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Abstract
Four-electron correlated integrals with explicit rij dependence and derived from a Slater-type
basis set are discussed. Attention is directed to the more complex cases where the powers on
the rij factors are odd. Particular effort is focused on the case where there are five factors of rij

raised to odd powers, a case that has considerable practical significance. Several integral cases
involving three and four rij factors raised to odd powers are evaluated in closed form.
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1. Introduction

Standard Hylleraas-type calculations on four-electron atomic
systems and non-Born–Oppenheimer studies on few-electron
molecular systems using a basis set of Slater-type functions
have been limited by the rather recalcitrant nature of the
integral problem that underlies the calculations. The Hylleraas
trial wave function for an S state of a four-electron atomic
system takes the following form:

ψ(r1, r2, r3, r4)

= A
N∑

μ=1

Cμr1
iμr2

jμr3
kμr4

lμr12
mμr13

nμr14
pμr23

qμr24
sμr34

tμ

× e−aμr1−bμr2−cμr3−dμr4χμ, (1)

where ri is the electron–nucleus separation distance for
electron i, ri j is an electron–electron separation distance for
electrons i and j, A is the four-electron antisymmetrizer, Cμ

denotes the expansion coefficients, χμ is a spin eigenfunction,
and N represents the number of basis terms in the expansion.
The constants aμ, bμ, cμ, and dμ are > 0, and the integer
indices {iμ, jμ, kμ, lμ, mμ, nμ, pμ, qμ, sμ, tμ} are each � 0.

The explicit appearance of ri j factors in the expansion leads
to an integration problem of considerable complexity. In
the past few years, considerable progress on high-precision

calculations on three-, four- and five-electron systems has
been achieved by avoiding the use of a Slater-type basis, and
working in terms of explicitly correlated Gaussian functions
[1–7]. The major advantage of the latter choice is that
the integration problem is now significantly simplified. Two
limitations of using explicitly correlated Gaussian functions
are they do not have the appropriate asymptotic behaviour,
and they do not describe the necessary cusp conditions. These
latter drawbacks can be overcome if one is willing to use a
rather large number of basis functions.

The nonrelativistic Hamiltonian in either the finite nuclear
mass form or in the infinite nuclear mass model, can be written
in terms of derivatives with respect to the variables ri and ri j.
It is a straightforward calculation to show that the evaluation
of the energy and a number of other expectation values for
the S states of four-electron atomic systems can be reduced to
the evaluation of four-electron integrals that take the following
form:

I4(i, j, k, l, m, n, p, q, s, t, α, β, γ , δ)

=
∫

ri
1r j

2rk
3rl

4rm
12rn

13rp
14rq

23rs
24rt

34

× e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4. (2)

In equation (2), the exponents satisfy α > 0, β > 0, γ > 0,

and δ > 0. In order for the integral to converge the individual
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integer indices i through t must be � −2. An energy evaluation
requires integrals that have the integer parameters m, n, p, q, s,
t each � −1, and various cases of the integral satisfying these
constraints have been discussed in the literature [8–21]. More
complicated expectation values, such as those arising for some
of the relativistic corrections to the energy, require integrals
where some of the integer indices {m, n, p, q, s, t} are equal
to −2. These cases are significantly more difficult to evaluate;
they will not be discussed further in the present work.

The present work has two principal objectives. The first is
to consider some major simplifications of a complex general
formula of the author, which allows numerical values to be
obtained for four-electron integrals containing five odd powers
of the inter-electronic coordinates ri j in equation (2). The
second objective is to obtain some closed form expressions
for some particular cases of the four-electron integrals, which
cannot be obtained by simple separation of the four-electron
cases into products of integrals of lower dimensionality.

The complexity of the integral in equation (2) is governed
in large part by the number of odd values of the parameter set
{m, n, p, q, s, t}. In previous work [15] the general integral was
worked out, but the effectiveness of the algorithm presented
restricts integrals to a maximum of four odd values of the
parameter set {m, n, p, q, s, t}. In the present work our focus
will be on the five odd case—that is, five members of the
parameter set {m, n, p, q, s, t} are odd integers. This integral
case does merit special attention for the following reason. If
a basis set member is selected for example with a core–core
correlation factor and either a core–valence or valence–valence
correlation factor, then the simplest such term would have two
odd entries for the parameter set {m, n, p, q, s, t}. Allowing for
the four-electron antisymmetrizer in equation (1), then matrix
elements of the electron–electron potential operator in the
Hamiltonian immediately lead to a four-electron integral with
five odd entries for the parameter set {m, n, p, q, s, t}. Basis
set terms with the aforementioned correlation contributions
are expected to be important for energy considerations. One
can of course argue that these terms could be offset by using
a number of similar correlated basis functions, but with even
powers. The cost however, is that larger basis set sizes are
required, and also the general convergence of the calculations
of both the energy and other expectation values is now slower.

2. Theory

The electron–electron separation distance ri j is commonly
expanded using a Sack expansion [22], which takes the
form:

rm
12 =

∞∑
m1=0

Rmm1 (r1, r2)Pm1 (cos θ12), (3)

where Rmm1 (r1, r2) is a Sack radial function. The Sack radial
function [22] can be written as

Rmm1 (r1, r2)= (−m/2)m1

(1/2)m1

rm1
12<

rm−m1
12>

∞∑
u=0

am1mu

(
r12<

r12>

)2u

, (4)

where r12< = min(r1, r2) and r12> = max(r1, r2), and the
coefficients awmu are given by

am1mu =
(
m1 − m

2

)
u

(− 1
2 − m

2

)
u

u!
(
m1 + 3

2

)
u

, (5)

and (α)n denotes a Pochhammer symbol, defined in terms of
the gamma function 	(p) as [23]

(p)q = p(p + 1)(p + 2) · · · (p + q − 1) = 	(p + q)

	(p)
. (6)

The expansion in equation (3) has been recast in a different
form by Perkins [24]:

rv
12 =

∞∑
q=0

Pq(cos θ12)

∞∑
k=0

Cvqkrq+2k
12<

rv−q−2k
12>

, (7)

where the coefficients Cvqk are given by:

Cv0k = (1 + v)!

(2k + 1)!(v + 1 − 2k)!
, (8)

and for q � 1,

Cvqk = (3/2)q

(1/2)q

(
k − v

2

)
q(

k + 3
2

)
q

Cv0k

= (2q + 1) Cv0k

q−1∏
t=0

(2k − v + 2t)

(2k + 3 + 2t)
. (9)

The factor after the product symbol can be written in more
than one equivalent form. Equation (7) simplifies to

rv
12 =

v/2∑
q=0

Pq(cos θ12)

v
2 −q∑
k=0

Cvqkrq+2k
12<

rv−q−2k
12>

,

for v even and v � 0, (10)

and

rv
12 =

∞∑
q=0

Pq(cos θ12)

(v+1)/2∑
k=0

Cvqkrq+2k
12<

rv−q−2k
12>

,

for v odd and v � −1. (11)

Equation (11) follows directly from the property of the
Pochhammer symbol:

(−p)q = 0 for integer p and q > p. (12)

The preceding condition also implies that the summation
in equation (4) will terminate at finite values because of
the definition of the awmu coefficient in equation (5). The
summation in equation (3) will also be terminating if m is even,
because of the Pochhammer condition (−m/2)m1 appearing in
equation (4). When m is an odd integer, then the series in
equation (3) is nonterminating, unless there is a constraint
imposed by the angular integration.

If each inter-electronic distance factor appearing in
equation (2) is expanded using a separate Sack expansion,
then the following result is obtained [15, 17, 21]:

I4(i, j, k, l, m, n, p, q, s, t, α, β, γ , δ)

=
∞∑

m1=0

∞∑
n1=0

∞∑
p1=0

∞∑
q1=0

∞∑
s1=0

∞∑
t1=0

IR(m1, n1, p1, q1, s1, t1)

× I
(m1, n1, p1, q1, s1, t1), (13)
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where

I
(m1, n1, p1, q1, s1, t1) = 256π4(−1)m1+t1

(
m1 n1 p1

0 0 0

)

×
(

m1 q1 s1

0 0 0

)(
n1 q1 t1
0 0 0

)

×
(

p1 s1 t1
0 0 0

) {
m1 n1 p1

t1 s1 q1

}
, (14)

and

IR(m1, n1, p1, q1, s1, t1)

≡
∫

ri+2
1 r j+2

2 rk+2
3 rl+2

4

× e−αr1−βr2−γ r3−δr4 Rmm1 (r1, r2) Rnn1 (r1, r3) Rpp1 (r1, r4)

× Rqq1 (r2, r3) Rss1 (r2, r4) Rtt1 (r3, r4) dr1 dr2 dr3 dr4

=
∞∑

m2=0

∞∑
n2=0

∞∑
p2=0

∞∑
q2=0

∞∑
s2=0

∞∑
t2=0

h(m1, n1, p1, q1, s1,

t1, m2, n2, p2, q2, s2, t2). (15)

In equation (14),

(
a b c
d e f

)
denotes a 3 j sym-

bol and

{
a b c
d e f

}
designates a 6 j symbol. To sim-

plify the notation in equations (13) and (15), the
{i, j, k, l, m, n, p, q, s, t, α, β, γ , δ} dependence of IR and the
h function have been suppressed. The h function appearing in
equation (15) can be obtained by reference to equations (38)–
(42) of [15]: the final expression is lengthy and is not repeated
here. The radial integral IR(m1, n1, p1, q1, s1, t1) involves a
six-fold summation of a set of 24 auxiliary integrals that take
the form [15]:

W4(i, j, k, l, a, b, c, d) =
∫ ∞

0
xi e−ax dx

∫ ∞

x
y j e−by dy

×
∫ ∞

y
zk e−cz dz

∫ ∞

z
wl e−dw dw. (16)

In order that W4(i, j, k, l, a, b, c, d) converge, requires the
conditions a > 0, b > 0, c > 0, d > 0, and

i � 0, i + j � − 1, i + j + k � −2, i + j + k + l �−3.

(17)

The W4 integrals have been discussed extensively in
the literature [13–15, 25–28]. The final formula for
IR(m1, n1, p1, q1, s1, t1) is fairly involved: the details of the
derivation can be found in [15, 17, 18] (see equation (42) of
[15] for the final result).

As previously indicated, the most difficult cases of
equation (2) to evaluate arise when the integer indices {m, n, p,
q, s, t} take on odd values. For the case of even values of these
indices, both summations in equations (3) and (4) terminate
at finite values of the summation index; for odd values of
the indices the summation in equation (4) terminates at finite
values, but equation (3) does not. So it should be evident that
an increasing number of odd powers leads to a considerable
increase in the complexity of the integral evaluation.

By imposing some constraints, a number of special cases
of equation (13) can be obtained which lead to substantial

simplifications. A huge simplification results if the index t =
0 in equation (2). Note that there is an intrinsic symmetry for
the I4 integral:

I4(i, j, k, l, m, n, p, q, s, t, α, β, γ , δ)

= I4( j, i, k, l, m, q, s, n, p, t, β, α, γ , δ)

= I4(k, j, i, l, q, n, t, m, s, p, γ , β, α, δ)

= I4(l, j, k, i, s, t, p, q, m, n, δ, β, γ , α), etc, (18)

and hence the condition t = 0 can equally well be replaced by a
condition where any single one of the indices {m, n, p, q, s, t}
is taken to be zero. This represents a fairly useful case to
consider, for the following reason. If the choice of basis
functions in equation (1) include terms with no more than
two nonzero powers, which could both be odd, then the most
complicated integral required in an energy evaluation has a
maximum of five odd indices with the sixth index being zero.
This can be seen directly by evaluating the expectation value
of the electron–electron repulsion energy and keeping in mind
the presence of the antisymmetrizer operator.

Equation (14) can be simplified by noting the following
property of the 6 j symbol [29]{

m1 n1 p1

0 s1 q1

}
= (−1)m1+p1+q1

√
(2p1 + 1)(2q1 + 1)

δp1s1δq1n1 , (19)

where δxy denotes a Kronecker delta. A direct consequence of
equation (19) and the requirement that the triangle condition
must be satisfied by the 3 j symbols, it follows that the third and
fourth 3 j symbols in equation (14) lead to the Kronecker deltas
δq1n1 and δp1s1 , respectively. Hence equation (14) simplifies for
the case t = 0 to yield

I
(m1, n1, p1, q1, s1, 0)

= 256π4 (−1)p1+q1

√
(2n1 + 1)(2p1 + 1)

× δp1s1δq1n1

(
m1 n1 p1

0 0 0

) (
m1 q1 s1

0 0 0

)

×
(

n1 q1 0
0 0 0

)(
p1 s1 0
0 0 0

)

= 256π4(−1)p1+q1δp1s1δq1n1√
(2n1 + 1)(2p1 + 1)

(
m1 n1 p1

0 0 0

)2

×
(

n1 n1 0
0 0 0

)(
p1 p1 0
0 0 0

)
. (20)

Note that the 3 j symbol

(
m1 n1 p1

0 0 0

)
vanishes unless

m1+n1+p1 is an even integer [29, 30]. Inserting the expression(
n1 n1 0
0 0 0

)
= (−1)n1

√
2n1 + 1

, (21)

and the corresponding result for

(
p1 p1 0
0 0 0

)
into

equation (20), leads to

I
(m1, n1, p1, q1, s1, 0)

= 256π4δp1s1δq1n1

(2n1 + 1)(2p1 + 1)

(
m1 n1 p1

0 0 0

)2

. (22)

3



J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 025003 F W King

Set

2p = m1 + n1 + p1, (23)

then the square of the 3 j symbol appearing in equation (22)
simplifies to(

m1 n1 p1

0 0 0

)2

= f (p − m1) f (p − n1) f (p − p1)

(2p + 1) f (p)
, (24)

where f (p) is defined by

f (p) = (2p)!

(p!)2
. (25)

The function f can be readily evaluated and stored as an array
outside of any of the loop structure, so that the square of the
required 3 j symbol can be efficiently evaluated. The angular
integral for the case t = 0 simplifies to

I
(m1, n1, p1, q1, s1, 0) = 256π4δp1s1δq1n1

(2p1 + 1)(2q1 + 1)

× f (p − m1) f (p − n1) f (p − p1)

(2p + 1) f (p)
, (26)

with p defined in equation (23).
Because of the requirement that the triangle condition

must be satisfied by the 3 j symbols in equation (14), it
immediately follows using the result for I
 in equation (26)
that the six-fold summations in equation (13) simplify to

I4(i, j, k, l, m, n, p, q, s, 0, α, β, γ , δ)

=
∞∑

m1=0

∞∑
n1=0

m1+n1∑
p1=|m1−n1|

IR(m1, n1, p1, n1, p1, 0)

× I
(m1, n1, p1, n1, p1, 0), (27)

which is now in a much more manageable form for
computational evaluation. Recall that the explicit dependence
of IR on {i, j, k, l, m, n, p, q, s, t, α, β, γ , δ} has been
suppressed. Equation (27) is the key result of section 2.

3. Special cases

In this section some specialized cases where various four-
electron integrals can be evaluated in closed form are
discussed. These closed form results serve two purposes. The
analytical results are particularly valuable for testing purposes:
in particular, for testing code performance and precision loss.
A couple of the cases considered converge somewhat more
slowly than the integrals required for an energy evaluation,
so these examples become rather useful for optimizing code
performance. Integrals with multiple ri j factors raised to the
power −1 do arise in the calculation of certain expectation
values, for example, certain relativistic corrections to the
energy require these integrals. The latter expectation values
also require more singular integrals involving powers of −2
on the ri j factors, but these recalcitrant cases are not considered
in the present work. In a practical Hylleraas calculation some
of the low-order integrals, that is, integrals with the powers
on the ri j factors restricted to the range −1 to 1, occur fairly
frequently. Having relatively simple formulas available for
some of these cases can speed up calculations of the energy
and other expectation values. Our principal interest here is

on the more difficult correlated integrals cases involving odd
values for some of the indices {m, n, p, q, s, t}.

A strategy for the evaluation of some of the special cases
considered will be to integrate out one of the coordinates,
thereby reducing the problem to a simpler three-electron
integral problem. This type of approach has been used in a
number of correlated integral cases of varying complexity: see
for example [15, 20, 31].

The simplest integral involving each of the four-electron
coordinates, but with only two inter-electronic factors is

I4(i, j, k, l, m, 0, 0, 0, 0, t, α, β, γ , δ) =
∫

ri
1r j

2rk
3rl

4rm
12rt

34

×e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4. (28)

This case reduces in an immediately obviously fashion to a
product of two-electron integrals:

I4(i, j, k, l, m, 0, 0, 0, 0, t, α, β, γ , δ)

= I2(i, j, m, α, β)I2(k, l, t, γ , δ), (29)

where

I2(i, j, k, α, β) =
∫ ∫

ri
1r j

2rk
12 e−αr1−βr2 dr1 dr2. (30)

The two-electron correlated integrals with Slater-type
functions have been studied extensively in the literature and
formulas are available for a number of cases [32–36].

The next special case considered is

I4(−1, 0, 0,−1,−1, 0, 0,−1, 0,−1, α, β, γ , δ)

=
∫

r−1
1 r−1

4 r−1
12 r−1

23 r−1
34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4.

(31)

Making a standard expansion of the r−1
i j factors in terms of

Legendre polynomials leads to the integral∫
r−1

1 r−1
4 r−1

12 r−1
23 r−1

34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4

=
∞∑

l=0

∞∑
m=0

∞∑
n=0

∫
r1 r2

2 r2
3 r4

× rl
12<r−l−1

12> rm
23<r−m−1

23> rn
34<r−n−1

34>

× e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4

∫
Pl(cos θ12)

× Pm(cos θ23)Pn(cos θ34) d
1 d
2 d
3 d
4. (32)

Expressing the Legendre polynomials in terms of spherical
harmonics allows the angular integral to be readily evaluated
as:∫

Pl(cos θ12)Pm(cos θ23)Pn(cos θ34) d
1 d
2 d
3 d
4

= 256π4δl0δm0δn0, (33)

and hence∫
r−1

1 r−1
4 r−1

12 r−1
23 r−1

34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4

= 256π4
∫

r1 r2
2 r2

3 r4

× r−1
12> r−1

23> r−1
34>e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4. (34)

On writing rir jr
−1
i j> in the form

rir jr
−1
i j> = r jH(ri − r j) + riH(r j − ri), (35)

where H(x) denotes a Heaviside step function, then
equation (34) can be expressed as

4
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r−1

1 r−1
4 r−1

12 r−1
23 r−1

34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4

= 256 π4
∫

{r2H(r1 − r2) + r1H(r2 − r1)}
× {r3H(r2 − r3) + r2H(r3 − r2)}
× {r4H(r3 − r4) + r3H(r4 − r3)}
× e−αr1−βr2−γ r3−δr4 dr1dr2 dr3 dr4. (36)

Evaluation of equation (36) leads to∫
r−1

1 r−1
4 r−1

12 r−1
23 r−1

34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4

= 256π4{αβγ δ(α+β)(β+γ )(γ+δ)(α+β+γ )

× (β+γ+δ)(α+β+γ+δ)}−1

×{2β3+4β2(2γ+δ) + 2β(2γ+δ)2+α2(β+2γ+δ)

+ γ (2γ 2+3γ δ+δ2)+α(3β2+4β(2γ+δ)+(2γ+δ)2)}.
(37)

Integrals with higher powers of ri in the preceding integral can
be obtained directly by differentiation of equation (37) with
respect to the appropriate parameter α, β, γ , or δ.

For the situation that α = β = γ = δ, then equation (37)
simplifies to give∫

r−1
1 r−1

4 r−1
12 r−1

23 r−1
34 e−αr1−αr2−αr3−αr4 dr1 dr2 dr3 dr4

= 176π4

3α7
. (38)

Special cases such as equation (38) can be useful for validating
and improving software performance.

A slightly more basic auxiliary integral is the following:

I4(−1,−1,−1,−1,−1, 0, 0,−1, 0,−1, α, β, γ , δ)

=
∫

e−αr1−βr2−γ r3−δr4

r1r2r3r4r12r23r34
dr1 dr2 dr3 dr4. (39)

Making a standard expansion of the r−1
i j factors in terms of

Legendre polynomials, evaluation of the resulting angular
integration, and calculation of the resulting radial integrals,
leads to the result

I4(−1,−1,−1,−1,−1, 0, 0,−1, 0,−1, α, β, γ , δ)

= 256π4

α2δ2

{
1

(α + β)
ln

[
(α + β + γ + δ)γ

(α + β + γ )(γ + δ)

]

+ 1

(γ + δ)
ln

[
(α + β + γ + δ)β

(α + β)(β + γ + δ)

]

+ 1

β
ln

[
(β + γ )(γ + δ)

(β + γ + δ)γ

]

+ 1

γ
ln

[
(α + β)(β + γ )

(α + β + γ )β

]}
. (40)

The particular case of this integral with equal exponent
parameters yields

I4(−1,−1,−1,−1,−1, 0, 0,−1, 0,−1, α, α, α, α)

= 256π4

α5
ln

(
32

27

)
. (41)

Differentiation of equation (40) with respect to the parameters
α, β, γ , and δ can be used to increase the powers on the factors
r1, r2, r3, and r4, respectively.

An integral related to equation (39), but not by a simple
permutation of integration variables, is the following auxiliary
integral:

I4(−1,−1,−1,−1,−1, 0, 0,−1,−1, 0, α, β, γ , δ)

=
∫

e−αr1−βr2−γ r3−δr4

r1r2r3r4r12r23r24
dr1 dr2 dr3 dr4. (42)

Employing a standard expansion of the r−1
i j factors in terms

of Legendre polynomials, evaluation of the resulting angular
integral, followed by integration over three of the radial
coordinates leads to the following Cauchy–Frullani-type
integral

I4(−1,−1,−1,−1,−1, 0, 0,−1,−1, 0, α, β, γ , δ)

= 256π4

(αγ δ)2

∫ ∞

0

(e−βr2 − e−(β+δ)r2 )(1 − e−γ r2 )(1 − e−δr2 )

r2
2

dr2.

(43)

Evaluation of the preceding integral leads to

I4(−1,−1,−1,−1,−1, 0, 0,−1,−1, 0, α, β, γ , δ)

= 256π4

(αγ δ)2

{
γ ln

[
(α + β + γ )(β + γ + δ)

(β + γ )(α + β + γ + δ)

]

−β ln

(
β + γ

β

)
+ (α + β) ln

(
α + β + γ

α + β

)

−(β + δ) ln

(
β + γ + δ

β + δ

)

+(α + β + δ) ln

(
α + β + γ + δ

α + β + δ

)}
. (44)

The special case of equation (44) with equal exponent
parameters simplifies to

I4(−1,−1,−1,−1,−1, 0, 0,−1,−1, 0, α, α, α, α)

= 256π4

α5
ln

(
19 683

16 384

)
. (45)

Differentiation of equation (44) with respect to the parameters
α, β, γ , and δ can be used to increase the powers on
the factors r1, r2, r3, and r4, respectively. A particular
example, which leads to a fairly compact symmetric formula, is
obtained by differentiation of equation (44) with respect to the
parameter β,

I4(−1, 0,−1,−1,−1, 0, 0,−1,−1, 0, α, β, γ , δ)

= 256π4

(αγ δ)2
ln

(
(α + β)(β + γ )(β + δ)(α + β + γ + δ)

β(α + β + γ )(α + β + δ)(β + γ + δ)

)
,

(46)

and the special case of equation (46) with equal exponent
parameters is

I4(−1, 0,−1,−1,−1, 0, 0,−1,−1, 0, α, α, α, α)

= 256π4

α6
ln

(
32

27

)
. (47)

The particular special case of equation (44) given in equation
(46) was also reported by Roberts [8].
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For an integral with a positive power on one of the rij

factors consider:

I4(−1, 0, 0,−1,−1, 0, 0, 1, 0,−1, α, β, γ , δ)

=
∫

r−1
1 r−1

4 r−1
12 r23r−1

34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4.

(48)

This case can be evaluated by employing an expansion of the
two r−1

i j factors in terms of Legendre polynomials and using
a Sack expansion for r23. The angular integration is given by
equation (33) and hence the integral simplifies to yield∫

r−1
1 r−1

4 r−1
12 r23 r−1

34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4

= 256 π4
∫

r2
1 r2

2 r2
3 r2

4 r−1
12> R10(r2, r3) r−1

34>

× e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4. (49)

A short calculation using equation (4) leads to

R10(r2, r3) = r23>

(
1 + r2

23<

3r2
23>

)

=
(

r3 + r2
2

3r3

)
H(r3 − r2)

+
(

r2 + r2
3

3r2

)
H(r2 − r3). (50)

Inserting equation (50) into equation (49) and evaluating the
resulting integrals leads to∫

r−1
1 r−1

4 r−1
12 r23 r−1

34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4

= 512π4

(α + β)4δ2

{
1

γ 3

(
5 + α2

β2
+ 4α

β
+ 2β

α

)

+ (α2 + 4αβ)

β4

(
1

γ
+μ − ς − η

)

+μςηδ

(
8

α
+ 12

β
+ 6

γ
+ 4β

αγ
+ 4δ

αγ
+ 6δ

βγ

)

−δκλμς

(
1 + 2β

α
+ 2γ

α
+ δ

α

)

−η3

(
5 + α2

β2
+ 4α

β
+ 2β

α

)}
, (51)

where

κ = (α + β + γ + δ)−1, λ = (α + β + γ )−1,

μ = (β + γ + δ)−1, ς = (β + γ )−1, η = (γ + δ)−1.

(52)

Differentiation of equation (51) with respect to the appropriate
parameter α, β, γ , or δ will generate closed form expressions
for integrals with higher powers of ri. For the case where
α = β = γ = δ, then∫

r−1
1 r−1

4 r−1
12 r23 r−1

34 e−αr1−αr2−αr3−αr4 dr1 dr2 dr3 dr4

= 1480π4

3α9
. (53)

Additional examples of four-electron integrals that arise in the
linear r12 computational approach will be discussed elsewhere

including generalizations of results given by Bonham [9] and
of Roberts [8].

A considerably more complicated example is the
following integral containing four odd powers of the inter-
electronic coordinates:

I4(−1,−1, 0, 0,−1,−1, 0,−1, 0,−1, α, β, γ , δ)

=
∫

r−1
1 r−1

2 r−1
12 r−1

23 r−1
13 r−1

34

× e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4. (54)

To evaluate this integral in closed form, the following strategy
is employed. On integrating over the coordinates of electron
4, the preceding integral is reduced to a set of three-electron
integrals. Of the three-electron integrals encountered, two have
been worked out in closed form in an important paper by
Remiddi [37], and the third integral can be readily obtained
using one of Remiddi’s final formulas. Some key misprints to
the complex formulas in Remiddi’s work have been reported
[38–40] and some extensions discussed [41].

A short calculation employing equations (3) and (4) leads
to the result:∫

r−1
34 e−δr4 dr4 = 4π

(
2δ−3r−1

3 − δ−2 e−δr3 − 2δ−3r−1
3 e−δr3

)
.

(55)

Hence, equation (54) simplifies to∫
r−1

1 r−1
2 r−1

12 r−1
13 r−1

23 r−1
34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4

= 8π

δ3

∫
r−1

1 r−1
2 r−1

3 r−1
12 r−1

13 r−1
23 e−αr1−βr2−γ r3 dr1 dr2 dr3

− 8π

δ3

∫
r−1

1 r−1
2 r−1

3 r−1
12 r−1

13 r−1
23

× e−αr1−βr2−(γ+δ)r3 dr1 dr2 dr3

− 4π

δ2

∫
r−1

1 r−1
2 r−1

12 r−1
13 r−1

23

× e−αr1−βr2−(γ+δ)r3 dr1 dr2 dr3. (56)

Remiddi [37] has given the result∫
r−1

1 r−1
2 r−1

3 r−1
12 r−1

13 r−1
23 e−αr1−βr2−γ r3 dr1 dr2 dr3

= 32π3

αβγ
D(α, β, γ ), (57)

where the function D, which is symmetric in its dependent
variables, α, β, and γ ,is given by

D(α, β, γ ) = ln

(
w12

γ

)
ln

(
ws

w12

)
− Li2

(
− γ

w12

)

−Li2

(
1 − γ

w12

)
+ ln

(
w13

β

)
ln

(
ws

w13

)
− Li2

(
− β

w13

)

−Li2

(
1 − β

w13

)
+ ln

(w23

α

)
ln

(
ws

w23

)

−Li2

(
− α

w23

)
− Li2

(
1 − α

w23

)
, (58)

with

ws = α + β + γ , w12 = α + β, w13 = α + γ ,

and w23 = β + γ . (59)
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In equation (58), Li2(x) is the dilogarithm function, which can
be defined by the series representation [42]

Li2(x) =
∞∑

n=1

xn

n2
, for |x| � 1. (60)

For some ranges of the arguments the evaluation of
the auxiliary function D(α, β, γ )in equation (58) leads to
dilogarithm functions with arguments outside the stated
limits given in equation (60). From Landen’s transformation
[42], which follows from the integral representation of the
dilogarithm function, the following result can be given:

Li2(1 − y) = − 1
2 {ln(y)}2 − Li2(1 − y−1). (61)

This result is useful when y > 2, and this case arises in
equation (58) when α > 2w23, β > 2w13, or γ > 2w12. Two
other results for the dilogarithm function that are advantageous
for the evaluation of particular cases of the auxiliary function
D(α, β, γ ) are:

Li2(1 − y) = Li2(y
−1) − π2

6
+ ln(y−1) ln

(
y − 1

y

)

−1

2
{ln(y)}2 for y > 1. (62)

and

Li2(−y) = −Li2

(
y

y + 1

)
− 1

2
{ln(1 + y)}2 for y > 1.

(63)

Equation (62) would be the preferred choice for computation
when y > 2 and equation (61) the better choice when
1 < y � 2.

To evaluate equation (56), the derivative of equation (57)
with respect to the parameter γ is required, so that∫

r−1
1 r−1

2 r−1
12 r−1

13 r−1
23 e−αr1−βr2−γ r3 dr1 dr2 dr3

= 32π3

αβγ
{γ −1D(α, β, γ ) − Dγ (α, β, γ )}, (64)

and it follows from equation (58) that

Dγ (α, β, γ ) ≡ ∂D(α, β, γ )

∂γ

=
ln

(
w12w23w13

αβγ

)
ws

+
ln

(
w12
γ

)
ws − 2γ

− ln
(

w23
α

)
ws − 2α

−
ln

(
w13
β

)
ws − 2β

. (65)

Hence,∫
r−1

1 r−1
2 r−1

12 r−1
13 r−1

23 r−1
34 e−αr1−βr2−γ r3−δr4 dr1 dr2 dr3 dr4

= 128π4

αβδ2

{
2

γ δ
D(α, β, γ ) − 2

δ(γ + δ)
D(α, β, γ + δ)

− 1

(γ + δ)2
D(α, β, γ + δ)

+ 1

(γ + δ)
Dγ+δ (α, β, γ + δ)

}
. (66)

A further set of integrals in closed form can be generated by
differentiating equation (66) with respect to the parameters
α, β, γ , or δ.

For the case where α = β = γ = δ, a short calculation
leads to∫

r−1
1 r−1

2 r−1
3 r−1

12 r−1
13 r−1

23 e−αr1−αr2−αr3 dr1 dr2 dr3

= 96π3

α3

{
−π2

12
+ ln 2 ln(3/2)

+1

2
(ln 2)2 − Li2

(
−1

2

)}
, (67)

∫
r−1

1 r−1
2 r−1

3 r−1
12 r−1

13 r−1
23 e−αr1−αr2−2αr3 dr1 dr2 dr3

= 16π3

α3

{
π2

12
+ 2 ln 3 ln(4/3)

−2Li2

(
−1

3

)
− 2Li2

(
2

3

)}
, (68)

and to evaluate
∫

r−1
1 r−1

2 r−1
12 r−1

13 r−1
23 e−αr1−αr2−2αr3 dr1 dr2 dr3

a factor of e−εr3 is inserted in the integrand, the derivative
with respect to ε is taken, and then the limε→0 is evaluated,
leading to the result∫

r−1
1 r−1

2 r−1
12 r−1

13 r−1
23 e−αr1−αr2−2αr3 dr1 dr2 dr3

= 8π3

α4

{
ln 3 − 1 + π2

12
+ 2 ln 3 ln(4/3)

−2Li2

(
−1

3

)
− 2Li2

(
2

3

)}
. (69)

Inserting the preceding three results into equation (56), with
α = β = γ = δ, leads to∫

r−1
1 r−1

2 r−1
12 r−1

13 r−1
23 r−1

34 e−αr1−αr2−αr3−αr4 dr1 dr2 dr3 dr4

= 32π4

α6

{
1 − ln 3 − 29

12
π2 + 4 ln 2 ln 3 + 10(ln 3)2

−12(ln 2)2 + 10Li2

(
−1

3

)
+ 10Li2

(
2

3

)

−24Li2

(
−1

2

)}
. (70)

4. Results

Values for the three-electron integrals appearing in
equation (56) for specific values of α, β, and (γ + δ)

are given as the first three entries in table 1. These are
evaluated using equations (57), (58), (64), and (65). Entries
four through six in table 1 employ equations (67)–(69). These
three-electron integrals are used to evaluate the four-electron
integrals appearing in equation (56).

Some results for the evaluation of the closed form
expressions are collected in table 2. The first six entries are
evaluated using equations (47), (41), (45), (38), (53), and (70),
respectively. Results 7 to 12 in table 2 are evaluated using
equations (46), (40), (44), (37), (51), and (66), respectively.
The results in both tables 1 and 2 were evaluated using

7
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Table 1. I3(i, j, k, l, m, n, α, β, γ ) integrals employed in equations (56) and (67)–(69).

i j k l m n α β γ I3(i, j, k, l, m, n, α, β, γ )

−1 −1 −1 −1 −1 −1 1.1 1.85 2.37 84.142 223 494 536 808 793 007 290 429 325 435 789 364 103 6
−1 −1 −1 −1 −1 −1 1.1 1.85 5.28 29.494 790 252 590 869 105 114 449 366 732 144 065 264 850 1
−1 −1 0 −1 −1 −1 1.1 1.85 5.28 8.043 435 542 936 109 705 630 471 463 456 177 831 623 519 81
−1 −1 −1 −1 −1 −1 1.1 1.1 1.1 329.239 251 776 476 653 367 111 635 160 066 681 059 119 415
−1 −1 −1 −1 −1 −1 1.1 1.1 2.2 151.361 557 273 647 716 057 430 249 815 886 826 900 212 933
−1 −1 0 −1 −1 −1 1.1 1.1 2.2 85.507 762 869 872 676 004 155 244 273 032 499 845 350 578 1

Table 2. Values for the I4 integrals for α = β = γ = δ = 1.1, first six entries, and for α = 1.1, β = 1.85, γ = 2.37, δ = 2.91, last six
entries.

i j k l m n p q s t I4(i, j, k, l, m, n, p, q, s, t, 1.1, 1.1, 1.1, 1.1)

−1 0 −1 −1 −1 0 0 −1 −1 0 2 391.521 347 500 201 094 655 076 022 794 108 371 013
−1 −1 −1 −1 −1 0 0 −1 0 −1 2 630.673 482 250 221 204 120 583 625 073 519 208 114
−1 −1 −1 −1 −1 0 0 −1 −1 0 2 840.494 237 199 274 170 252 928 671 384 311 545 047
−1 0 0 −1 −1 0 0 −1 0 −1 2 932.527 596 742 908 270 884 726 940 476 566 109 391
−1 0 0 −1 −1 0 0 1 0 −1 20 380.075 334 238 844 106 449 079 037 872 454 178 71
−1 −1 0 0 −1 −1 0 −1 0 −1 2 470.758 530 285 724 338 168 192 474 582 383 772 588

I4(i, j, k, l, m, n, p, q, s, t, 1.1, 1.85, 2.37, 2.91)
−1 0 −1 −1 −1 0 0 −1 −1 0 73.898 196 016 673 903 963 962 882 674 695 089 445 73
−1 −1 −1 −1 −1 0 0 −1 0 −1 155.278 822 917 276 203 044 870 506 199 256 204 270 9
−1 −1 −1 −1 −1 0 0 −1 −1 0 154.222 620 305 821 936 368 883 856 688 749 225 792 7
−1 0 0 −1 −1 0 0 −1 0 −1 50.142 925 226 281 738 237 522 146 645 123 308 771 94
−1 0 0 −1 −1 0 0 1 0 −1 104.726 046 405 803 694 763 305 480 511 512 405 488 1
−1 −1 0 0 −1 −1 0 −1 0 −1 43.799 157 697 259 175 395 120 802 046 187 742 284 23

Table 3. Values for the I4 integrals for α = 1.1, β = 1.85, γ = 2.37, δ = 2.91.

i j k l m n p q s t I4(i, j, k, l, m, n, p, q, s, t, α, β, γ , δ)

1 2 3 4 −1 −1 1 1 1 0 1.319 718 095 949 78 × 105

1 2 3 4 −1 1 −1 1 1 0 1.399 083 943 972 054 × 105

1 2 3 4 1 −1 −1 1 1 0 1.838 425 409 057 485 925 1 × 105

1 2 3 4 1 1 1 −1 −1 0 4.792 191 362 637 498 947 0 × 105

1 2 3 4 1 1 1 1 1 0 5.818 716 984 115 258 991 422 97 × 107

1 2 3 4 7 −1 3 1 5 0 8.348 193 021 485 396 011 639 935 64 × 1016

Mathematica. All the digits reported in tables 1 and 2 are
expected to be accurate. The first 30 digits of the tabulated
results were checked by an independent Fortran program
running in quadruple precision. The results reported in
table 3 were evaluated in Fortran using quadruple precision
arithmetic.

In table 3 some results for more complicated cases
involving five-odd indices are given. These have been
evaluated using equation (27). The number of significant digits
reported is based on the convergence pattern for the individual
integrals. The uncertainty for the numerical value of each
integral is expected to reside in the last one to two digits
reported. To the best of the author’s knowledge, reference
values are not available in the literature for the correlated four-
electron integral case with five factors of ri j each raised to an
odd power.

Two modifications have been made to equation (27)
to improve the numerical evaluation. The first change
employs a summation rearrangement, so that equation (27) is
written as

I4 =
∞∑

m1=0

am1

∞∑
n1=0

bm1,n1 , (71)

where the coefficients am1 denotes the m1 dependent part of IR

and I
, and similarly, the coefficients bm1,n1 includes the m1

and n1 dependent part of both IR and I
, then equation (71)
can be expressed as

I4 =
∞∑

u=0

u∑
v=0

avbv,u−v. (72)

This rearrangement has the effect of regrouping terms of
approximately the same size together, which leads to a more
efficient numerical evaluation. For the entries reported in
table 3, the convergence behaviour of equation (72) is governed
by the sum of the odd powers on the ri j terms. The lower
this sum the slower the convergence. This connects directly
with the number of significant digits reported for the entries
in table 3. Judicious application of convergence acceleration
techniques will probably be an important approach to speed
up the numerical evaluation of these cases. In a practical
application, double precision calculations will suffice to
around the one micro-Hartree level of accuracy for the
ground state energy. Substantial progress beyond this accuracy
level will only be obtained working in quadruple precision
arithmetic. To perform the evaluation of these five odd power

8



J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 025003 F W King

cases to machine precision working in quadruple precision
will require effective use of OpenMP strategies.

A detailed comparison of the computational speed of
evaluating the correlated integral with five odd powers on
the ri j terms using an OpenMP approach versus a graphical
processing unit (gpu) evaluation strategy is currently in
progress. One major limitation of current generation gpus
is the inability to directly perform calculations in quadruple
precision. Overcoming this limitation will allow significant
computational speed up for the evaluation of the difficult cases
of the correlated integrals considered in this work.

5. Discussion

The approach outlined in section 2 for the evaluation of
a four-electron integral with five non-zero integer indices
{m, n, p, q, s, t} has the effect of entirely bypassing the
numerical evaluation of any 6 j symbol in the calculations. In
addition, only the square of a 3 j symbol requires evaluation,
and that can be done efficiently in terms of the f function
defined in equation (25). The f function can be tabled
once outside the integral evaluation module, allowing for the
efficient evaluation of the square of the required 3 j symbol in
equation (22).

The appearance of logarithm functions in the answers
for some of the closed form results reported in section 3,
gives an immediate indication that the series representation
of these results, equation (72), is expected to have a fairly
slow rate of convergence. This follows directly from the
requirement to represent the logarithmic terms as a series
representation, which inevitably will be a slowly converging
series. Increasing the powers on the ri j terms removes the
logarithm terms, and consequently, the rate of convergence for
equation (72) improves. See for example, the result in equation
(51). The final example reported in table 3 converges much
more quickly than the other entries reported in the same table,
and consequently, the number of significant digits obtained is
increased.

It would be particularly valuable to obtain in closed form,
some of the four-electron integrals with five odd values for
the powers on the ri j terms. The particular integrals of most
interest have relatively low values for the powers, e.g. −1
and 1, as these represent the integral cases arising frequently
in practical calculations of the energy and other expectation
values. Work is in progress on this topic, but so far, progress
has been rather limited.
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