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Abstract The operator basis for one-dimensional analytical signal construction is
considered. Why the Hilbert transform plays a fundamental role is clarified. Extension to
the case of multidimensional signals is considered. Possible ramifications for the definition
of a fractional analytic signal are discussed.
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1 Introduction

The analytic signal arising from the function g in the time domain is defined in the following
way:

f@)y=g®)+iHg(), Q)]
where H denotes the Hilbert transform operator, defined on the real line R, by
1 o Nd
Hioy = ~p [0 LD oy er, @
T Jooo X—Y

and P signifies that the Cauchy principal value is taken. The construction of a complex signal
can be considered in a more abstract setting. A principal problem is to determine an operator
O such that a signal written in the form

w(t) = u(t) +iv(t), 3)

is constructed using
v(t) = Ou(t). “
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What requirements must be placed on O such that the resulting complex signal has certain
desirable properties? Vakman (1996, 1997) and Vakman and Vainshtein (1977) proposed
three conditions that should be satisfied by the operator O. It should incorporate an appro-
priate response to a small perturabation of the signal; it should handle constraints on the
phase and frequency when the signal is multiplied by a scalar, and third, that the amplitude
and frequency of a sinusoidal signal should be preserved under the action of the operator
O. The Hilbert transform satisfies these three conditions. Vakman’s approach leads to other
issues for consideration. What might constitute the most useful definition of the instantaneous
amplitude and the instantaneous frequency? What boundedness relationships exist between
the signal and amplitude (Loughlin 1998)?

The focus of this work is to examine if conditions other than those proposed by Vakman,
might serve as a useful basis for defining an analytic signal operator. Section 2 considers
the one-dimensional case. The generalization to n-dimensional signals is treated in Sect. 3.
Section 4 discusses the situation for a fractional analytical signal operator.

2 Translation invariance and homogeneity conditions

A fundamental question is to ascertain to what extent invariance conditions might determine
the form of O in Eq. 4. In this section, both a translation invariance restriction and a homo-
geneity condition are examined. Signals satisfying a translational invariance condition are
much easier to analyze. There are important implications (via the Fourier convolution theo-
rem) for the treatment of such signals in the frequency domain. The translational invariance
condition, together with causal arguments, provides a pathway to a formal definition of an
analytic signal operator. The homogeneity condition finds application for signals for which
the signal and a rescaled copy of the signal, with appropriate signal amplitude renormaliza-
tion, are identical. In the sequel, it will be demonstrated that these two invariance conditions
are sufficient to fix the form of the analytic signal operator.

Under the action of a translation of the signal u(t), it is reasonable to expect that the signal
satisfies:

u() —> u(t —a), thenw() > wit—a)=ult —a)+ivQ —a). 5)

Since v(t) is determined from u(t), it is required that the following sequence apply:

Ou(t —a) = Otu(t), 6)
Oru(t) = 1,0u(t), @)
7,0u(t) = v(t — a), 8)

where 17, is the translation operator defined by
1, f(x) = f(x —a), foraeR. 9)

An operator T which satisfies
Ttr,f(x)=71,Tf(x) (10)

is termed a translation-invariant operator.
In a related fashion, for a constant b > 0, it is reasonable to expect that the signal satisfies:

u(t) > u(bt), thenw(t) — w(bt) = u(bt) +iv(bt). (11)
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It is desirable that the following sequence applies:

Ou(bt) = OSpu(t), (12)
OSpu(t) = SpOu(t), (13)
SpOu(t) = v(br), (14)

where S}, is the dilation operator (homothetic operator) defined by
Spf(x) = f(bx), forb>0. (15)
The two key requirements imposed in Egs. 7 and 13 are the commutator conditions:
0, t,]=0t, — 1,0=0, (16)

and
[0, S,]1 = OS), — S,0 = 0. an

If O is an integral operator, then its kernel function k(x, y) must be of the form of a difference
kernel, k(x, ¥) = k(x —y, 0) = k(0, y —x), if Eq. 16 is to be satisfied. For Eq. 17 to hold, the
kernel must satisfy a homogeneity condition, that is k(mx, my) = m~k(x, y), form > 0.
An important result, apparently not well-known outside the Mathematics literature, is the
following theorem of McLean and Elliott (1988) and Stein (1970): If O is a bounded linear
operator acting on functions of the class L”(R) for 1 < p < oo, and if O is required to
commute with both the translation operator and the dilation operator, for positive dilations,
then O takes the form:
O =ual +BH, (18)

where o and B are constants, and / is the unit operator. With the proper selection of the
constants in Eq. 18, then the very general constraints of having a translation-invariant oper-
ator and the commutator condition [O, S,] = 0 for b > 0, leads to the identification of
O in the equation v(t) = Ou(r) with the Hilbert transform operator. With the appropriate
choice for o, this is the only operator that satisfies the invariance conditions and the Valkman
conditions. The choice & = 1 and 8 = i in Eq. 18 gives rise to the definition of the analytic

signal operator A, as
A=1+iH, (19)

so that if z(t) denotes the analytic signal corresponding to the real signal s(t), then

z(t) = (As)(1). (20)

3 n-Dimensional signals

To treat n-dimensional signals, we require the n-dimensional Hilbert transform, which is
defined by Pandey (1996)

Hy, f(x1,x2,x3, ..., Xp)

1 0o oo foo % f(s1,52,83,...,8,) ds; dsyds3... ds,
— _”p - .Q@2n
b4 —00J -0 J—00 -0 nkzl (o — sk)
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This definition is a specialization of a more general class of singular-integral operators called
Calder6n-Zygmund operators: see Meyer and Coifman (1997). The n-dimensional Hilbert
transform operator can be expressed in terms of a product of one-dimensional Hilbert trans-
form operators. The variable on which the one-dimensional operator acts is specified by a
subscript, thus H). So H, can be written as

n

H, =[] Hw. (22)
k=1
where
Hiy f(S1,52, oy Skl Xks Skt 15 -+ - 5 Sn)
_ lp/°° f(Sl,Sz,-‘-,Sk-l,Sk,SkH,---,Sn)dsk. 23
T Jeso X — Sk

The theorem of McLean and Elliot has an extension to the n-dimensional case (see ref.
Pandey (1996), p. 188): If O is a bounded linear operator acting on functions of the class
LP(R") for 1 < p < 00, and if © commutes with the translation and dilation operators, then
by an extension of the arguments of Sect. 2, we have

n n n
O=al + ZﬁkH(k) + Zz vikHGjHpy + -+ + woH,y, 24)
k=1 j=lk>j

where a, Bk, ¥jk, and w are constants, [ is the identity operator in R" and H,, denotes the
J Y op

n-dimensional Hilbert transform operator defined in Eq. 21. An n-dimensional analytic oper-
ator A, can be defined by reference to Eq. 24.

4 The fractional analytical signal in one dimension

The notion of fractional Hilbert transform has emerged over the last several years as a means
for enhanced image reconstruction. Zayed introduced a generalization of the Hilbert trans-
form which might rightly be called a fractional Hilbert transform (Zayed 1998). His definition
is (Zayed 1998)

] 2 i 2
e—'zcotar 00 f(x)eécota,\ dx

He f(1) = —”——P (25)

o t—x

fora # 0, %, or 7. For the case @« = (2n + 1)7/2 with n € Z, Eq. 25 reduces back to the
standard definition of the Hilbert transform. A key result that is obtained from this definition
is the following:

FoHys(u) = —isgnu Fys(u), for0<a <m. (26)

For m < a < 2 the same result holds with the sign of the right hand side of the equation
reversed. Equation 26 has the same form as the important result:

F Hf(x) = —isgnxF f(x). 27

An alternative definition of the fractional Hilbert transform has been given by Cusmariu
(2002). He defined the fractional Hilbert transform operator directly in terms of the normal
Hilbert transform operator by the relation:

Hy, =cosa +sin aH. (28)
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Lohmann and coworkers (1996a, b) have also introduced a definition for the fractional Hilbert
transform, and discussed its implementation. Their definition has a structure related to that in
Eq. 28. A discrete version of the fractional Hilbert transform has been considered by Pei and
Yeh (1998, 2000). An advantage of the definition in Eq. 28 is that the mathematical forms
of several of the standard properties of the Hilbert transform are preserved. The Cusmariu
definition of the fractional Hilbert transform satisfies

HyHp = Hasp, (29)

and hence a semigroup condition under composition holds for the operator H,. For a signal
s(t), the following holds:

o0 o0
/ s2(t) dt = / [Hys()] dt. (30)

-0 —00
This result indicates that the action of the fractional Hilbert transform on the signal preserves
the energy of the signal. The analytic signal z(¢) corresponding to s(¢) is an eigenfunction
of Hy: .
Hyz(t) = e7'%z(1). @3n

At least four different suggestions for the definition of the fractional analytic signal have
been proposed. Zayed has defined the fractional analytical signal as (Zayed 1998)

Z1a(t) = s(t) + i Hys(t), 32)

where H, is defined in Eq. 25. If 0 < o < 7, then it follows from this definition that Z 4 (w)
vanishes for w < 0. To see this, take the fractional Fourier transform of order  of Eq. 32
and employ Eq. 26, then

Z1g (@) = Sy (w){1 + sgn w}, 33)

which is the analog of the result for the non-fractional case.
Cusmariu has suggested three different possible definitions based on Eq. 28 (Cusmariu
2002). The first is similar to Zayed’s definition, but with Eq. 28 employed in place of Eq. 25:

2o (t) = s(t) + i Hys(t). (34)
Cusmariu’s second suggestion was to define the fractional analytic signal by the result:
230 (1) = Hyz(1). 35)

This choice has some geometric appeal. It can be easily shown that |23, (1)]* = |z(1)|?, and
by taking the Fourier transform of Eq. 35, that | Z34 (w)| = |Z(w)|. The third suggestion of
Cusmariu involves the definition

Z24q (1) = cos as(t) +isin aHs(t). (36)

Which of these definitions of the fractional analytic signal will turn out to be the most
useful in practical applications is yet to be determined. However, in the context of preserving
translational invariance and the commutative condition for the dilation operator, we can make
a distinction between the available choices.

Using the definition in Eq. 28, then clearly

[Ha, 1] =0, €))

and
[Ha, Sp] = 0. (38)
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Therefore, the three Cusmariu definitions of the fractional analytic signal operator all satisty
the translational invariance condition of Eq. 7 and the commutator condition of Eq. 13.
Making use of Eq. 25, then

{Hyta f(X)}(2)

i 2 i 2

e jcota t P/oo f(x_a)ezcolux dx
b4 —00 t—x

2

i i . 2
e—fcotal 00 f(x)e’-’ cota (v+u) dx
b/ —50 t—a—x

# Ta{Ha f (O}, (39

so the Zayed definition given in Eq. 25 does not satisfy Eq. 37. The multiplication of the
original signal by a chirp function breaks the translational invariance. A further calculation
shows that Eq. 38 does not hold when Hy, is defined by Eq. 25. The fractional analytic signal
defined in Eq. 32 therefore represents a departure from Eqgs. 7 to 13.

Forcing the fractional Hilbert transform to satisty the invariance properties given in Egs.
37 and 38, and defining a fractional analytic signal directly in terms of H,, will at least guar-
antee that there is a preservation of the invariance properties for Ay, rather than producing
an abrupt change, as « moves away from the value zero. Lost of translation invariance would
lead to additional complications in dealing with the signal: for an example of some of the
issues, see Hogan and Lakey (2005). Future practical applications might present compelling
reasons not to force these invariance properties. Probably the most important area where
the invariance ideas might play a role is in image processing, in particular, in image edge
enhancement and in image compression problems.

5 Conclusion

For one-dimensional signals, the requirements of translational invariance and signal homo-
geneity are sufficient to fix to within a pair of arbitrary constants, the definition of the analytic
signal operator. For an nn-dimensional signal, translational invariance and signal homogeneity
also lead to an operator form for the analytic signal operator, with some arbitrary constants
appearing. In both cases, the Hilbert transform plays the key role.

Whether or not it is useful to retain the conditions given in Eqs. 7 and 13, when formulating
a definition of a fractional analytic signal operator, is yet to be determined by the practical
applications that can be made. Employing these conditions in the formulation of a fractional
Hilbert transform operator, does have the advantage that the fractional analytic signal goes
smoothly to the normal analytic signal, and stays within a translation-invariant space.
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