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ABSTRACT: A simplified analysis is presented for the evaluation of the three-electron

one-center integrals of the form [rirjrirl,

rifrl e« "B =Ygy dr,drs, for the cases

i,jk, > —=21=-2,m=> —1,n2 —1. These integrals arise in the calculation of lower
bounds for energy levels and certain relativistic corrections to the energy when
Hylleraas-type basis sets are employed. Convergence accelerator techniques are employed
to obtain a reasonable number of digits of precision, without excessive CPU requirements.
© 1999 John Wiley & Sons, Inc. Int ] Quant Chem 72: 93-99, 1999
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Introduction

T here has been considerable recent progress on
high-precision calculations for atomic three-
electron systems, and the lithium atom has been
the focus of much of this effort (see [1] and [2] for
reviews on recent progress). Two principal areas
where progress has been significantly restricted
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are the evaluation of lower bounds [3, 4] for en-
ergy levels and the evaluation of high-precision
estimates for some of the relativistic corrections
[5]. The highest precision results for several prop-
erties of the °S states of three-electron systems
have been obtained using the Hylleraas or CI-
Hylleraas techniques [3, 4, 6-11]. Using Hylleraas-
type functions, the integration problem reduces to
the evaluation of the integrals

I(ll j/ kl l/ m,n,a, BI Y)

— Pk d omon ,—ari—Bry—yr
—fr1r£r3r23r31r12e 7B dy dr,dr,, (1)
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where r; denotes an electron—nuclear distance and
r;; is an electron—electron separation.

The integrals in Eq. (1) can be divided into two
basic groups: those integrals having I, m,n > —1
and those integrals having one of the indices
I, m,n = —2. To evaluate the energy and a large
number of other properties, only the case I, m, n,
each > —1, arises. These integrals and some re-
lated generalizations have been extensively dis-
cussed in the literature [12-23]. Evaluating lower
bounds to the energy, or some of the relativistic
corrections to the energy levels, requires integrals
where one of I, m, n = —2. This is a much more
difficult case and is the underlying reason why
success on the aforementioned two problems has
been somewhat limited. The purpose of this work
was to discuss the evaluation of Eq. (1) for cases
where one of I, m,n = —2. These integrals and
some related generalizations have received consid-
erably less attention than has the other case men-
tioned above [24-29].

In what follows, we will set I = —2. Previous
work {24-28] on the evaluation of Eq. (1) for [ =
—2 can be broken up into three distinct groups: (i)
m and n not both odd and > —1, (ii) m and n
both odd, and (iii) one of m or n = —2. Fairly
effective methods have been devised to treat inte-
grals in case (i) [24]. The integrals in case (iit) [26,
27] arise when the most general Hylleraas-type
expansion is employed, but these integrals can be
circumvented by some minor restrictions on the
basis set. The integrals in case (ii) cannot be avoided
with any realistic restrictions imposed on the basis
set. These integrals are a principal focus of this
work. In previous efforts with the integrals in case
(i), the following approaches have been employed:
The first involves a series expansion of some inte-
grals involving logarithmic functions {25, 26].
Methods to solve these integrals via special loga-
rithmic-function quadratures have been developed
[25]. A scheme based on the series expansion of
r72 in terms of Gegenbauer polynomials has been
developed [27] and an alternative series approach
has been discussed [28].

Theory

In the present work, ry’ is expanded as the
product (r5'Xr3;') and the standard expansion of
r5 in terms of Legendre polynomials is em-
ployed. At first sight, this approach would not

appear to be useful, because the expansion of 73
[24, 27, 30, 31] has the following form [24]:

1 * [21+1
72 Z |4
B =
I
xlnr2+r3 Z 2x1112x1
Ty = T3 =
min[«, ! — k]
_ay( Y[ 21— 2v)(1 -2
x L 4)(,,)( l )(K~V)
-1
-2 Z r2—1+2xré—2x—2
k=0
min[x, /- x—1] N Y
X Y 4/(1 2) - 1)
j=0 =
(D))
x Y Y l Py(cos 6,3).
o 2j-2v+1 ’
(2)

Equation (2) can be written in a symmetric form in
the variables r, and r;, which is more suitable for
examining the convergence behavior of the expan-
sion in terms of r, and r;. However, that form is
less useful for the evaluation of integrals (see [24]
for details). Dealing with the logarithmic terms in
Eq. (2) leads to considerable additional complex1—
ties [24]. Employing the standard expansion of r3;'
leads to much simpler integration problems, but at
the cost, not surprisingly, of producing a much
more slowly converging series. This latter problem
can be addressed by resorting to convergence ac-
celerator techniques to carry out the required sum-
mations. Some useful discussion on the expansion
of r;;* can be found in the work of Steinborn and
Filter [32].

Inserting the standard expansion for r,; and
the Sack expansions [33] for rj; and r}; into Eq. (1)
leads to the result

1

I=10,j,k,

Z Z Z Z/rlrgr e~ N~ Bra—vyr;

,=01,=0 p=0g=0

A
X 3nL2 +1,+2 Mp(r3'
rg 2

—2mna[3'y)

+1,

Tl)R (r1; rz)
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X P;(cos 6,3) Py (cos 6,;) P,(cos 051)

X P,(cos 0;;,)dr dr,dr;. 3)
In Eq. (3), Rmp( r5, 11) is a Sack radial function [33],
P,(cos 63,) denotes a Legendre polynomial, ;.

represents min(r,, r;), and 7y, signifies
max(r,, r;). The angular integral I, in Eq. (3) is

I, = /Pll(cos 8,3) P, (cos 6,3) P,(cos 85,)

X P,(cos 6;,) dQ,dQ,dQ;, 4)
which can be evaluated by expanding the Legen-

dre polynomials in terms of spherical harmonics,
leading to

B 25674
T QL+ DL+ D@p+ 1D2g+ D

IQ
I p
r X
=-l P=-pQ

X Y,p(6,, ¢1) ),

M&

h
x X

my= =1y m,

J Y0, 60
9

X fYI:kml( 05, $2)Y 50 (0, $2)Y,0(8,, b,) dQ,

X fYIIml(BCSf $3)Y,, (03, 3)Y,p(63, ¢3) d€d;.
(5)

Using standard results for the integrals over spher-
ical harmonics, Eq. (5) can be simplified to

64> 11 2
Ip= =8, 1 2 P, 6
&7 @2p+1 ""(o 0 0) ©

where §,, is a Kronecker delta and (;Z}) denotes a

3-j symbol. For large values of I;, the 3-j symbols
can be computed effectively using a recursive
scheme [34, 35]. The optimal approach is to table
them, thereby making the calculation of the 3-j
symbols a rather minor part of the overall calcu-
lation.

The Sack radial functions can be written as [33]

o 2t
m— "3
Rmp(r3l rl) = r13>prf3< Z apmt(r—<) ’ (7)

t=0 13>

where

-2

pmt = 1 3
—)elp+ =
(2)p (” Z)t

and (a), denotes a Pochhammer symbol.
If Eq. (7) and the analogous result for R, ,(r;, r,)
and Eq. (6) are substituted into Eq. (3), then

0
+2,j+2 k+2 1+
X Z apmt Z apnufrll+ r£+ r3+ r25+<2
t=0 u=0

X 1 TR R e P R Py

X e~@n"Br=vns dr, dr, drs. 9
On splitting the integration domain, the radial
integral in Eq. (9) can be simplified into a sum of
integrals of the form

W(L, ], K, e, B,7)
= [ xlemer dxfwy’e“’y dyf zKe 7 dz. (10)
0 x y
These W-integrals have been discussed extensively

in the literature [12, 13, 17, 20, 21, 36-38]. Equation
(9) simplifies to

(11 I P)
I=6473 ), Y ) 0 0 0
LZon-0p=0 2pt+1

X Zapmf Z apnu

t=0 u=0
X {WGE+2+2p+2u+2t,j+2+n+l,
—p-2uk+m—-p—2t—1I,,a B,

+W(@G+2+2p+2u+2t,
k+2+m+1,—p—2¢,

jtn—p—2u-—1I,,a,7v,B)
+W(j+2+p+2u+ly,i+2+2t+n-2u,
k+m—1,—p—2tB,a,7)
+W(j+2+p+2u+ly,
k+p+2t—1I,,i+2
m+n—2p—2t—2u,B,y o
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+W(k+2+p+2t+1,,i+2+m+2u—2t,
j+n_p~2u_112171alﬂ)
+Wk +2+p+2t+1,,j+p+2u—1,

i+2+m+n—2p-—2¢t-2u,y,B,a)},
(11)

where I, = I; + I,. Equation (11) is a key result of
this work.

We now focus on some computational simplifi-
cations. The t-summation in Eq. (11) is finite:

m
ooy = (E - p) for m even (12)

m+1
t =

max 2

for m odd, (13)

which follows from the definition of the 4,,,, coef-
ficient in Eq. (8) and the properties of the
Pochhammer symbol. In a similar fashion, the u-
summation terminates at u,,, = (n/2) —p for n
even, or u,, =(n+1)/2 for n odd. The p-sum-
mation terminates at

L+, m and n both odd
[ m
min|l; + 1,, ?] m even, n odd
Prax = : n
max min|/; + 1, E] n even, m odd
. m n
min|l, + 12,?,5] m and n both even.

(14)

In Eq. (14), the constraints depending on m and /or
n arise from the term (—m/2) (—n/2), in Eq. (11),
which comes from the product 4,,,4,,,. The con-
straint involving I, + I, follows from the triangle
inequality condition for the 3-j symbol:

I, —Lli<p<l+1,. (15)

The triple sum in Eq. (11) can be simplified by
noting that the W-integrals depend on I + I,.
Hence, the triple sum can be decomposed as

© o x

XX X}

1,=01,=0 p=0
=Y Y(1+2Y ¥ Y () a6
L=0 p=0 Ii=11,=0p=0
(U,=1y)

and
*© x id Prmax
Y X{l=Y X {} a»n
L=0 p=0 ;=0 p=0
(,=1) (1,=1) (p, even)
with p_,, given in Eq. (14) (with I, + 1, = 21)).

The even condition on p in Eq. (17) follows from
the condition that the 3-j symbol

(101 l(; g)=o for podd.  (18)

The triple summation in Eq. (16) can be written as
x I1~1 = o =1 Pmax
tLro-55F o
Li=11,=0 p=0 L=10L=0]p=hL-1

(1, + 1, even = p even)

(I, + 1, odd = podd) (19)

Computational Approach

In light of the remarks made in the last section,
particularly those connected with the replacement
of Eq. (2) by a double-infinite summation, a direct
numerical evaluation of the I-integrals by series
summation using Eq. (11) is not feasible. Instead,
evaluation of Eq. (11) is facilitated by the use of
convergence accelerator techniques. For a recent
review of accelerator techniques, see Weniger
[39-41] or the recent text on extrapolation methods
[42]. The technique employed to sum the series in
Eq. (11) is the Levin u transform [43]. The Levin u
transform is a powerful general-purpose conver-
gence accelerator technique. For the type of series
behavior expected in this work, the Levin u trans-
form is expected to be among the better choices to
achieve reasonable convergence [44, 45].

A sequence of partial sums for a particular
series are defined by

Sp= L Ay, (20)

and we suppose these converge to the limit S.
Then, an improved set of approximations to the
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sum is given by

k
Zocl-(k, A)S;
=

U, = , 21)

%
Y ek, A
j=0
with

ci(k, A)) = (—1)’(?)(;’ + DA ()

and (’;) denotes a binomial coefficient. Equation

(21) is Levin’s u transformation, which is well
known to be particularly effective to numerically
sum series with logarithmic convergence charac-
teristics. Equation (21) can be evaluated in a recur-
sive manner [46]. The Levin u transformation was
applied to Eq. (11) with the triple infinite sum
(over 1,,1,, p) simplified as in Egs. (16), (17), and
(19). The Il,-summation is evaluated up to some
maximum value, which becomes the termination
point for u,.

Table I illustrates the convergence behavior of a
representative I-integral as a function of the index
k in Eq. (21). The precision level employed for the
calculation was 30 digits (which corresponds to
approximately Fortran double precision with a 64-
bit word or quadruple precision with a 32-bit
word). Table II shows the results for a number of
I-integrals. The first 15 results have been previ-
ously evaluated using alternative methods [24],
and these represent the easier of the more difficult
I = —2 cases. These 15 values were evaluated us-
ing higher-precision arithmetic, and the results can
therefore serve as benchmarks for alternative eval-
uation schemes. In several cases, these results im-
prove on the accuracy of values given elsewhere
[24]. The second group of examples, those involv-
ing both m and n odd, provide a good test of the
procedure. For these cases, the results presented in
Table II agree with results from more complicated
evaluations to the precision level that is apparent
from the earlier work [25, 27,* 28].

Discussion

The I-integrals for the more difficult odd m-
odd n cases were evaluated to a precision level of
around 12-15 digits (with one exception) in a

* A typographical error has been found in this work: There
is a factor of 7! missing from the denominator of Eq. (14).

TABLE |
Convergence of the integral /(1,1,1, -2, 1,1,
2.7,2.7,2.7) as a function of the index k in the
Levin u transform.

Levin index k J-integral®

0 5.096

1 6.483

2 7.078

3 7.177

4 7.18666

5 7.18799

6 7.187861

7 7.187624

8 7.1876386

9 7.1876467
10 7.18764638
11 7.187646258
12 7.187646242
13 7.1876462442
14 7.18764624507
15 7.187646245098
16 7.187646245088
17 7.187646245089
18 7.1876462450905
19 7.1876462450912
20 7.1876462450915
21 7.1876462450917
22 7.1876462450917
23 7.18764624509178
24 7.18764624509180
25 7.18764624509182
26 7.1876462450918
27 7.1876462450918
28 7.187646245092
29 7.187646245092
30 7.18764624509
31 7.18764624509
32 7.1876462451
33 7.1876462451
34 7.187646245
35 7.18764625
36 7.18764625

2Value of the integral computed using higher-precision
arithmetic is 7.1876462450918377526396.

rather straightforward approach. The convergence
is relatively quick to reach this precision level
Typically, about 25 terms in the sum are required
to reach the aforementioned level of precision. The
most slowly converging cases in the present study
have I = —2, m = —1, n = —1. For these cases,
alternative methods give improved precision [28].
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TABLE I
Some representative I-integrals computed using Eq. (11).
i i k / m n a B Y l-integral
0 0 0 -2 0 0 2 2 2 2.06708511201998801169842100447 X 10'
2 2 2 -2 0 0 27 29 0.65 3.051914096585057305590024575 X 102
-2 -2 -1 -2 0 0 27 29 0.65 6.40433532290726028906339998423 X 102
0 0 0 -2 0 2 27 29 0.65 5.8346389252505330054048206453 x 10'
0 0 0 -2 0 4 27 29 0.65 3.4340509393876867695194904738 X 102
3 3 2 -2 2 4 27 29 0.65 8.38209393345315311961770931062 X 10°
0 o 0 -2 6 4 0.5 05 1.0 2.35819830278291211645840688157 X 10
3 3 2 -2 -1 0 27 29 0.65 2.57336142152679423894574516156 X 102
1 1 1 -2 1 0 2.7 29 0.65 1.65491500995851407898227114959 X 102
3 2 3 -2 3 o 27 29 0.65 1.26207510041793254949638102205 X 10°
-1 -1 3 -2 5 4 25 3.0 0.6 1.10573913664078306297851324000 X 10°
3 2 3 -2 —1 2 27 29 0.65 4.58042917198089371348107671940 X 10°
3 2 3 -2 1 2 27 29 0.65 1.65525441222674352288753256005 X 10°
3 2 3 -2 3 2 27 29 0.65 1.31618584536114101464412295672 % 107
-2 -2 2 -2 -1 2 27 29 0.65 2.98696541285782950599889547956 X 102
0 0 0 -2 -1 -1 27 29 0.65 1.5271059 x 10'
0 0 0 -2 -1 1 27 29 0.65 1.69867816033 x 10'
0 0 0 -2 1 1 27 29 0.65  8.0102940206259 x 10’
0 0 0 -2 1 3 27 29 0.65 4.057986194190158 X 102
0 0 0 -2 3 3 27 29 0.65  7.59274487125250 X 10°
0 0 0 -2 3 5 27 29 0.65 8.3470410214165 x 10*
0 0 0 -2 5 5 2.7 29 0.65  3.7444633460214 x 10°

A well-known difficulty associated with the ap-
plication of Levin’s u transformation is the severe
loss of precision for higher values of k in Eq. (21).
This point is illustrated for a representative exam-
ple in Table I. No general algorithm is currently
available which avoids this problem of precision
loss for series summation using acceleration tech-
niques, although a series transformation has been
found that solves this problem for a large number
of the I integrals satisfying I, m, n > —1[23]. The
Richardson extrapolation technique, which is often
very effective for summing series with logarithmic
convergence, also suffers from the same loss of
precision problems. These problems can be cir-
cumvented by working with a multiple precision
arithmetic routine in a Fortran code, but this is at
the cost of more significant CPU resources.

Extensions of the present work are in progress
in which alternative methods [39—-41] to deal with
the convergence accelerator precision problems are
being attacked. The result presented in Eq. (11) is
rather simple in structure and may prove to be a
very good starting point for applying different
convergence accelerator techniques. Judicious ap-
plication of the approach developed in [23] may
possibly lead to more effective convergence accel-

erator schemes for the evaluation of these difficult
integrals.
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