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Abstract
The three-electron ground state atomic energy in the Z → 2 limit, where Z is the nuclear
charge, is studied using high precision Hylleraas-type calculations, with the objective to
investigate the stability of the ground state of the helium negative ion. Finite nuclear mass
effects and relativistic corrections are incorporated in the computations. The calculations
reveal that the critical binding nuclear charge, Zc, the value below which the three-electron
system is no longer stable, is bounded above by Zc = 2.000 001.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The atomic helium negative ion, He−, has been of considerable
theoretical and experimental interest [1–37]. Atomic negative
ions tend to form very few, and often no, bound states. The
helium negative ion is known to form two metastable excited
states [18], but the consensus opinion in the literature is that
the helium negative ion does not have a stable ground state.
The helium negative ion has attracted attention because of the
nature of the decay of its metastable states: the 1s2s2p 4Po

5/2
state cannot autoionize via a Coulomb interaction, so the state
is bound in the nonrelativistic level of theory [18, 34]. The
possibility of forming a stable helium negative ion in very
intense laser fields [35] or in the presence of extremely large
magnetic fields, such as those likely to arise in astrophysical
situations [36], have been topics of recent research interest.
Correlation effects play a key role in the calculations on
this system, and this is generally the case for the stability
of atomic negative ions, so this species has been of interest for
testing post Hartree–Fock theories. The few-electron nature
of this atomic species makes it particularly amenable to high-
precision calculations.

The focus of this work is an attempt to provide an
understanding of the stability issues associated with this ion,
and in the process, fix an upper bound on the critical binding

nuclear charge for the ground state of an atomic three-electron
system. We also explore the nature of the interactions that
impact the question of stability for this ion. We examine
the impact of finite nuclear mass corrections, and evaluate
relativistic corrections through order α2, where α is the fine
structure constant, in order to assess the importance of these
contributions to the stability of the helium negative ion ground
state. Our calculations indicate a bound state exists for a three-
electron atomic system at a nuclear charge of 2.000 001, but
efforts to decrease the nuclear charge below this value lead to
numerical stability issues. Extensive calculations on the three-
electron atomic system at exactly Z = 2 gave no evidence for
a bound state of this system.

2. Computational approach

The computational approach employed is as follows. The
variational calculations were carried out for the three-electron
system in an S state, using a Hylleraas basis of the form [38]

ψ3(r1, r2, r3) = A

N∑
s=1

csr
is
1 r

js

2 r
ks

3 r
ls
12r

ms

13 r
ns

23

× e−αs r1−βs r2−γs r3χs, (1)

where A is the three-electron antisymmetrizer, cs denotes the
expansion coefficients, χs is a spin eigenfunction, ri designates
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the electron–nuclear separation distance for electron i, rij

is the inter-electronic separation distance and N represents
the number of terms in the expansion. The nonlinear
exponents αs, βs, and γs are each > 0, and the integer
indices {is, js, ks, ls, ms, ns} are each � 0. For the calculations
in the range Z = 2.000 001–3, the infinite nuclear mass
nonrelativistic approximation was employed. Below Z = 2.01,
the finite nuclear mass approximation was also employed using
the Hamiltonian (for the three-electron system in atomic units
(a.u.))

H = − 1

2µ
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i − 1

M
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∇i ·∇j

−Z
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1
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+
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i=1

3∑
j>i

1

rij

, (2)

where µ is the reduced mass µ = M/(1 + M), and M is the
nuclear mass of 4He in a.u.

The computational strategy employed is as follows. The
calculations were commenced at the nuclear charge Z = 3,
which corresponds to the next member of the helium negative
ion isoelectronic series. The nuclear charge was then reduced
down in suitable steps from Z = 3 to Z → 2. When 2 < Z < 3
we are dealing with a pseudo-negative ion. In the course
of changing Z, the basis set was systematically refined and
expanded. For the four smallest values of Z for which a bound
state was found for the three-electron system, the following
Breit–Pauli relativistic corrections were evaluated using first-
order perturbation theory based on the Hamiltonian in au:

HREL = −α2

8
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}
,

≡ Hmass + HenD + HeeD + Hssc + Hoo, (3)

where Hmass represents the kinetic energy mass correction,
HenD is the electron–nuclear Darwin term, HeeD denotes the
electron–electron Darwin term, Hssc is the spin–spin contact
interaction and Hoo designates the electron–electron orbit
interaction, δ(r) is a Dirac delta function and si is an electron
spin operator.

To calculate the ionization energies for each value of Z
investigated, two-electron counterparts to equations (1)–(3)
were employed. The ionization energy was evaluated in terms
of the two- and three-electron energies E2(Z) and E3(Z),

respectively, as

I (Z) = E2(Z) − E3(Z). (4)

The approximate rate of change of the ionization energy
with respect to the nuclear charge was evaluated from the
Hellmann–Feynman theorem, using

∂I

∂Z
= 〈ψ3|

3∑
i=1

1

ri

|ψ3〉 − 〈ψ2|
2∑

i=1

1

ri

|ψ2〉, (5)
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Figure 1. Ionization energy of the three-electron ground state as a
function of Z − 2 on a log–log scale. The inset shows the ionization
energy as a function of the nuclear charge on a linear scale.

where ψ2 is the two-electron wavefunction. In addition to
the small contributions arising from relativistic terms, there
are small corrections to consider that arise from quantum
electrodynamic contributions (QED). At Z = 3, the quantum
electrodynamic correction to the ionization energy is an order
of magnitude smaller than the relativistic contribution to the
ionization energy. For values of Z very close to Z = 2, we
expect this situation to prevail, and consequently have ignored
these QED corrections. For smaller values of Zc than found in
the present work, it might be necessary to consider the QED
contributions. The reader interested in the nature of these
small QED corrections could see, for example, [39].

Extensive preliminary calculations were made for the
three-electron system at Z = 2. No evidence for a bound
ground state for the three-electron system was found, and
our best result obtained indicates that at this value of Z the
system is unbound by an upper bound of approximately 0.25
picohartree. These calculations did however provide a guide
to the critical need for very careful exponent optimization,
particularly for the third electron in the system. As the
nuclear charge is reduced from Z = 3 to Z → 2, the valence
electron cloud, not surprisingly, take on an increasingly diffuse
Rydberg-like character. The optimal nonlinear parameters
change significantly from Z = 3 to Z = 2, particularly the
γi values. Below Z ≈ 2.001 the results are as expected,
particularly sensitive to the values of γi , and the optimal γi

value becomes ≈ Z − 2. As a result, it was essential to carry
out the calculations in quadruple precision, in order to avoid
numerical stability issues. We also note that as the optimal
γi values change so rapidly near Z = 2, simple Z-scaling has
extremely limited effectiveness.

3. Results

In figure 1, we show the variation of the ionization energy
as a function of Z, calculated in the nonrelativistic infinite
nuclear mass approximation. The results in figure 1, which
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Figure 2. Derivative of the ionization energy as a function of atomic
number Z as calculated using equation (5). The inset shows the data
on a linear scale.

represent a lower bound to the nonrelativistic component of the
ionization energy, make it clear that for all values of Z slightly
larger than 2, the three-electron ground state system is stable.
The three-electron ground state system is still stable at Z =
2.000 001. Attempts to execute the calculations for values of
Z below those presented in figure 1 led to numerical stability
issues, which we surmise could only be resolved by working
in higher precision arithmetic beyond the quadruple precision
(30–35 digits, depending on the machine) we employed for all
the calculations.

In order to clarify the term limZ→2 I (Z), we examined
the behaviour of ∂I/∂Z as a function of Z. The results are
indicated in figure 2. As Z → 2, ∂I/∂Z → 0, which is very
suggestive that the critical nuclear charge Zc, lies in very close
proximity to the value 2.

In order to ascertain the importance of finite nuclear mass
effects, calculations were carried out using the Hamiltonian
given in equation (2). Relativistic effects through order α2

were evaluated using first-order perturbation theory. Some of
the results for the three smallest values of Z are summarized
in table 1. An approximate error estimate for the total
relativistic correction was based on an examination of the
convergence characteristics for the two- and three-electron
relativistic contributions. For the lowest value of Z examined,
the estimated uncertainty in the relativistic correction to I (Z)

is too large to draw a definite conclusion about the impact of
the relativistic correction to the stability of the three-electron
system. However, the results are at least suggestive that Zc

lies below the value 2.000 001.
In figures 3(a) and (b) we show a breakdown of the

potential and kinetic contributions to the ionization energy
as a function of Z and Z − 2, respectively. The ionization
energy components are computed in the nonrelativistic infinite
nuclear mass approximation. These contributions are defined
by IKE = 〈KE〉2 − 〈KE〉3, Ivee = 〈vee〉2 − 〈vee〉3, and
Iven = 〈ven〉2 − 〈ven〉3, where 〈 〉2 and 〈 〉3 denote the two-
electron and three-electron expectation values, respectively,
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Figure 3. The ionization energy components as a function of
(a) Z and (b) Z − 2. In (b), the absolute value of the ionization
energy components is presented. Open symbols denote negative
quantities in both (a) and (b).

Table 1. Nonrelativistic, finite nuclear mass and relativistic
contributions to the ionization energy, for Z near the value 2.

Ionization energy
Z valuescontributions

µ hartree 2.0001 2.000 01 2.000 001

〈Hinf〉 0.004 992 988 0.000 049 963 0.000 000 375
〈Hfinite〉 0.004 992 304 0.000 049 955 0.000 000 385
〈HenD〉 −0.000 20 −0.000 09 −0.000 04
〈HeeD〉 0.000 005 −0.000 001 −0.000 0014
〈Hssc〉 −0.000 008 0.000 002 0.000 002
〈Hmass〉 0.000 40 0.000 18 0.000 09
〈Hoo〉 0.000 000 16 −0.000 000 02 −0.000 000 01
〈HREL〉 0.000 20(40) 0.000 09(40) 0.000 05(40)
I (total) 0.005 19(40) 0.000 14(40) 0.000 05(40)

and KE, vee and ven refer to kinetic energy, electron–electron,
and electron–nuclear potential terms of the Hamiltonian,
respectively. In figure 3(b), the curves for Ivee and |Iven| are
essentially superimposed upon one another, as Z → 2. As a
direct consequence, the curves for IKE and IKE + Ivee + Iven in
figure 3(b) are also almost superimposed upon one another.

To rationalize the behaviour observed in figure 3, suppose
in the limit Z → 2 that the third electron becomes ‘Rydberg-
like’ which we know, in part, from the very diffuse nature
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of the basis functions required to obtain an accurate energy.
Then r3 � r1, r3 � r2, ψ3(r1, r2, r3) ≈ ψ2(r1, r2)φ(r3), with
φ(3) ≈ Nrn−1

3 e−ζ r3 , where n is the principal quantum number
of a Rydberg valence ns orbital and N is a normalization
constant. We have assumed that n is sufficiently large so that
the interaction of the Rydberg electron with the core electrons
is extremely small. Set V = (

1
r13

+ 1
r23

− Z
r3

)
, and let H2 and

H3 denote the two- and three-electron infinite nuclear mass
Hamiltonians, respectively, then in the limit Z → 2
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When ζ ≈ (Z − 2), which corresponds to a fully screened
valence electron, the sum of the 〈vee〉 + 〈ven〉 contributions
to I (Z) will be similar in size, but of the opposite sign to the
〈KE〉 contribution to I (Z), which is the approximate behaviour
exhibited in figure 3. The magnitudes of the individual terms
contributing to 〈V 〉 are each proportional to ζ, and would thus
be expected to be about an order of ζ−1 larger than 〈KE〉
in the limit Z → 2, which is the behaviour illustrated in
figure 3. If the selected Z exceeds the value 2 by an
amount ε, then it is advantageous to carry out the calculations
with exponents for the valence electron bounded above by
2(2 − n−1)ε. Upon inserting (Z − 2) for ζ in equation (6),
and then letting Z → 2, the potential and kinetic energy
contributions go to zero at approximately the same rate. The
preceding simplified model of the Z behaviour near Z = 2
would be insufficient to explore the detailed Z dependence of
I(Z) below the critical Zc found in this study. Additional terms
in the expansion of the matrix element of V, together with an
improved decomposition for ψ3(r1, r2, r3), would be required
for a more detailed analysis.

There is one reported prediction of a stable state for the
helium negative ion by Guo et al [26], with a proposed stability
of the order of a few millihartree, and a rebuttal of this work
has also appeared [30]. The results of the present calculations
make it clear that the helium negative ion is not stable by a few
millihartree.

Serra et al [31] have performed a nonrelativistic
calculation (in the infinite nuclear mass approximation) and
determined the value Zc = 2.01 ± 0.03 using a Hylleraas
approach, but without exponent optimization. These authors
attempt an analogy of the behaviour of E(Z) near Zc with
the behaviour of continuous phase transitions. We have been
able to significantly improve upon their result for (Z − Zc) by
a factor of 104, by carrying out a careful optimization of the
exponents. An extrapolation of the ionization energy based
on the lowest values of Z yields the extrapolated upperbound

result Zc = 2.000 0005. This estimate makes it clear that we
have Zc = 2.000 001 as a true upper bound estimate to the
critical binding nuclear charge. Furthermore, the behaviour
of ∂I/∂Z indicates that we have not in fact reached the true
minimum result for Zc, which also implies that we have an
upper bound for this quantity.

The results of the present work suggest that with a highly
optimized description of correlation effects, a stable ground
state for the helium negative ion may exist for weaker laser
fields [35] or magnetic fields [36, 37] than have recently been
proposed to support a bound state for this anion.

4. Conclusion

In summary, we have determined that the critical nuclear
charge for a stable three-electron system is bounded above by
the value Zc = 2.000 001. For this value of the nuclear charge
the valence electron is best described as having considerable
Rydberg-like character. We hope the extreme proximity of
Zc to the nuclear charge of He found in the present work
will stimulate theoretical and experimental investigations of
the helium negative ion, particularly in intense laser fields or
in very large magnetic fields, such as those likely to arise in
astrophysical situations.
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