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ABSTRACT: Lower-bound estimates for the ground-state energy of the helium atom
are determined using nonlinear programming techniques. Optimized lower bounds are
determined for single-particle, radially correlated, and general correlated wave functions.
The local nature of the method employed makes it a very severe test of the accuracy of
the wave function. © 1999 John Wiley & Sons, Inc. Int ] Quant Chem 71: 455-463, 1999
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Introduction

T he purpose of this work was to study lower
bounds for the ground-state energy of the
helium atom using different levels of approximate
wave functions. A key focus of the work was an
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examination of the structural features of the wave
function that lead to improved lower bounds.
Lower bounds for the energy levels of few-electron
systems have received a considerable amount of
attention in the literature (see [1, 2] for a summary
of literature references). Two principal approaches
have been employed: These are the method of
intermediate Hamiltonians [3—6] and the applica-
tion of the classical lower-bound formulas (Temple
[7]1, Weinstein [8], Stevenson [9]), of which the
Temple lower bound gives the sharpest results
[10]. The best lower bound for the ground-state
energy of the helium atom obtained using Temple’s
formula is [11]

—2.90372437703413 au < Eg, (D

and the error is approximately one in the last
quoted digit. Both of the aforementioned ap-
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proaches have associated difficulties. The classical
lower-bound formulas all require the evaluation of
the expectation value (H 2%, where H is the non-
relativistic Hamiltonian of the system. This leads
to considerable mathematical difficulties, particu-
larly when attempts are made to go beyond two-
electron systems [1, 12]. The method of intermedi-
ate Hamiltonians has not been applied with any
significant success to systems beyond the two-
electron level.

In this work, the focus was on an approach
which has received relatively little attention in the
literature. Our principal objective was to deter-
mine the issues that underlie the approach em-
ployed, rather than to attempt to obtain a bound as
sharp as the result presented in Eq. (1).

Theory

The key result utilized in this work is
Hy
1nf(—¢—) EELBSEOI 3

where E, ; designates the lower bound to the exact
nonrelativistic ground-state energy and ¢ is an
approximate solution of the Schrodinger equation

HV = E¥. (3)

The treatment discussed in this work is restricted
to the ground states of two-electron systems, and
the focus of the present investigation was the
ground state of the helium atom. The factor Y THy
which appears in Eq. (2) is often referred to as the
local energy [13]. The nonrelativistic Hamiltonian
employed throughout is

2 _ .2 2 2
rq ry + 1 Jd

T, 9ty 712 211, dr101y,
r2—r2+r3 97
- , 4
21,71 8r,dry,

where Z is the nuclear charge, r; is the electron-
nuclear coordinate, and r,, is the electron—electron
separation. Equation (4) takes advantage of the
well-known reduction in variables that results from
the S-state symmetry of the ground state of the

helium atom. Equation (2) and some related re-
sults have been known for a long time. Barta [14]
discussed the result in connection with the funda-
mental vibrations of a membrane. Duffin [15] gen-
eralized the result, and Barnsley [16] gave further
elaboration and several applications. A concise
proof was given by Thirring [17]. Additional dis-
cussion of the approach and applications to some
model problems have been investigated (see
[18-25)).

If the approximate wave function ¢ is written
in terms of the exact ground-state eigenfunction as

=T+ 8V, 5)
then

(H—E))s¥

E,; = E, + inf
LB 0 m{ v

+ O([W]Z)}, (6)
and the lower bound has a first-order dependence
on the error in the wave function. This is in con-
trast to the well-known result from the variation
method, where the upper bound to E;, depends on
the error 8¥ only in second order, a fact that
underlies much of the considerable success of en-
ergy-level calculations for atomic and molecular
systems. Because E, ; has a first-order dependence
on 8V, this quantity may be used as a useful
measure of the accuracy of an approximate wave
function.

We now examine the behavior of the approxi-
mate wave function as E; ; — E,. In what follows,
it will be assumed that the wave functions are
real-valued. The following result is proved:

/\PI(H — E)yldr, dr, < &, 7)
where
e=2E,— E,p) (8)

and dr; denotes a spatial volume for electron 1.
We can write

(W I(E, — H)g) =V I (E, — H)¢),
~ (VI (H=-E)¢ls, 9)

where ¢ is the subset of R® such that (E, — H)y
> 0 and o, is its complementary set. But

(VI(E,—H)y)=UE,—H)¥Yiy)=0, (10)
and, hence,

(W I(Ey = H))o =¥ | (H = E¢p),. (11)
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Using
H
E,—Ez=E,— inf(%), (12)

we can write
Eo¢ — Hy < (Ey — E ) ¥ (13)

Substituting Eq. (13) into Eq. (11) leads to the
result

<\P l (Eolj/ - Hl,l’))«r < (Eo - ELB)<\I, l (//>zr
< E,— E3. (14)

To obtain Eq. (14), the nonnegativity of both ¥
and ¢ [26] is employed and the Schwartz inequal-
ity has been used. Both ¥ and ¢ are assumed to
be normalized to unity. Using Egs. (11) and (14)
leads to

f\IfI(H — E)yldr, dr, = fqr(EO - H)ydr, dr,
+f V(E, — H)ydr dr, <&, (15)

with & defined in Eq. (8). Therefore, as E; — E,,
& — 0 and the integral on the left-hand side of Eq.
(15) approaches zero. In the weighted mean sense
of the integral given in Eq. (15), ¢ approaches ¥
as E, ; — E,.

A Nonlinear Programming Problem

Suppose that the approximate wave function
depends on the parameter set {a;, i =1, N}, then
the problem under investigation reduces to

o o LSTREYRST

max {E; ;(a;)} = max[ inf {%‘j—/}} (16)

subject to the constraints
0<r, 0<r, 17)

and

(r, — 1) <75 < (r, + 1) (18)

In addition to the conditions given in Egs. (17) and
(18), there are constraints on the parameter set {a}
to ensure the appropriate asymptotic behavior for
the wave function and to satisfy some cusp-like

relationships discussed below. Equations (16)—(18)
constitute a nonlinear programming problem. The

objective function
Hy
inf { — }
1072, 712 Y

is, in general, highly nonlinear in the variables
{a;}. Equation (16) actually represents one nonlin-
ear programming problem (over the variables
{r,, 1., 71,}) imbedded inside a second nonlinear
programming problem with respect to the vari-
ables {a ). There have been relatively few applica-
tions of the nonlinear programming to study the
ground state of the helium atom (see, e.g., [27-29)).

The following computational strategy was em-
ployed: A set of parameters «,; were selected, then
the minimum of ¢~ !H¢ determined with respect
to the coordinates {r,, r,, r,}. This was carried out
by solving the nonlinear programming problem
indicated in equations (16)~(18) by using a sizable
grid of {r;, r,, r},} starting values. The lowest min-
imum located is assigned the value E;; for the
particular parameter set {a;}. The parameter set
{a;} is systematically modified, until no further
increase in E; ; could be obtained. For a number of
trial wave functions examined, the function ¢~ 'Hy
displays a considerable number of local (false)
minima. For this reason, it is imperative to start
the search for the minimum from a large array of
starting values of {r,, r,, r,,}. For the final parame-
ter sets {a}, a very large grid of {r,, r,, r1,} points
was used to ensure that a false minimum had not
been located. Employing the obvious symmetry
constraint r, > r, simplifies the search. Knowl-
edge of the appearance of the surface for Y 'Hy
was also of value in pinning down the correct
result for inf{yy~ ! Hy}, at least for the simpler wave
functions examined.

Single-particle Model

A number of simple wave functions were exam-
ined that fall in the category of single-particle
descriptions of the helium atom. In this model, the
exact wave function is approximated by

V(r,,1,) = ¢(xr)d(r,), 19)

where ¢(r,) denotes a one-electron wave function.
The simplest one-electron wave function is (with
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normalization coefficient N)
¢(r) = Ne™Fr, (20)

which leads to the result

1 1 1
E = inf —k2+(k—Z)(—+— +—1 (1)
£} r T2
— k<Z
= 22
{—k2 k>Z. 22)

Equations (21) and (22) were given by Barnsley
[16], who then commented that attempts to im-
prove the result in Eq. (22) using more elaborate
wave functions were not successful. The optimal
result for the ground state of helium is —4 au,
which is the same result obtained by deleting the
interelectronic contribution from the Hamiltonian.

One issue that arises from this simple example
is the significance of the electron—nuclear cusp
condition in obtaining the best result for E, ;. For
the choice given in Eq. (20), the optimal result for
E, z occurs when the electron—nuclear cusp condi-
tion,

dp(r)

(9" ro0

= —Z¢(0), (23)

is satisfied.

The one-particle case can be simplified in the
following manner: ¢~ 'Hy can be written in terms
of the one-electron function F(r) as

U 'Hy = F(r) + F(ry)) + 15!, 20

where
1 1 Z
F(r) = ¢(r) (— —2—V2 - 7)¢(r). (25)

From the inequality

1 1
< —, (26)
o, o,

it follows that

inf { F(r;) + F(r,) +

r,ra r ¥y

< inf {y 'Hy}. (27)

LSRG TRST

Also, we can write

inf {y " 'Hy} <

T 72,0

inf {y~'Hy}, (28)
fixed b
where 6,, is the angle between r; and r,. If we

select 6,, = 7 for the fixed value, then Eq. (28) can
be written as

inf {y~'Hy}

.72, T2

< inf {F(rl) + F(ry) +

.72

} )

rhTrn

Combining Egs. (27) and (29) allows us to write

[SVRSTRSV) SRS

1
. _1 s
inf {y 'Hy¢} = inf {F(rl) +F(r,) + r1+r2}'
(30)

Hence, the one-particle model can be reduced to a
nonlinear programming problem in the two-varia-
ble configuration space {ry, r,}.

The results of a selection of some of the one-
particle cases that were considered are presented
in Table I. The first single-particle case that was
investigated is

d(r) = N1 + br) le o, (31)

with a4 and b regarded as flexible parameters se-
lected to optimize E, ;. In the following discussion,
C,, will denote the following:

0
C,,=—Z— lim {(//‘1 a—¢} (32)

en
ri—0 i

The definition in Eq. (32) is clearly motivated by
the form of the electron—nuclear cusp condition.
C,, will, in general, be a function of one of the
configuration space coordinates. In such cases, the
limit lim, _,, C,(,) will be of interest if ; = 7, in
Eq. (32). To ensure finite lower bounds for E, z, C,,
must satisfy the condition

C,, =0 (33)

en —

for the parameter set that C,, depends on and also
for all values of r,. The electron—nuclear cusp
condition is satisfied when the equality sign holds
in Eq. (33). For the functional form given in Eq.
(31,

C,=a+b-Z7Z (34)

en
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Lower bounds for various trial wave functions in the single-particle approximation.

Trial wave function ¢(r)

Parameters

Cusp factor (C,,, + Z)

Lower bound {au)

(1+br) e ¥

(e~ +cre o)

(1 +dr)"'e ¢In(a + br)

e—&l—bl(1+cf)_1

a = 1.370496, b = 0.718675
a = 1.534266, b = 1.953600,
¢ = —0.468742

a =2.933024, b = 4.548384,
¢ =1.419981, d = 2.021180

a = 0.552955, b = 1.457045,

¢ = 0.078413

(1+br) e +c(l+dr) e "

a = 1.398486, b = 0.043587,

¢ = 1.629418, d = 0.126384

f=2.220573
(e —ar 4 Ce—br)
¢ =0.571008

(1+br+cr?)-le 2
¢ = 0.326774

a = 2.330074, b = 1.422874,

a = 1.094570, b = 0.905430,

a+b=2.08917 —3.39550
a — ¢ = 2.00301 —3.38617
b
¢ +d— —— =2.00000 —3.37838
alna
a+ b =2.01000 —3.37579
a+b+cd+cf
——— = 2.00282 —3.36629
1+¢
a+bc
= 2.00034 —3.36479
1+c
a + b = 2.00000 —3.36330

The optimal set of parameters for this case (see
Table 1) give C,, = 0.0892. The minimum on the
surface is located at r; = 0.3317 au and r, = 1.545
au. ¢ 'Hy displays a relatively shallow trough
near the nucleus and then rises steeply as r; = 0.
Using Eq. (31), E;z = —3.395497 au, which is a
significant improvement over the value of E;
obtained by Barnsley using Eq. (20). A large part of
the improvement is tied to the fact that the addi-
tional parameter dependence is introduced in such
a way that it contributes directly to the function
C,,- The exponential coefficient takes values below
Z, while maintaining the requirement given in Eq.
(33). This is not the case for other simple trial wave
functions such as (1 + br)e™*" (for positive b), for
which C,, = 2 — b — Z. It is noteworthy that opti-
mal values of the parameters a and b in Eq. (31)
do not lead to a wave function that exactly satis-
fies the electron—nuclear cusp condition (a + b =
Z), but do come rather close. Some wave functions
which lead to a different cusp behavior were ex-
amined, for example, the Gaussian-type function
e””z, but these wave functions do not lead to
finite lower bounds for the energy.

Several other one-particle cases were examined
in order to resolve two questions: The first con-
cerns the issue of the single-particle limit for E, p.

Since the value of E;; has a very sensitive depen-
dence on the form of ¢(r), we explored several
different functional forms for ¢(r) in order to
determine the best possible E;z. A sequence of
functions of the following type were investigated:

N
d(r) = Y. Cirie ", (35)

i=1

with the constraint that C; > 0 is imposed in order
to ensure the positivity of ¢(r). This latter con-
straint can be relaxed by appropriate selection of
the exponent parameters. A few of the results are
summarized in Table I. The results from these
cases and some additional cases suggests a single
particle limit of

E s =~ —3.363 au. (36)

This limit is approximately 15.7% below the exact
ground-state energy, which can be contrasted with
the single-particle upper-bound limit of —2.86168
au, which is just 1.45% too high. The second issue
of interest was how closely the electron—nuclear
cusp condition would be satisfied for a variety of
one-electron wave functions. For the functional
form given in Eq. (35) with n; = 0, the condition
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required to circumvent the electron—nuclear singu-
larities is

(37)

The electron—nuclear cusp condition is satisfied by
the approximate wave function of Eq. (35) (for
n; = 0) when the equality sign in Eq. (37) applies.
For two-, three- and four-term wave functions, the

C,, values were found to be 0.00034, 0.00000, and
0.00000, respectively. These values suggest that
satisfying the electron—nuclear cusp condition is
an important requirement, if an optimal value of
E,; is to be obtained for the one-particle model,
using the functional form given in Eq. (35) (with
n; = 0.

Radial Correlated Model

For wave functions of the type ¢(r,,r,), which
includes those describing radial correlation, the
following result can be established:

mf {y~*Hy} = mf {dfll;hll}, (38)

LAVRS YRSV

where

2 (192 1 0 Z 1
-y +——+ =)+

-1 2 0r v, dr; r;

1 i H

o,
(39)

The proof is similar to the one given above for the
single-particle case. H is not the conventionally
designated radial Hamiltonian that would be em-
ployed in a standard variational calculation, but it
is the appropriate radial Hamiltonian for the
lower-bound problem of this work. This is the
same Hamiltonian that arises in the single-particle
case discussed above in the Single-particle Model
section. Equation (38), with the application of Eq.
(2) to H, implies that the best lower bound to the
exact ground-state energy E, using radially corre-
lated wave functions is the lowest eigenvalue of
H. An estimate of the radial lower-bound limit can
be found from a precise variational calculation
using Eq. (39). This calculation was performed and
the result obtained for the ground-state energy
was —3.24594 au.

The first two examples presented in Table II
correspond to radially correlated wave functions.
For the first example, the result for E;; is ob-
served to be no better than the simplest single-par-
ticle result given above in the Single-particle Model

TABLE 1l
Lower bounds for various correlated trial wave functions.
Trial wave function y(ry, r,, r;5) Parameters E g (au)
(1 +bry + br,) ~ g an~ar a=2.0000,b -0 -4.0
(A +mr, +Ir2) (1 +mry+1Ir2) '@~ 2" a=144, b= —0.48,¢=1.02 —3.28287
e LU+ gritar) " iiwenor s drfvdrd) d =136, g=169, m=040, /=021
S EA a=2000g—0 ~4.0
(1 +br) (1 +bry) ~le-3n—ar+dn: a = 1.291846, b = 0.875174, -3.31789
g = 0.053005
(1 +br) ~'(1 + bry) ~ '@~ a1~ Azghriz(i+gra) a = 1.234669, b = 0.995136, —3.27097
g = 1.240851, h = 0.5000
2
ehria1+9riz) "l M2 [T g = kri—c(i+an)(1+br) ™! a=0.563, b =0.161, c = 3.354, —3.19190
=1 f=0.115, g = 0.575, h = 0.500,
k=0.750
(U +mr, +Ir2) "1 +mry +Ir2) e 2~ an+br: =1.551, b = 0.503, ¢ = 1.668, —-2.97270
@ ~COtkritkra+pryg)” 1(1""7“*"”2‘”’12*’9" +gri+hrfy) d=1.41,f=1.543, g = —0.598,
h =0.406, k = 1.218, | = 0.243,
m =0.398, p = 1.494
460 VOL. 71, NO. 6
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section. The result for C,, for this case is given by

C.,=a+bl+br) " —Z (40)

en

and E,; is the inf of the following result:

Y 'Hyp = —a® — 2<b[1 + b(r, + rz)]_l}2
— 2ab[1 + b(r, + 1)1
+(a + bl1 + b(ry + )]~ z)
X(ri' 17D+t (41)

The flexible parameter b does not allow a to be
decreased [relative to the value obtained for the
functional form given in Eq. (20) with a = k]. As a
result, the value of the parameter b approaches
zero, and the functional form for this radially cor-
related wave function collapses to Eq. (20).

The best radially correlated wave function dis-
covered:

y=0Q+mr + lrl)_l(l + mr, + lrz)‘le—m,—arz

- o ¢ r,) 1 2 2
X e b(l+gri+8t2) (1+crl+cr2+dr1+d72), (42)

gave the result
E, p = —3.28287 au. (43)

The latter value, which is close to the optimal
radially correlated estimate given above, is ap-
proximately 13% below the exact ground-state
energy, which can be contrasted with the radial
upper-bound limit obtained via the variational
technique, E,,; = —2.8790 au, which is just 0.85%
too high.

r,, Correlated Wave Functions

The simplified analysis presented in the last two
sections no longer applies when the wave function
has an explicit dependence on r,,. For wave func-
tions depending on r;,, the Hamiltonian given in
Eq. (4) is the most convenient way to evaluate
Y 'Hyp. A number of r;,-dependent wave func-
tions were investigated, and some representative
examples are included in Table IL. For a number of
these more complicated choices, refinement of the
parameter sets reported in Table II may well lead
to improved results for E; . The number of local
minima tends to increase with the number of vari-
able parameters. It therefore becomes necessary to

solve Eq. (16) with a larger grid of starting values
of {r,, 15, 11,}. To make the problem more tractable,
the size of the initial search grid for the parameters
{a;} was reduced. Because of the increased step
size for the grid search, the optimal set of {a;}
parameters may be missed.

For the first case in Table II where r,, is incor-
porated in the wave function, no improvement on
the single-particle result given in Eq. (22) is ob-
tained. Let us explore the reasons for this. The
following coefficient is defined:

a
ca=1—2nm{¢*&¢}. (44)

r—0 Y12

The definition is motivated by the standard form
of the electron—electron cusp condition [30]

oy
( E )ave

To obtain a finite E, ;, C,, must satisfy the condi-
tion C,. > 0. For the correlated wave function

ee =

1
= Et//(r12 =0). (45)

rp—=0

(l,(r], r2’ r12) = e_“(71+r2)+8’12’ (46)

l//—lH(// — _aZ _ gZ
+a—-2Da7 +r;HD+ A -29)r

ag(ry + rZ)(r122 —(r - rz)z)

211131
(47)
From Eq. (46),
C,,=a—220 (48)
and
C,=1-2g>0. (49)

For the approximate wave function given by Eq.
(46), the electron—electron cusp condition [Eq. “45)]
is satisfied when the equality sign holds in Eq.
(49). This correlated wave function does not lead
to an improved value of E; because the r;,-de-
pendent terms do not offset the detrimental contri-
bution —g2. Examination of the limit of the right
hand side of equation (47) as ry, r, = « for the
case 8, = 0, and ensuring that Egs. (48) and (49)
are satisfied, gives an immediate indication of the
expected optimal values of the parameters for this
particular wave function. The fact that the parame-
ter ¢ does not contribute to C,, should be noted.
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As for the single-particle cases, the best results
for E;; using rj,-dependent wave functions are
obtained when the structure of the wave function
is such that the added parameters contribute to
C,,, in a way that allows for smaller values of the
key exponent parameters while maintaining the
condition C,, > 0. The preceding comment is an
empirical observation based on an examination of
a large number of trial wave functions. It is en-
tirely possible that a very different functional form
for the wave function might lead to a situation
where the exponent parameters are much larger
than those determined in the present investigation.
For example, for the second from last entry in
Table II,

C,p=k+cla—b)-Z=>0, (50)

and the optimal value of k is 0.75. For the corre-
lated cases, the picture is somewhat more compli-
cated than just the need to satisfy the condition
C,, = 0. It is also necessary to keep in mind that
C,, = 0 must be satisfied, and, in addition, the
much more complicated structure of the function
¢~ 'Hyy makes the solution of the nonlinear pro-
gramming problem considerably more difficult.
Not unexpectedly, the value of E,; improves
when additional parameter flexibility is incorpo-
rated into . The best result obtained for E; ; is

E,, = —2.951817 au, (51)

which is about 1.7% below the known value of E;,
which is given in Eq. (1). The result in Eq. (51) was
obtained with a 23-parameter wave function that
is an extended form of the last entry in Table IL
Efforts have been undertaken to improve the result
in Eq. (51) by expanding the size of the parameter
set. It appears that an improved functional form
will be necessary to obtain a significantly better
result for E; ; than the one given above.

Discussion

The standard techniques for improving the
quality of the wave function are driven principally
by experience gained from application of the varia-
tional method. A number of simple examples
shown in Tables I and II indicate that this experi-
ence does not carry over to the formula for E ;.
This is to be expected, since the variational method
is a global measure of the quality of the wave

function, and Eq. (2) provides a stringent local
measure of the accuracy of the approximate wave
function. Since E, ; depends implicitly on the qual-
ity of the wave function taken over the {r, r,, r,}
configuration space, Eq. (2) becomes an extremely
useful measure of the accuracy of the wave func-
tion. Two highly precise compact Kinoshita-type
wave functions [31] were examined using pub-
lished values for the basis sets [32]. The result
E,; = —= was obtained in each case. Wave func-
tions optimized using the variation method can
easily lead to a very poor result for E; ;.

There are two principal difficulties associated
with the method of this work when applied to the
ground state of the helium atom. The first is that
we have no systematic approach to improving the
quality of E; 5. We have observed this feature for a
number of simple trial wave functions. For exam-
ple, the single-particle orbital (1 + br)e™" and the
radial correlated function e *("1*72) 4 cemP(n¥r)
did not improve upon the lower-bound result ob-
tained using ¢ = e~ *"1*"? for the range of param-
eters explored. It does not appear, based on the
many examples considered, that a sums of terms,
for example, (1 + br) 'e™* + (1 + dr) e /", will
lead to significantly improved lower bounds be-
yond what is obtained by considering the first
term alone. The implication is that improved re-
sults may not be forthcoming by simply proceed-
ing to larger expansions of basis terms of similar
type. This is in sharp contrast to the standard
method for finding upper bounds to E;, the varia-
tion method, which provides the theoretical frame-
work for systematic improvement of the wave
function. However, the variation method provides
only indirect guidance for basis-set selection for
properties not dependent on the energy-important
region of configuration space and for addressing
the shape-fitting problem implicit in such calcula-
tions.

The second difficulty is the rather elaborate
nature of the optimization calculation that must be
carried out. Improved understanding of the struc-
ture of the surfaces for ¢ 'Hy in configuration
space for a variety of test functions will greatly
assist in this aspect of the calculation. Very careful
searching in the {r,, r,, r;,} variables is required to
avoid locating false minima. Problems of this type
can probably be significantly reduced once experi-
ence with a number of standard functional forms
for ¢ is established.

Two problems for future investigation are the
following: We intend to study the Z dependence of
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E,, for the helium isoelectronic series. There are
reasons to expect that improved lower bounds will
be obtained as Z increases. A more difficult goal is
to seek extensions of the present approach to
atomic systems with more than two electrons.

In summary, we report some functional forms
for the wave function for the ground state of the
helium atom which improve the behavior of the
local energy as measured by E, ;. Although not
simple in form, these functions, or some related
extensions, might prove to be useful as basis func-
tions for variational calculations on more complex
atoms. Because of the nature of these functions,
such calculations would need to be carried out
using Monte Carlo techniques.
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