hypergeometric function is defined by [74-84]
o (@u®B)u()y 2
sPa,bocid eiz) = ) —E = —h (53)
MZ_:') (d)u(e)u !

so Eq. (52) can be written as

I'G DG i +2—1
KaGi, j ko1, 0,m) = jikiet— G DTG+ #2721
TG+ +2TG+j+k+3-10)
X3P i+ i+ j+2—Li+j+2i4]j+k+3—L1).
(54)

Several different results for K3(i, j, k, [, 0, n) can be readily constructed in which the
arguments of the hypergeometric function are different, and in some cases, leading to
results which are slightly quicker to evaluate. For example,

UG +k+1—mG+j+1—=D)!
G+ j+DIG+k+1D)!
X3P+ L Lni+j+2,j+k+2:1), (55

K3(, j. k. 1,0,n) =

and

KNG Ak +1—mlG+j+1=DI+j+k+2—1—n)
(i+j+k+2—mli+j+k+2—10)!
X3P+ j+k+3—1—ni+1,k+1;i+]
+k+3—n,i+j+k+3-10;1). (56)

K3(, j, k,1,0,n) =
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7 The generalized hypergeometric function 3 F, with non-negative
integer parameters and unit argument

Because of the key connection given in Eq. (54), we explore in this and the following
few sections a number of results for the hypergeometric function 3 F> which will allow
the m = 0 case of K3 to be efficiently evaluated at high speed. We will show that for
the case of interest in this work, {a, b, ¢, d, e} € N, that

3F(a,b,c;d,e; 1) =ci(a,b,c,d,e) +cya,b,c,d, e)nz, 57

where ¢, c2 € Q, and show how to determine explicit expressions for ¢; and c. It
will become clear that these two functions involve relatively simple finite summations
of gamma functions with integer arguments. Utilizing Eq. (57) allows Eq. (54) to be
evaluated as a finite sum. We will abbreviate 3 F>(a, b, c; d, e; 1) by 3 F>(1) when we
have no special need to discuss the other arguments. To establish Eq. (57) the Euler
integral representation of 3 F; (1) is employed. Resolution of the inner integral in this
representation must be carefully performed; otherwise a sum of divergent integrals
arises for the general case.
The generalized hypergeometric function 3 F>(a, b, c¢; d, e; 1) converges for

d+e—a—b—c>0. (58)

The particular 3 F> (1) studied in this work, is for the general case, neither Saalschiitzian,
well-poised, nearly-poised, or balanced (see [75] p. 188 and [84] p. 70 for definitions).
When those conditions do apply, simple expressions are obtained for the resulting
values of 3 F5(1).

From the work of Wimp [85] and Zeilberger [86] it is known that the general
3Fy(a, b, c; d, e; 7) cannot be expanded in a simple form in terms of gamma functions.
In the case {a, b, ¢, d, e} € N, such an expansion is possible. The determination of the
classes for which the generalized hypergeometric function can be written as a finite
sum is an open problem [87].

Computer algebra schemes have become increasing useful for finding and manip-
ulating various generalized hypergeometric functions [88-91]. Various special cases
of the general results derived in this work for {a, b, ¢, d, e} € N can be found in the
latter two references as well as the book sources cited previously.

To establish equation Eq. (57) we will consider two main cases. The first one, which
is more involved, arises when any of the values of a, b, and c are strictly smaller than
both d and e. For this case, the Euler integral representation of 3 F»(a, b, c; d, e; 1)
will be employed. The second case occurs when one or two of a, b, and c are greater
than or equal to one of d or e, which, without loss of generality, can be assumed to be
b > d, is solved directly utilizing a result from Rosler [92].

The Euler integral representation of 3 F>(a, b, c; d, e; 1) takes the following form
[84]
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T(@)T(e)

3F>(a, b,c;d,e; )= ') () (d —b)I'(e —c)

1
x/ 1A =0"(a, b, d, t)dt, (59)
0
where
Lgb=l(] — 5)d—b-1 C(HT(d —b)
I(a,b,d,t) = ds = Fi(a,b:d;1t). (60
(a ) ]ﬁ (1 —15)0 s rd) > 1(a ). (60)

The strategy employed in this work is to reduce the 7 (a, b, d, t) integral in Eq. (60) to a
form such that the remaining integral is a beta function. The most straightforward and
obvious way to deal with the 7 (a, b, d, t) integral is to employ a binomial expansion
for the numerator term followed by the change of variable x = 1 — ts, leaving a
trivial integral to evaluate. Unfortunately, this approach fails for the general case,
since it leads to a sum of several divergent integrals of the form of a beta function. It is
therefore necessary to evaluate the I (a, b, d, t) integral in a less than straightforward
manner to resolve this divergence issue.

For the case thate — ¢ > 1 and d — b > 1 with Eq. (58) also satisfied, the integral
over s in the preceding result can be simplified as follows:

d—b—1

d—b—1 .
Ia.b.d.t)y= > ( L )(—1) Jb—1+k,a—1,1), 61)
k=0
where we define
. booogm 1 .
J(mvjvt)Z\/O (1_ts)]+]dsztm+]Bt(m+1,—J), (62)

with m, j € Z* and where B, (a, b) denotes the incomplete beta function given by
Z
B.(a, b) =/ =11 = P~ 'ds, for Re(a) > 0and 0 < z < 1. (63)
0
For the case m > j > 0, a straightforward calculation leads to the recursion formula:
Jm, j1) = —— M rm—1,j—1,1) (64)
m9]5 _J[(l—t)] j[ m ’,] E) £

from which it follows by repeated application of the recursion formula, that

Com il CnrG—t—w (=) (m .
J(m’]’t)ZFZ + - (])J(m—],O,t)

D &= (m - w)lw (1 —¢)i-w tJ

(65)
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Employing the result

o
. v
J(m_/’o’t)_Z:E)erm——jH’ (66)
allows Eq. (65) to be rewritten as
v !
J - J
Tem. .0y = (=1) ( )§w+ 1t eh ( )w=0 wAm—j+1
m (DU —1-w)
U= (m— w)lrwH(1 —p)j—w
00 w
=(=1)J (’”) v
] w=0w+m—|—1
1 (m) & -0 (m — )iw — 1!
+1+1(1_;)J(‘)wglerm—j[1+(r—1)w(w+m—j—1)!]
(67)

Expanding the powers of (1 — ¢) in the numerator of the summand of the preceding
equation and carrying out a summation rearrangement, leads to

U Y, (m — j)l(w — 1)1 D9 (j
P
Z"(w—i—m—j)|:1+(z—l)w(w—|—m—j—1)!i| Z(t) Zq—l—m—j(P—Q)

w=1
+i(_t)p§<rn—fw—l>!(j—q)
~ S @tm—p \p-q
(=11 J )
J 14 -~ 7
+(= t)pzl(t)z‘”m (j+p_q : (68)

To simplify Eq. (68) we make use of the result

P . . .
Z{ — (j )+—(m_])!(q__l)!(1_q)]=o, (69)
g+m—j\pr—4g (g+m—j)! pP—q

q=1

which can be proved in the following manner. For any n > O and j > p > 1 we show

that
. 70
(2_,) (10)
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Employing the partial fraction decomposition of n!/(g + n)!,
q

nl (=D 1
(g +n)! _;(k—l)!(q—k)!k+n’ 7

then the left-hand side of Eq. (70), can be written as

fqu—m(j—q)z_zz Dk (gD (j—q)
o atmt \r—d SE& ktnk=Dlig - \P—a

14 k P .
_ N~ &b g-1\(Jj—4q
- zk+nqz(k—1)(p—q)
:_Z”:(—l)‘f - (q—i—l—l)(j—q—l)
q+n &\l p—q-=1)

(72)

M

where a summation rearrangement has been made. Employing the representation of

the binomial coefficient:
n\_ ., ufl—-n-1}), (73)
()=o)

allows Eq. (72) to be recast as
P—q .
: (_q) (p - l)
l —qg-1)
ni pP—q

Cnlg-D(j—gq I~
Srr()-ors
o (g+m! \P—4q i

(74)

Employing the Chu—Vandermonde identity [84]:

(1) ()= G7) @
=0
then Eq. (74) simplifies to
- nllg = D! (j—q . p—j=—q-1
> ()= s (o)
=_Zﬂ(j ) (76)
q=1q+n r—q)’

where Eq. (73) has been employed in the final step. This completes the proof of
Eq. (69).
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Using Eq. (69) allows Eq. (68) to be simplified, so that Eq. (67) reduces to

o0 tw

. _ i m o
om0 =1 ])](j)zw+m+l
j—p—1 .
(=1)4 J)
(l—t)f( )Z p+q+m+1—j(q - 7D

g=0

In Eq. (77) the infinite sum can be expressed in the form:

tw

00 mow
— = A -+ — b, for —1<t<1, (78
DI R [VELRS Y S L

but it will prove to more convenient for the evaluation of 3 F>(1) to retain the form
given in Eq. (77). Equation (78) will be useful for the derivation of some special cases.

For completeness we give the result for the case j > m + 1 and m > 0. Employing
the change of variable w = (1 —s)(1 —ts)~! followed by a binomial expansion, leads
to

. m —m—1
J(m, j, 1) = t)J/ A —w)"(1 —tw)! ™" qw
j—m—1 '—m—l 1
l_t)] Z (- t)"( )/0 w' (1 — w)"dw
j—m—1 __ -
(l—t)l Z (- t)”( " )B(n+1,m+1), (79)
and hence
_Gem—ym I 80
Jam, j,1) = ,(I—Z(n(ﬁmﬂ) (80)

8 The hypergeometric function for non-negative integer parameters

The results just developed can be used to obtain a simple finite summation formula for
2Fi(a, b; c; t). From Eq. (60) for {a,b,c} e N,c > b+ 1, —1 <t < 1, and without
loss of generality we can take 1 < a < b, so that

I'(e)

1
) b=1,1 _ e—b—l/1 _ . \—a
2Fi(a,b;c;t) = F(b)F(c—b)/o s =) (1 —1ts)"%ds

= ') ‘&l e—b-1 k
TGN ~b) kzzg (k )(—1) Jb—1+ka—11
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c—.

I'(c)
T T (c—b)

|
M >

—1

( 1)(—1)’%—1""3,(1; +k 1—a)
k=
T ‘Zb:‘ (— D
RN “ Te—b-kbIk+1)

b+k—1
a(btk=1Y bt _ ™
{( v () lln(l nt > wl

w=1

1 brk-1\e e DT fa-—1
S -t (afl )FZ_:‘)(_[) Zlq-i-b—i-k—a(aJrP*Q)'

q=p+
81)

For the particular case {a, b,c} e N,c >a+1,c>b+1,and —1 <t < 1, aslightly
more compact result can be written in the following manner. With an appropriate
change of integration variable we can write the I (a, b, d, t) integral in Eq. (60) in the
form

00 b 1 d b—1 7(1 —t)x—y
I(a,b,d,t) = Y / / (x+y)d_“ dxdy
Z‘)d a—b b 1 d b— 1 —w—y
/ / —dwdy. (82)
(a—l)' [w+(1—t)]

Repeated integration by parts with respect to the variable w leads to the result

_ ~d—a—b_1yd—a—1 d—a—1 _ _
I(a’b’d’t)z(l 1) (=D (=1* (b 1)

(a—1)! s d—a—-1-p)!

[e'SIIe'e) wb—l—pyd—b—le—w—y
x/ / dwdy. (83)
o Jo [w+ 1 —1)y]

With the change of integration variables y = uv and w = u(1 — v) leads to

_ ~d—a—b,_1yd—a—1d—a—-1 o
Habd=2="0"7CD (—)Pd — p—2)! (b— 1)
(a—1)! d—a—-1-—p) \p
p=0
1 d—b—10q _ \b—p—1
X/ v (1 U) ! dv. (84)
0 1—1tv

Employing the preceding result with the variable switch d — c¢ and using Eqs. (66)
and (78), we have for {a,b,c} e Nyc >a+1,c> b+ 1,anda + b > c, that
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_1\c—a(1 _ y\c—a—b N cma—l L 3
2F1(a,b;c;t):( DA -1 T'() (=DPT(c—p 1)(b 1)

L@ ()T (c — b)tc—b s I'(c—a—p) p

1 b—p—1 b1 k+c—b—1 o
x (1—?)b_”_11n(1—t)+ > (k p )(—r)—k > —1
k=0 w=1

(85)

For the particular case a > d in Eq. (82), it follows directly (using the switch
d — c¢)forc>b+1and{a,b,c} €N, that

N D R KO RS a—c .
2F1(a,b,C,f)—mp OB(b—i-p,a—b—p)(p )(l—t) .

(86)

9 The function 3 F>(a, b, c;d,e;1)fore —a—c>0andd —b > 1

Because of the invariance of 3 F>(a, b, c; d, e; 1) with respect to the interchange a <
b < ¢, we can without loss of generality assume that a < b. Making use of the result
for J(m, j, t) given in Eq. (77), then Eq. (59) simplifies to

d—b—1
o LT (e) d=b—1\(b+k—1Y, _  p
3F(a,b,c;d,e; 1) = OO — D)o — o) ; (k )(a—l )( D

a—2 1
x ‘2(—1)!’ka(a,b)/o retP=l(1 — gy

p=0
a o (=D : ct+p—11 _ pe—c—1
+(=1) pz_;‘)p+k+b/0t (1—0lart, (87)
where
a—1
(= a—1
,b) = T . 88
Kpi(a, b) q§1q+k+b—a at+p—gq e

Insertion of the beta functions into Eq. (87) leads to

d—b—1
o (@) () d=b—1\(b+k—=1Y, | 4
shebad el = ot pre—o & () e e

a=2
x ‘Z(—])pok(aab)B(C-Fp,E—Fl PP
p=0

e—c—1 o0
_\a e—c—1 N 1
HED" 2 (j )( . Z(p+k+b)(p+j+c)”

Jj=0 p=0

(89)
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and hence, fora > 1,b > 1,c>1,d>1,e>1,d—b>1,e—c>1,a < b,
e—a—c>0,andif a > 2, we have

o F(d)T () & (d—b—1) (b+k—1 "
Bebadal) = ot pre—0 2 (k )(a—l )(_1)

k=0
- I(c+ p)
Cg—¢ 1P __~erp
x|Te+1-a c)g( D xpka b) e
‘! e—c—1 ;
+=D (J. )(—1>JA(k+b,j+c) : (90)
j=0
where
(2, u), foru =v
Au, v) = _ max{u,v}—1 , 91)
W(MZ—UWU) = |uiv\ Z %’ for u 7& v
I=min{u,v}

and v (k) denotes the digamma function and ¢(2, k) designates the Hurwitz zeta
function. An empty sum, that is Z;"zn for n > m, is assigned the value zero. The
Hurwitz zeta function can be written as

=~

72 —!
c(2,k) = — — —- (92)
6 “p

p

Inserting Egs. (91) and (92) into Eq. (90) leads to the key result, Eq. (57), where

d—b—1

B I'(d)T(e) d—b—1 b+k—1Y\, k+l
Cl(a,b,c,d,e)— r(b)F(C)F(d—b)F(e_c) kgo (k )(a—l )( 1)
a—2
I'(c+ p)
—a — —HP 7 1 11 - N
X|:F(€+l a 6);( D ka(“’b)r(e+1+p—a)
e—c—1 e—c—1
_1)4 T - ']
DY (j )< b
j=0
JjHc—1
_ z # forj=k+b—C
p=1
5 93)
| max{k+b, j4+c}—1 1
7= 1 forj#kdboc

I=min{k+Db, j+c}
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and
hed o) — (—1)atbretl C(d)T(e)
c2a,b,c,d,e) = 6 L(®)T()T(d —b)T(e —c)
d—b—1 e—c—1
d—b—1\(b+k—1 —c—1
x > (k )(a__l ) 2 (j ‘ )5ﬂkw—®'
k=0 j=0

(94)

10 3F>(a, b, c;d, e; 1) for the cased <a+ b

To handle the situation where d < a 4 b we proceed in the following manner. Substi-
tuting Eq. (84) into Eq. (59) leads to

@b adeal = r(a)r(@l))rd(_c;g - g;e()e —0 dpio] (;zll)—pc(zd—_lp—_p?!)! (1;_ 1 )
P& - p—1 k[ e e+d—a—b—c—1
x g%(k )&D(Az 1=1
xJ(d+k—p—1,0,1)dt. 95)

Employing Eq. (66) leads to

d—a—1

(=D 'T @) (e) < (D7 —p-2) (b—l)
p=

i@ b e d e ) = N r M Ord — b —c d-a—1-p! \p

b—p—
x 2
k=0

1
x / tc+w—1(l _ Z)B+d—a—b—c—1dt
0

1

b—p—1Y, v~ 1
A S e

w=0

(=)=~ ()T (e) !

B 3 (=DP(d—p—2)! (b—l)
- D@ (BT —b)(e—c) = d—a—1-p! \p

b

—p—1 e+d—a—b—c—1
—p—-1 —a—-b—c—1 .
« z (Z )4 )(—l)k Z (;—i—d a—b—c )(_1)]
0

— j=0
1

x ,
E)(w-i—d-i—k—p)(w-i—j—f—c)

(96)

k
and hence, fora > 1,b > 1,c>1,d >2,e>1,d—b>1,e—c>1,d—a—1>0,

b+a>d,andd +e—a—b—c > 1, we have
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Fabcdel) — — D@ “‘fl (=)’ = p=2) b—l)
GGG T T ()N (T (d — b)T (e — ¢) = @d—a-1-p)! (P
b—p—1 b—p—1 et+d—a—b—c—1
<> (7 e X
k=0 j=0
(;+d_“_b_c_1)¢4yAm+d—pJ+wy 97)

Equation (97) can be expressed in the form of Eq. (57) in the same manner indicated
to obtain Egs. (93) and (94).

11 3F>(a, b, c; d, e; 1) for the cased — b < 0

To complete the proof of Eq. (57), it is necessary to consider the case where d —b < 0.
For this case we avoid the Euler integral relationship and employ a result given by
Rosler [92]:

F(e) m )
sPyab+mcbel) = Fe—a—c—j),

I'e—a)l'(e—c) o

m) (@)j(c);
i) ),

(98)

where m € ZT. Equation (98) requires e > 1, e —a > l,e —c>l,e —a—c > 1,
and d — b < 0. There are a number of extensions of this result to general , F; and
to general arguments [93-98]. In this form the right-hand side of the equation can be
identified with c¢j(a, b + m, ¢, b, e) and the ¢, term is zero.

To ascertain which of Egs. (90), (97), or (98) should be employed, taking explicit
account of the symmetry of 3 F>(a, b, c; d, e; 1) with respect to interchanges of a, b,
and ¢ or between d and e, proceed as follows. Determine first if either d or e is < any
of a, b, and c, then assign b to any of {a, b, c} and d to whichever of {d, e} satisfies the
preceding condition. Thus if the condition is met we have d — b < 0 and Eq. (98) can
be employed. If both d and e are > max{a, b, c} thend —b > l,andife—a—c >0
apply Eq. (90), and if e — a — ¢ < 0 then with the switch d <> e and ¢ <> b leads to
d < a + b and so apply Eq. (97).

12 Some special cases for 3 F> (1)

In this section we consider some special cases of 3 F>(1) that can be written in a
reasonably compact form. Several of these cases are particularly useful for the rapid
evaluation of 3 F>(1) for the evaluation of the m = 0 case of the K3 auxiliary function.
A particularly simple case of Eq. (90) occurs fora =1,b=1,d =2,e =c+ 1, s0
that for ¢ € N:
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2

%, forc =1
h,1,¢;2,c+1;1) = c—1 . 99
3 b ( ;2 ¢ ) oy %’ fore =2 (99)
w=1

Thecasea = 1,d = b+ 1, e = ¢ + 1, where the latter two conditions fix the first
condition (for the nonnegative integer case), also reduces to a compact sum, so for
b,c e N

c—1

Fy(lbcib+1.ct1:1) = 2 Zl f b (100)
,b,c; ,e+1; 1) = —, for ¢ > b.
312 b w

w=b

The special case of the preceding result for b = ¢ follows directly from Eq. (90) to
yield for b € N:

2 b—1

T 1
F(1,b,b:b+1,b+1: 1) =b*( — = > — )= p%c2,b). 101
3F( +1Lbo+1D (6 wzzlwz) c(2,b) (101)

In a similar fashion, we obtain fore — b > 1, and b, e € N,

b—1

bI'(e) B(p,e —b)
h,b,b;b+1,¢;1) = —————— 2,e —b) — _—
3F2( tlel) = gor g 5% e pZ:‘; p
(102)
Forthecasec —b>1,e —b > —1,ande —c > 1,
3F(1,b,c;b+1,¢;1)
b—1
_& o B o N B(c—b+p,e—c)
_F(C)F(e—c)'B(( b,e — ) {yr(e —b) — Y(e —c)} p; p ]
(103)
Forthecase b > 1,c > 1,d —b > —1,and e — ¢ > 1, we obtain
d—b—1
I'd)T'(e) vfd—b—1
F(,b,c;d,e; 1) = -1
b ad s D= R ord - bre —o ,é( )(k )
e—c—1 -1 -
x> (e. ¢ )(—1)’A(k+b,j+c). (104)
‘ J
j=0
The case e — ¢ > a and a > b + 1 reduces to
. a—b—1 1k o
3F2(a,b,c;b+1,e;l):br(a b)I'(b)T'(e) (—D*Bk+c,e—a—c+1)
I'(c)['(e —¢) = 'tk+b+ 1)I'(a—b—k)
(105)
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To obtain the special case 3F>(1, 1, 1;m +2,m +2; 1) form € Z™, it is advanta-
geous to first carry out a pair of Thomae transformations. Lets =d +e —a — b —c,
then the Thomae transformation takes the form [99]

L) ()l (s)

Fr(a,b,c;d,e; 1) = F,d—a,e—a,s; b, ;).
3Fr(a,b,c;d,e; 1) F(a)F(s+b)F(s+c)3 2 (. a,e—a,s;s+b,s+c;1)

(106)

Applying this transformation to 3 F> (1, 1, 1; m + 2, m + 2; 1) yields
C(m+2) T

T2m +2)
xTQm+ D)3F(m+1,m+1,2m+1;2m+2,2m +2;1).  (107)

3P, 1, I;m+2,m +2; 1)=|:

Applying a second Thomae transformation to the preceding result yields

1
3,1, ,m+2,m+2;1) = M3F2(l,m+ I,m+1;m+2,2m+2;1),
2m+1)
(108)

which simplifies on using Egs. (59), (60), and (62) to yield

1
s (L 1L, Lm+2,m+2;1) = (m + 1) (’2nm)/ " (1 =)™ J(m, 0, t)dt.
0
(109)

Utilizing Eqgs. (77) and (78) leads to

2 m
. N 2 (2m T 14+ wB(w,m+1)
3B, L im+2,m+2;1)=m+1) (m ){6_ E —2

w=1

(110)

A similar approach can be taken to evaluate 3 F> (1, 1, 1; m+2,n+2; 1) form, n € 7+,
with the result that

sB(, 1 Lm 42,0 42 1)=(m+1>(n+1)(’"+”)

m
2 m n
T 1 B(w,m+1)
— = — — —_— . 111

A slightly more tedious calculation by the same approach yields form € Z7,

(m +2)* 2(2m> 1
B, 1L,2sm+3,m+3;1) = +(2m+1 +2
3L 1L 2m 4 3o+ 3 1) = S+ @m Do+ 27 (1 ) s

" (1 Bwm+1) Bwm+2)) =2
I L ] 12
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The case 3 F>(n, n,n; n+ 1, 2n; 1) forn € N, can be evaluated in a straightforward
fashion making use of the result

Jnn 1) = (—! [log(l —0-Y (t_#l) } LA

w=1

to yield

2 2 n-l w
) L i 2n T 1—(=D%wB(w,n —w)
3Fh(n,n,n;n+1,2n;1) = (—1) 7(’1 ) l—6+ E o2 .

(114)

Form,n € N and m > 2n we obtain

. L (=hmrem ["E
3F2(n,n,n,n+1,m,1)—m’ Z w2

w=1

n—l_w o 2
—Z( DYB(w,m —n w)—%},(HS)

w
w=1

and form,n, p e Nwithp —n > 1landm —n — p > 0 yields

n—1

. (=Dl (m) (—D¥B(w+p—n,m—p — w)
s pin LD = R ) L; v
T(m — p)T(p —n) "L 1
e wzz‘a — (116)

13 Recursive reduction of 3 F; (1)

In some cases it may be possible to improve the speed of computation for Eq. (90) by
selectively decreasing some of the parameter values. This can be done in a recursive
fashion. From the standard recursion formula for contiguous generalized hypergeo-
metric functions [84]

3, b+1,c;d,e+1;1) =3F(a,b,c;d, e; 1)

ac(e — b)

— 3 F 1I,b+1, I;d+1, 2; 1),

de(e+l)3 20@+1,b+1,c+ +1,e+2;1)
(117)

we can write forn € Z+
sFh(a+n,b+n,c+n;d+n,e+2n;1)

n+1
- (a)(b()d% Za(n+ 1, p3Fa(a,b,c+p—1;d,e+p—1;1), (118)

p=1
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where the o coefficient satisfies

a(g, 1) = (=) (e +2n —2g + 2)24-1), (119)
a(q,q) = (e+2n—q)g-1(e+2n—q+ Dg-1, (120)

and
alg,p) =plg—1,p—Dalg—1,p—1)—=p(qg—1, palg — 1, p), (121)

with

Bg—1,p—1)=(e+2n—-29g+p—1)(e+2n—2q9+ p). (122)
The maximum reduction results when #z is selected as
n=min{a—1,b—1,c—1,d—1, (e —1)/2]}, (123)

where | x| denotes the floor function; the largest integer < x.

14 Some special cases for the m = 0 K3 auxiliary function

If/ = j + k + 2, then from Eq. (52)

o0

L . L@ —k) (m)y G—ky
K3(@, j,k, j+k+2,0,n) = jlklt!l—— —
30 )k )= F(z+]+2)MZ::') ! G+j+2p,
@ —m)jk!@ —k —1)! . o
= Fiin,i —k;i+j+2;1).
TR ER I / )
(124)
By the Gauss summation formula [84]
r'e)l'(c—a-—-»>
JFila by 1) = b (125)

F(c—a)(c—b)
Applying this result to Eq. (124) leads to

S G —m)jIKG —k—DITG+j+2TG +k+2—n)
Ks3(, j, k, k+2,0,n) =

30 Jok J 4k +2,0.m) G+j+D  TG+j+2-ml(G+k+2)

_ G =mlkG k= DI == D! (126)
i+j+1-nld -1

which is valid fori > n,i > k+ 1, >n+1l,andi + j + 1 —n > 0. Similarly, it
can be shown that whenn =i + j + 2,
ik =Dk —i—DIn—1-1)!

KaG joko 1,000+ ] +2) = == ——. (12D)
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whichis valid fork >,k >i+ 1,n>[+1,and k4 j + 1 — [ > 0. Some further
discussion of K3 (i, j, k, [, 0, n) is relegated to part II of this work.

15 The general case [, m, and n > 0 for K3

We now turn our attention to the more general form of the K3 auxiliary function. With
the change of variables y = uv and x = u — uv we have

00 00 00 xiyjzke—x—y—z
ki gk Lmmy = [ 7] : dxdydz
o Jo Jo G+ EG+)"(y+2)"

I ) 0o o0 piti—l+1k p—u—z
:/ v/ (1 — v)’dv/ / dudz.
0 o Jo (u—uv+2)"wv+2)"

(128)

Leto =i+ j+k+2—1—m—n and with the additional change of variables z = uw,
then

wk

dw
1—v4+w)™(v+ w)

1 . . 00
K3(i, j, k,l,m,n) :/ v/ (1 — v)’dv/
0 0o (

e} . .
« / Mz+j+k+27lfm7ne7u(l+w)du
0

1 i . 00 wk
= ! — !
a./o v/ (1 —v) dv/o ST +w)o+ldw.
(129)

Letw:u—landsetu:%,then

o o [ i wiae [T (u— D J
K3(, j,k,l,m,n) =0o! A v/ (1 —v)'dv L U=t u— Dot u

o ) 1 xa+m+n—k—l(1 _x)k
=a!/ vf(l—v)’dv/ x
0 o (I=xv)"(1 —x(1—-v))"

(130)
Employing the expansions
1 o
T X as
11=0 M1
and
1 o (W
— K21 — p)H2, 132
=00 MZ_“O o (I—=v) (132)
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leads to

K3(, j, k,l,m,n) = o! Z Z (m)M] (n)/,Lz
— — ur! u!
u1=0 =0

1 ] 1
X / v]“rMI (l _ v)l+,u2dv/ xo+m+n—k—1+u1+u2(1 _ x)kdx‘
0

0
(133)

For the casethato +m+n—-k—1>0

mo]klmny4ﬂ§:z:mh“mMB(+1+mz+1+m)
#1=0 pn2=0
X B(o+m+n—k+p 4+ pa, k+1). (134)

A discussion of how to turn this expression into a form suitable for a numerically stable
application of convergence accelerators is discussed in part II of this work. From this
result we can deduce the following constraints:

i+j+1-1>0, (135)
i+k+1—m=>0, (136)
j+k+1—-—n=>0, (137)
and
i+j+k+2—1—m—n=>0. (138)

Further discussion on the constraints that are required for convergent K3 and J3 inte-
grals is given in part II, as well as a discussion on connecting the general K3 integrals
to the m = 0 case of this integral by recursion.

16 Formula for K3(i, j, k, 1,1, 1) in terms of 3 F> (1)

In this section we develop a general formula for the special case K3 (i, j, k,[, 1, 1)
which is useful both as a means for the rapid evaluation of this case when it arises,
and also in checking formulas evaluated numerically. Start from Eq. (130), setting
m = n = | and carrying out a partial fraction separation of the denominator terms,
leads to

K3, j, k,l,m,n) =c{f@, j, k, 1)+ f(j,i,k, D}, (139)
where
1 ko itj+1-1 1 i
.. _ (1 —x)*x'™J (1 —v)iv/
fa, j, k0D _/O —(2—x) dx/o —(1 0 dv. (140)
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By making the appropriate binomial expansion and taking advantage of Egs. (59) and
(60), it follows that

fa, jok D) =217 1a—1kgd, j)

i} & !

bt | kD R+ L p+ it
G+j+ D) pZZOZP(k+1+p)!3 2L j+1p J

2. k+24p: 1)
Ly Ly 1
CER) et
)2 ) Tt
p=1 q=0
+lLg+Li+j+2,9+2;1) ¢, (141)

with

1 o 1/2 1
o i
g(i, j) —/0 (1—-v)v dv/o T 2vw)a’w. (142)

The function g(i, j) can be evaluated as

i—1
- @t
g1 = 221+1 { Z(; N 1)”] (149

and without loss of generality, because of the permutation symmetry between i and j,
take j > i and setn = j — i, then

o SO
806 J)+ 80D = 577 | Zm
ln/2) g1
q-1)! 24 20 (2q —2p — DI
211
o Z(Zq)<zz+2q—1)” [<i+q>+; i+ )= )] “

(144)

where the | | brackets on the summation limit denote the floor function. From Eqgs. (139
to 144) we obtain the sample values:

7.[2
K3(1’11171’191)=5_79 (145)
385
K3(2,2,2,2.1, 1)_7—13 (146)
10445964
K3(5,4,3,2,1,1) =—f+151200ﬂ2. (147)
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17 Connection of the general case K3 with 3F» (1)

In this section a connection between the K3 auxiliary function with general arguments
and the hypergeometric functions F> (1) is derived. We start with the following equality

00 o] o] (X+y+Z)pxiijk67X7y7Z
7 dxdydz
o Jo Jo GEWE+I"(+)
ar [ x yj kp—a(x+y+2)
= lim —1)P — dxdydz
a1 (=D daf’/ / / I e O G

k e X—y—
= limg_1(— 1)1’ ki *(H’j+k+3 [—m— n)/ / / X 3)1 X—Y dxdyd-
da? CERCEs TS

= (0)pK3(, j, k,I,m,n), (148)

witho =i+ j +k+ 3 —1 —m — n. Then we can write

1 00 OO0 OO Pyivk,—x—y—z2
Kg(i,j,k,z,m,n)z—/ / / (ty iy dx dy dz.
@pJo Jo Jo xH+E+D"(y+)"
(149)

Let p =1+ m + n, and hence
2P(x +y+2)P =((x +y) + & +2)+ (y +2) ", (150)

and with appropriate binomial expansions it follows that

2P (x 4y +2)P _H_i_l(l—l-m—l-n)i(u) O
@+ G+ +" 1 e A el GO L

=0

+l+§n(1+m+n)m 1( ) (x + yyr—v!

p=l+m - (x + )MV (y 4 z)~l=mtpr
+l+§"([+m+n)i(u) (x 4+ )v—"

u=l+m S\ ) (x + )it (y o) lmmtn

l+fl(l+m+n)2( )H%T‘M(H_m_u) ylm—p—w w

r=RU v=0 w0 " (x + p)mHF(x 4 zym—v
+l+§-n (l+m+n)’"—l(u)uzv:l(u_v_l) xhov—lmwyw

w=ttm = (x + )"V (y + )Lt
+l+§n (’+m+”)i(u)vm(v—m) xVm—w W .

v v e

(151)
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Inserting Egs. (150) and (151) into Eq. (149) an setting o1 = (o) ,2” yields

1 00 OO OO 9P Pyivk,—x—y—z2
K3(i,j,k,l,m,n):—/ / / bty toieyice dx dy dz
orJo Jo Jo x+ e +29"(y +2)"
I+m—1 I I+m—p
1 l+m+n n I+m—pu
-3 ( )zo(v > (,
-

o
1 n=0 ® w=0

l+m H—w W, —X—y—2

ze
/ / / <x+y)l TP VETI LS

ECTIEOEE)

u=l+m w=0

n—v—I— wywe—x—y—z

ooxiyjZ X
X — — dxdydz
0 (x+2)"V(y + )7 imH

l+m+n I+m-+n " v—m v —m
=2 (26
u=l+m v=m w=0

VW W =X =y =2

00 iy, k
x/ / / xyzlx — dxdydz]
o Jo Jo (x+y)THt(y 4 g)Timmte

_ 1 l§1(1+m+n) é(g)”ﬁ“(ijm—u)

ol ;= ¥ w=0
xXK3(j+l4+m—-—p—w,i,k+w,l—pn+v,0,m—v)
I+m—+n m—1 n—v—I

l+m+n u nw—v-—1I
> (= () = (¢
u=l+m v=0 w=0
XK3(i+pu—v—I—-wk,j+w,m—v,0,u—10—m)

I+m-+n I+m4n " i v—m v —m
3 ()2 (=)
u=Il+m v=m w=0

X Ks(i+v—m—w, j,k+w,l—p+v,0,u—101—m) (152)

Employing Eq. (54) leads to the result

K3(i, j, k,l,m,n)
[+m—p

SZ B D)

n=0
XK3(j+l+m—pu—w,i,k+w,l—pn+v,0,m—nuv)
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2 EO R )

n=Il+m w=0

XK3(i+pu—v—I>I—wk,j+w,m—v,0,u—101—m)

I+m+n [ +m+n " M v—m v —m
2 0z 56
n=Il+m v=m w=0

XK3i+v—m—w, jk+w,l—pu+v,m0,u—10—m) }

. . — I4+m—
i+ j+k+2)! i|’+§:1(l+m+n)z“:<u) +§:M(l+m—u)
- o1 ' 2 v w

n=0 v=0 w=0
GH+l+m—p—wlk+w)!@i+j+1+m—v—w)!
(+j+1+l+m—p—w)i+j+k+2+m—v)!
x3skhm—-v,j+l+m+1—p—w,i+j+24+m—v—uw;
Xi+j+2+l+m—pu—w,i+j+k+3+m—uv;l)
(l+m+n el u+Il+m el u+m-—v
!
+k'z(u+l+m)z(v ) Z (w )
u=0 v=0 w=0
X(i+u+m—v—w)!(j—i—w)!(i—i—k—i—l—}—u—w)!
G+k+14+u+m—v—w'G@+j+k+2+u)
x3sFhw,i+14+u+m—-—v—w,i+k+2+u—w;
Xi+k+24+u+m—-—v—w,i+j+k+34+u;l)

L ltm N i +m <& (p
il
+J'Z(u+l+m)z(p+m )Z(u})
u=0 p=0 w=0
G+ p—wlk+wii+j+1+u—w)!

i+j+14+p—wi+j+k+24+u)!
x3Fhw,i+1+p—w,i+j+2+u—w;i

+i4+24p—wi+j+k+3+u;)}. (153)

The preceding result is most useful as an evaluation strategy when the indices {/, m, n}
are not very large, otherwise numerical evaluation of K3(i, j, k, [, m, n) is best carried
out using the result in Eq. (134). Sample values for the auxiliary function K3 are
presented in Table 3.

18 Reduction of the auxiliary function J3 to K3
The J3 integral defined in Eq. (22) reduces in the case that m = 0 and n = 0 to the J»
auxiliary function, and for a = b = c it reduces to the K3 auxiliary function. The J3

integrals have obvious permutation symmetry, so without loss of generality we will
assume that ¢ > b > a. Since
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Table 3 Sample values for the K3 auxiliary function

Parameters Integral

~
~
-
3
3

K3(i, j, k,l,m,n)

173

1.3039559891064138116550900012384886 x 10~!
6.51977994553206905827545000619244323432 x 102
8.87664832879433908818962083384937 x 102
9.40110754815353485370466584763943 x 103
5.605585166331902831832568144084144 x 10~ !
6.6325757400221429219621639928541971 x 102
1.3764657675029150947043942353265134 x 102
1.4891638853148397457310518024446 x 10—+
9.209833384884251695140452279230013 x 10—+
1.8705536541001030893626545330943 x 103

N O = = N = e e
N = = = A = e e

—_
(3]

,_
o
W O N = o~ A o= o= = = =

W NN W = O O W = = = =
BN W NN W R~ - O
TS SR SR I SR =)

—_
=)}

e(—ax—by—cz) — e(c—a)xe(c—b)ye—c(x+y+z) , (154)

then with the change of variables cx = s, cy = ¢, and ¢z = u, we have

1
citjt+k—l—m—n+3

0 o0 00 Sitjuke(%)se(%)’e—s—t—u
x/ / / 7 dsdtdu.
o Jo Jo (s+ ' +uwm+u)

J3@, j,k,l,m,n,a,b,c)=

(155)
c-ay, (<2)
Employing a power series expansion for ()5 and e\ < )", we can write
L S
J3 j kLo m, . a, b, ) = mzz o
n=0v=0
0o 00 l+plyj+vzke X—y—2
X 7 - - dxdydz,
o Jo Jo (xH+&x+)"y+2)
(156)
which can be expressed using a summation rearrangement, as
# v (ﬂ)”
. . _ C
B3, j.k.lm,n,a,b,c) = l+/+k —I—m—n+3 ZZ (M_v)l o
n=0v=0
[e'SIyete) t+;,L vyj+v k —x—y—z2
x/ / / ; dxdydz.
o Jo Jo (x+y)G&+)"y+)"
157
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Table 4 Sample values for the J3 auxiliary function

Parameters Integral

i

~
~
~
3
3
2
S
o

J3(, j k,l,m,n,a,b,c)

45 46 48 2.826489452004589696246333509932 x 104
2 2 3.4 4.64308337058579036273383622188 x 1073
42 31 22 2.84415454181515295205038999995 x 102
1.7 21 44 8.52754540754654624365680019382 x 10~*
01 02 02 2.06111429741803934701745687660 x 103
6.4 1.8 64 1.72595372302638099485079011505 x 10!
2.1 31 41 2.05674471922570668726223091048 x 102
22 27 32 3.14985175267391360627273313532 x 107

N O = = = = = e
N = O O N = = =
N = = = W) = =
R N VU ‘ST SR
WO N W W == O
N = = NN = =

This approach will be particularly stable when two of the exponents are equal, or
fairly close to each other. Sample values for the auxiliary function J3 are presented in
Table 4. In part IT we will give an alternative recursive approach to the evaluation of
J3.

19 Numerical evaluation of K3
Employing the asymptotic estimate for the gamma function [72], we have that

Fz+b) .

— X7 as z — oo. 158
C(z+0¢) (158)

The series in Eq. (48) can be written as

K3, j, k,1,0,n)

oo

o Jjlk!! ZF(n—i—,u) FG+1+wlGE+j+2—1+w

B (n—1)!M:OF(M+1)F(i+j+2+/L)F(i+j+k+3—l+/¢)'

(159)

Making use of Eq. (158) leads to the asymptotic behavior for K3(i, j, k,1, 0, n) as

. 1
Kook, 0m) ~ D oy, (160)
"

Similarly it can be shown that the asymptotic behavior of the series in Eq. (50) is

1
KaG Joko1.0.m) ~ 3 . (161)

m
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The convergence of the series in Egs. (48) and (50) is governed by the factorsi+ j+3—/
and j+k-+3 —n, respectively. If either one of these factors is large, a direct summation
technique may be effective in the evaluation of the K3(i, j, k, [, 0, n) integrals. But,
when these factors are small, the series in Egs. (48) and (50) converge too slowly. In
these cases, application of convergence acceleration techniques is a requirement.

For the calculation of the I3 integrals required for an energy evaluation, which have
a maximum of one of the indices {/, m, n} in Eq. (2) being —1, the other indices being
> —1, then the series expansion in Eq. (134) converges quickly.

20 Summary of principal results
To summarize, we can write

Jomon,w,w,w,a,b,c)

> Ir(i, j, k
Is(i,j,k,l,m,n,a,b,C)=647T3z e Qw + 1)2
w

w=0

(162)

with

. 2w Em DD - - ~
TRO T Lm0 0B ) = T (1200 I1Z:;)m1Z::On1Z::0

A @ = 51y (0 = By 0= By (Lt w0, (o whny (L w0l (i
I1imyng ! 2+ 2w)p, 2+ 2w)my (2 + 2wy, 3

22w+l +my, j+24+2w+l +n,k+24+2w+my +ny, 2w =1

+201,2w —m +2my, 2w —n +2ny,a, b, c), (163)
and
1 i 1 c—a\'"! fc—b)!
J(LILKLMN, a,b,c) =
IKLMN. 0.0 = s D () ()
x K345 —1,]+1, KLMN), (164)
where

I=i4+24+2w+l14+my, J=j+24+2w+1+n1, K=k+24+2w+my +ny,
(165)
L=2w—-1+42, M=2w—-—m+2my, N=2w—n+2ny. (166)

The I integrals can be evaluated from Eq. (162), using Egs. (163) and (164) to
express Ig(i, j, k,l,m,n, w, w, w, a, b, ¢) in terms of the J3 integrals and hence the
K3 auxiliary functions, and employ Eq. (134) to evaluate the latter integrals. Where
possible we take advantage of all the special cases we have outlined, in particular, the
case where one of {/, m, n} is zero for the K3 auxiliary function. Also, the symmetry

@ Springer



1550 J Math Chem (2016) 54:1514-1552

properties of J3 or K3 have been utilized when a permutation of parameters leads to
quicker converging sums.

21 Conclusion

In this paper, we have presented a different evaluation strategy for the calculation of
correlated three-electron integrals, which avoids the N! growth issue in the number of
required auxiliary function evaluations. It is shown that the new auxiliary functions that
arise can be related directly to the hypergeometric function 3 F>(1). General formulas
and a number of special cases of 3F>(1) are presented which allow for the rapid
evaluation of the new auxiliary functions encountered. A future study will detail the
numerical evaluation strategy.
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