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Some of the mathematical difficulties that arise in the evaluation of the Breit—Pauli
relativistic energy corrections for th states of three-electron systems are re-
solved. Evaluation of the expectation value of the Breit—Pauli Hamiltonian using
explicitly correlated wave functions leads to sets of integrals that diverge individu-
ally. By appropriately combining these integrals, and using some judicious series
expansions, all the integration problems are resolved in terms of well-known aux-
iliary functions. © 1998 American Institute of Physid&$0022-24888)02512-2

I. INTRODUCTION

There has been considerable progress over the past ten years on the calculation of high-
precision properties of the lithium atom and other members of the Li isoelectronic gferies
recent summary of this progress see Refs. 1 gnd\ 2arge part of this effort has been achieved
using Hylleraaqor configuration interactioCl)-Hylleraas type wave functions.

One important property that has received limited theoretical attention is the high-precision
calculation of the relativistic correction to the energyiErg . This is a key contribution in
determining a precise theoretical estimate of the first ionization potential. At present, the only
calculations of the relativistic correction to the ground state energy for the lithium atom are due to
Chung?® who used the CI technique, the very recent paper of Yan and Drake using the Hylleraas
techniquée’. and the work of Kinget al.> who also employed the Hylleraas method. Chung’s
calculation required a significant core correction, determined by first computing the relativistic
correction for Li", and then comparing with precise calculations fof lLising Hylleraas-type
wave function®:” This core correction was then applied directly to the Li calculation. A very
effective approach to obtaining high-precision estimated Bkg, is to make use of large-scale
Hylleraas-type expansions. Progress in this area has been hampered by the mathematical difficul-
ties which arise for the operators

a? 3 4
Hmass — g izl Vi ) (1a
2 3 3
% 1 ri.-(ri;-ViV:
Hom o 3 S L [y, i VOV (1b)
2 =1 j>i r|] rij

where « is the fine structure constant amg is the interelectronic separation. For the three-
electron problem, evaluation of the matrix elementsigf,s;or H,, [in the form displayed in Egs.
(1a) and(1b)] using a general Hylleraas expansion can be shown to involve the following inte-
grals:

I(i,j,k,l,m,n,a,ﬁ,y)zf rirbrrlr el e er1=Ar2=vs dr, dr, drg, 2

wherei,j,k=—-2,1=-2, m=-2, andn=—1;
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2 2
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|1(I,j,k,|,m,a,ﬁ,y)5f 1r'r§<Tr )r'23rg"1e ar1=A2= Y3 dr, dr, dry, 3)
12
.. i'krgl_r§3|m,,,
Lo(iL),k,1,m,a,B8,y)=| rirsrs —|r e ar1=A2= Y3 dry dr, drg, (4
12
and
r2_ 2
.. P 1 2 _ _ _
|3(|1J!k1|!m1ayﬂay)zf r!]_rlzrg(r—Z r|23rg11e ary=pra "3 drl dr2 dr3, (5)
12

wherei,j,k=—2,1=—1, andm=1. The combination of terms displayed in E¢3) and (4) is
essential, if a finite value of the expectation value of the Breit—Pauli Hamiltonian is to be obtained
using a first-order perturbation theory approach. For @y.and some related generalizations,
several evaluation approaches exist in the literature for the case Wherendn are=-128"18
and for the more difficult cases involvinig= —2 (and m=—2).1%-2* Some of the published
techniques could be applied to evaludie

The purpose of this paper is to present an efficient method for the evaluation of the integrals
I, 15, andl;. The integrals are evaluated for the casgsk=—2,=—1, andm=—1. The
obvious reduction of thé; andl, integrals into a difference dfintegrals is not possible, because
the separaté integrals both diverge. This is discussed further in Appendix A. Wihjleould be
calculated by taking a difference bfintegrals, a computationally superior approach is discussed
in Sec. IV. The solution method is to reduce each of the integrals to a series of well-known
auxiliary functions.

Il. EVALUATION OF [,

To evaluatd ;, the following expansions are employ&d?’

5= WZ_O Riw,(r2:r3) Py, (COS 053), (6)
-
r3= 2 R, (F1,73) Py, (COS 631), (7
and

1 1 - b

12
oz 2 (Wit 1) o P, (C0s 6. ®)

Mz Ti>"T12< w;=0 Mo

Equations(6) and (7) are the Sack expansions for the interelectron coordirfatequation(8) is
discussed in Appendix B. Hemg,. denotes the lesser of {,r,), ri». represents the greater of
(rq,r,), andP,(x) designates a Legendre polynomial throughout this work.

Substituting Eqgs(6), (7), and(8) into Eq. (3) gives

l1= E 2 E (2w + 1)1 p(Wy,Wo,W3)l o (W1, Wp,W3), 9

w1=0 wp=0 w

wherel i is the integral over the radial coordinates,

2_ .2
r{—r
_ i+2.j+2, k+2, W wy—1 1712
|R(W1,W27W3)—J rJ r3 r121<r12>l ( 2 2_) lez(rzyra)
Mo —r12
X Ry (T1,F3)e™ A2 73 dry dr, dr, (10)

andl , is the integral over the angular variables,
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|Q(W1,W2,W3)=f Py, (€0s 015) Py, (COS 023) Py, (COS 631)d); dQ; d€)3. (11

The functional dependence bf on {i,j,k,I,m,a,8,y} is suppressed to simplify the notation.
Expanding the Legendre polynomials in terms of spherical harmonics, the angular integral sim-

plifies to
647°
la(Wy,Wp,W3)= (2w, +1)2 Owyw, Ow,wys (12)
where g denotes a Kronecker delta. Equati@® now becomes
w
64773 R(W) (13)

wizo (2w;+1)°

wherel g(wq)=1g(Wq,Wq,Wyq).
To evaluate the radial integral the formulas for the Sack radial functions are empfoyed:

©

w1+2p I—w;—2p
RIw (rz r3) 2 awllp 23< r23> (14)
and
_ wq+29, m—w;—2q
mel(rlyrs)_qZO awlmqr3f< r31> ' ' (15)
where

(—ul2)(t—ul2),(—1/2—ul2),

Beuo = (12! (t+302), (16)
and (2),, denotes a Pochhammer symbol. Inserting Efj4) and(15) into Eq. (10) gives
1 ri—r3
" w
r(Wq)= 2 Z an'PawimQJ r|+2r1+2r§+2r121<r12>1 (m)
Xrpas Progtt et MG Mem e e dry i i, (17)

If the integration in Eq(17) is broken up into the six regions=<r;<r,, thenl, can be written
as

1(1,),kI,m,a,B,y)= 647732 (2w +1) 2 2 Awlp8wmgq

X{W(k+2+2p+2q+2w,j+2+1-2p,i+m+1-2q-2w,y,B,a)
+W(j+2+2w+2p,k+2+2q+1—-2p,i+m+1-2q9—2w,83,y,@)
+W(j+2+2w+2p,i+1+2q,k+m+I1+2-2w—-2p—2q,8,a,y)
-W(i+2+2w+2q,j+1+2p,k+m+1+2-2w—-2p—2q,a,8,7)
—W(i+2+2w+2q,k+2+m—-2q+2p,j+1+1-2w—-2p,a,y,B)
—W(k+2+2p+2q+2w,i +2+m—2q,j +1+1-2w—2p,y,a,B8)},
(18

where
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W(L,M,N,a,b,c)=J xLe‘adeJ y'\"e‘bydyJ’ Ne ¢ gz (19
0 X y

The W integrals have been well studied in the literat®i?é?628-3%nd efficient algorithms exist
for the evaluation of these auxiliary functions.

We now examine the summation limits of the p, andg sums of Eq.(18). Because of the
following property of the Pochhammer symbol,

(—k),=0, I>k for positive integerk, (20

the p summation terminates at {1)/2 for oddl, and (/2)—w for evenl. Similarly, the q
summation terminates atm+ 1)/2 for oddm, and (m/2) —w for evenm. These conditions follow
from the definition ofa,,,, given in Eq.(16). This leads to the following termination conditions for
thew sum:

m
ex m even andn odd,

n
X n even andm odd,

m n
min[ﬁ, 5}, m and n both even.

For m andn both odd, thew sum is nonterminating.
In addition to the individual constraints anj, k, I, andm mentioned in the Introduction, it is
also necessary that

i+j+k+l+m=-7. (21
This follows directly from a known constraint on the arguments ofWhategrals, namely
L+M+N=-2. (22

Yan and Draké® give a reduction formulfsee their Eq(128)] for a radial integral which is
related tol ;. This radial integral is part of a nested sum, which for the general case would involve
a double infinite sum.

lll. EVALUATION OF 1,

For this integral, the coordinate system of choice is a three-dimensional analog of the one used
by Hylleraas®! where the directions of the vectarsandr, are given relative to,. This method
has been previously employed to consider other three-electron integration problemghis
coordinate system the volume element becomes

drl dr2 dr3=rfr§r§ drl drz drg sin 05 d¢93 d¢3 sin 03 d023 d¢23 sin 031 d031 d¢31.

(23
If r3,—r35is written as
2 .2 _ .2 .2
F31— F53=r1—r5—2r 3 COS @31+ 2r oI 3 COS b3, (29
thenl, may be expressed as
Lo(i, ), K L mya, B,y) =14(i,j, k1, m,a,B,y) —23:1(1,j, K|, m,a,B,7), (25

where
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rha Jie” 1273 dr, dr, drj.

(26)

o r{ COSf@45,—r, COS @
Jl<i,j,k,|,m,a,ﬁ,y>=fr'lrlzré“( e 23)
12

J, is simplified by substituting Eq$6), (7), (8), (14), and(15) into Eq.(26) and integrating over
65 and ¢5 to obtain

0

Ji=4m >, (2w;+1) >,
w1=0

M s

i+2.j+2 k+3,.Wo+2p |-wp—2p
pgo qzo aWz'Pawsmqf Fp 12 T3 Ty Toz

wy=0 w3=0
+2q, m—wg—2 w1 TP ®o)
Xrgie Moo il (—2—2—r — o |e P adry dr dr, (27)
12> 12<
where
2m 2m ™ T
D= depos d¢3lf défs; sin eglf d 6,3 Sin 0,3 COS O3
0 0 0 0
X Py, (€OS 61) Py, (€OS 3) Py, (€OS 631) (28)
and

2 2 T T
d,= dys d¢31J dfs; sin 631J d 6,3 Sin 0,5 COS A3
0 0 0 0

X PWl(cos 015) Pw,(cos 053) Pw,(cos 031). (29

Evaluation of the integrald; and®, leads to

2
® _167T 6W1W2 Wy s N Wy 5 (30)
1 2wi+1 4W§—1 Wp,Wat1 4W§—1 Wg, Wyt 1
and
2
® _167T 5w1w3 Wy s N W3 5 a1
202wl [4wi—1 TWeVsTh T awg—1 et 39

The solution of these integrals is discussed in Appendix C. Substitutingd Ejsand(31) into Eq.
(27) leads to

_ 3 i+2.j+2 k+3,.Wot+2p |-wy—2p w3z+2q
J, =64 2 2 2 Z awzlpawsmqj My T2 T3 Ty Tog Ma1<
wy,=0 w3=0 p=0 q=0

Xr;nl;w3—2qe_arl_ﬂr2_7r3 12<” 12> 12<” 12>

(rlrw2 rove s rW3l>
72
Ma2s—To<

Wy s W3 s
+—
1 W2,W3+1 4W§—1 W3,w2+1

m drqy dr, dr3. (32

Using the fact that

2t+3
2t+1

2t+2v—u
2t+2v+3

a(t+ Luv — Aty (33)

allows |, to be simplified to
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(i, ),k ,m,a,B,y)=1.(i,j,kl,ma,B,7y)

Zo(wtHl) & 2w+2p—1|
3 [
128 2w 1) qgo pgo Bumcwip| | 201 2p+ 3

xX{W(i+2+2w+2q,j+1+2p,k+m+1+2—-2w—2p—2q,a,8,7)
+W(i+2+2w+2q,k+ m+4+2p—-2q,j+1—-1-2w—-2p,a,v,B)
+W(k+4+2w+2p+2q,i+m+2-2q,j+1-1-2w—-2p,y,a,B8)}

2w+2g—m

“\owr2q73 {W(j+2+2w+2p,i+1+2g,k+m

+1+2-2w—-2p—2q,8,a,7)
+W(j+2+2w+2p,k+4+1—-2p+2q,i+m—1-2w—2q,8,v,a)
+W(k+4+2w+2p+2q,j+2+1—-2p,i+m—1-2w—-2q,y,8,a)}|.

(39

Equation(34) represents the solution tg. The summation limits of they, p, andq sums are the
same as those for tHe integral. The constraint given in E¢R1) also applies for Eq(34).

VI. EVALUATION OF I,

The generating function for the Chebyshev polynomials of the first kind is

1— 2
—_—s rWi
o T? 1+2W121 T, (X). (35)

Lettingr=rq,. /115~ andx=cos6,, in Eq. (35) yields

1 1
= 1+22 ( 12<) TWl(cosalz)] (36)
ry r12> Mfoe wi=1\l12

Substituting Egs(6), (7), and(36) into Eq. (5) leads to the result

13=F(i.j,kI,ma,B,y)+2 E E E lo(Wy,Wp,Wa)lp(Wy Wo, W), (37)
wy=1 wy=0 w3=0
where
2_ .2
ik ri—rs
FG.j.klma,B,y)= E Z rarbrs 7 | Riw,(r2,r3) Rmu(r3.r1)
wp=0 w3=0 M=o
X Py, (€OS 623) Py, (COS 63)dry dr; drg, (38
Inzf Ty, (COS 012) Py, (€OS b23) Py, (COS 031)d €2y dQ; d)3 (39

and

2 2
re—r

— i+2,j+2, k+2 W w 1 2

IR—J'r1 rhterk r21<r12>1(—r 2 )R,Wz(rz,r3)RmW3(r3,r1)dr1 drydrz. (40

Employing Eqgs.(14) and (15), and expanding the Legendre polynomials in terms of spherical
harmonics, Eq(38) may be easily evaluated to yield
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[’ o

F(i,j,k! ,m,a,ﬁ,'y)=64773pzo q}z‘,o A01pomg

X{W(k+2+2p+2q,j+2+1-2p,i+m+2-2q,v,B,a)
+W(j+2+2p,k+2+1-2p+2q,i+m+2—2q,8,v,@)
+W(j+2+2p,i+2+29,k+m+1+2-2p—2q,8,a,7)
—W(i+2+2q,j+2+2p,k+m+1+2-2p-2q,a,8,7)
-W(i+2+2q9,k+m+2+2p—-2q,j+1+2-2p,a,v,8)
-W(k+2+2p+2q,i+m+2-2q,j+1+2-2p,y,a,8)}. (41

Due to the property of the Pochhammer symbol given in(2@), thep summation in Eq(41)
will terminate atl/2 for evenl, and (+1)/2 for oddl. Similarly, theq summation will terminate
at m/2 for evenm, and (n+1)/2 for oddm.

The integrall , can be evaluated to give

3278
Lo =50 1 Owaws

(7T (wy+1)

o Wiswy,

2 (wy+3)

W]__Wz_l W1+ W,
a — 2 2 +2 +
=
(Wq—wWy)(Wq+wy+1) Wi —W, wiFw,+1) Wi=W,+2, W;TW, even,
r
2 2

| 0, elsewhere,

(42

wherel’(n) denotes the Gamma function. The evaluation of this integral is discussed in Appendix
D. Sincel, is independent ofi,j,k,I,m,«,8,v}, it can be stored in table form to increase the
computational speed of the integral evaluation. Equat8® may now be written

o0 Wy

|3=F(i,j,k,|,m,a,,8,‘y)+2 E IQ(WI!WZ)lR(leWZ)v (43)

Wi=1 Wp=0
where

(W1, Wa)=1q(W1,Wp,W5) (44)
and

IR(W1,W2) =1R(Wy1,Wp,Wp). (45

Inserting Egs(14) and (15) into Eq. (43), then breaking up the region of integration Rs<r;
<r,, allows us to write Eq(43) as
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I3(i,j,k,1,ma,B,y)

[ Wy © [
=F(i.j.kI,ma,B,y)+2 2 2 la(Wy,W3) 2 Aw,Ip8w,mq
w;=1 wy=0 p=0 gq=0

(Wi +w, even
X{W(j+2+w,+w,+2p,i+2—-w;+wy+2q,k+2+1+m—2w,—2p—2q,8,a,7)
+W(j+2+wi+W,o+2p,k+2+1—-2p+2q,i+2—w;+m—wy—20,8,7,a)
+W(k+2+2w,+2p+2q,j+2+1+wW;—2p—Woy,i + 2+ mM—w;—W,— 20, 7,8, @)
—W(k+2+2w,+2p+2q,i +2+w,;+m—wy,—2q,j +2—w,+1—w,—2p,y,a,8)
—W(i+2+w;+w,+2q,j+2—wy;+w,+2p,k+2+1+m—2w,—2p—2q,a,8,7)
—W(i+2+w;+w,+20,k+2+m—2q+2p,j +2—w;—Wo+1—-2p,a,y,B)}. (46)

Due to properties of the Pochhammer symbol, ghrummation in Eq(46) will terminate at
I/2 for evenl, and (+1)/2 for oddl. Similarly, theq summation will terminate ain/2 for even
m, and (n+1)/2 for oddm. Also, due to the Pochhammer symbols in E&) and the restriction
onw, given in Eq.(42), thew, sum has the following termination conditions:

I
min{wl, E]’ | even andm odd,

m
min{wl, 5}, m even andl odd,

I m
min(wl, 5 5}' | and m both even,

w;, | and m both odd.

Thew; sum is always nonterminating.
In addition to the individual constraints anj, k, I, andm mentioned in the Introduction, Eq.
(46) requires that

i+j+k+l+m=-8, (47

which follows from Eq.(22).

V. NUMERICAL EVALUATION

For evenl or m, the evaluation of; andl, reduces to a finite sum of terms. Hatndm both
odd, it is useful to examine the asymptotic behavior of the sekieis. considered first.
The asymptotic behavior of a singW integral appearing in Eq18) is*

W~ —. (48)

w

However, if theW integrals are taken in the appropriate pairs, it can be shown that the set of six
W integrals in Eq(18) behaves like

1
set of six W~ —, (49
w

due to the difference in signs. The product of thg, coefficients in Eqg.(17) exhibits the
asymptotic behavidf
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TABLE |. Values ofl(i,j,k,I,m,n,a,B,7).

i j k | m a B y I1(i,], kI, mn,a,B,v)

0 0 0 -1 1 2.7 2.9 0.65 8.947 959 925 047 512 835 052 492

2 -1 1 3 -1 2.7 2.9 0.65 3.066 249 710 874 801 140 638610

1 2 3 1 3 2.7 2.9 0.65 —7.127 529 951 937 274 842 240 9330

0 2 0 2 1 2.7 2.9 0.65 —1.155 955 548 991 711 453 287 6410*
-1 3 2 0 4 2.7 2.9 0.65 —4.898 965 561 162 249 945 560 0930’

1 2 -1 3 4 2.7 2.9 0.65 —5.595 918 656 196 395 007 062 7510°

(—mi2),(—1/2),, 1
~ Tmr R (50)
[(Du]? witrmee)
Combining Egs(49) and(50) with the factor 1/(2v+ 1) from Eq.(18) leads to
1
|1~§4 W (51
The worst case that arises in the evaluation of the matrix elemertg o |=—1 andm=1,
where
1
I 17~ % F, (52)

which is suitable for direct numerical evaluation.

The asymptotic form fof, can be determined in a similar manner to that described for
The result is

1
|2’“§ W Fm+ 1072+ (53

The worst case asymptotic behavior foris the same as that ¢f .

While the series representationslgfandl , are suitable for direct summation, such a process
is rather time consuming for the most slowly converging cases. An improved approach is to apply
the techniques discussed in Ref. 18. By first converting these monotonic series into equivalent
alternating series, then applying convergence accelerators to the transformed series, a high-
precision evaluation scheme is produced which is far more rapid for the most slowly converging
integrals.

The sign differences on the coefficients of Meintegrals in Eqs(18) and (34) might be
suggestive of possible numerical precision problems. However, both equations have been tested
and found to be numerically stable. Tables | and Il present some representative valuesl for the
andl, integrals, respectively.

A useful check forl; andl, can be derived by considering the integral

TABLE II. Values of I,(i,j,k,I,m,n,a,B,7).

i j k | m a B y Io(iL),k,I,mn,a,B,v)

0 2 0 -1 -1 2.7 2.9 0.65 —2.943 608 978 543 536 288 422 283

1 4 3 -1 3 2.7 2.9 0.65 2.755 380 752 419 424 787 112:100°
2 1 1 1 -1 2.7 2.9 0.65 —1.874 264 201 450 095 466 617 09507
1 3 2 0 2 2.7 2.9 0.65 6.929 145 321 870 892 125 904-8E#
0 4 0 2 -1 2.7 2.9 0.65 —2.953 164 176 902 131 531 016 5920°
3 2 -1 3 2 2.7 2.9 0.65 2.411 321 913 805 718 749 043860
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. ik (ri_rg)(rgl_rgii) | M o—afs— Br—
L4(i,j, k1, m,e,B,y)=| rirbrs 3 Mo e~ 17 A2= s dr, dr, drj.
12

(54)
Equation(54) can be evaluated using eithieror | ,, resulting in the following relationship:
11(i,),k, 1, m+2,a,8,7)—1,(,j,k,+2m,a,B,v)
=1,(i+2j,kI,ma,B,v)—15(i,j+2k1,ma,B,7y). (55

Hence, Eqs(18) and(34) may checked against each other. Alsd,#fm=0 in Eq.(26), J;=0,
and therefore

Il(i!j1k!010alﬁay):|2(iij!kyoioaa;ﬁr'y)- (56)

The asymptotic behavior df; is the most difficult to estimate, due to the nestedsum in
Eq. (46). Let us defineK to be the infinite series portion of thg integral. The technique used to
analyze the asymptotic behavior Kfwill be to divide thew,, w, plane into three regions:

WZZO,
0<w,<wyq,
W2:W1.

Making these simplifications, it is possible to arrive at upper and lower bound estimates on the
convergence rate for th@, summation.
First we examine the region whewe,=0. From Eq.(42), it can easily be shown that

1

IQNW_Z- (57

If taken in the appropriate pairs, the sum of heintegrals in Eq.(46) behaves like

1
set of six W~ —. (58
w3

For the casev,=0, thea,,, coefficients in Eq(46) lead to

(—mi2)o(~1/2)g

(59
[($o]?
Combining Egs(57), (58), and(59) gives the result
1
K~ —. 60
& ] 0

The asymptotic behavior df in the other two regions may be obtained by similar methods. The

results are
1 1
K~ — to — 5 61
% Wclt % W(1|+m+14)/2 (61)
and
1
K~ ——r 62
% W<l|+m+11)/2 (62)
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TABLE Ill. Values of I4(i,j,k,I,m,a,8,7).

i J k I m a B 7 |3(i,j,k,|,m,a,,8,y)

1 -1 0 -1 1 2.7 2.9 0.65 1.356 087 352 189 092<I107
1 2 2 1 1 2.7 2.9 0.65 —6.371 117 492 583 75610"

3 1 2 3 1 2.7 2.9 0.65 4.870 134 178 451 231 BY
2 2 3 -1 3 2.7 2.9 0.65 6.471 807 181 649 9450°

4 1 2 3 3 2.7 2.9 0.65 3.203 917 521 846 70810'°
3 1 -1 1 5 2.7 2.9 0.65 5.849 805 492 834 82238

respectively. The second of the two results given in &) was obtained usingv,=w,/2. If
instead we emplow,~w; (with w,<w,), the same asymptotic behavior given in E&p) would
be obtained.

The convergence of the entire sum will be determined by the most slowly converging portion
of that sum, which was found at,=0. So the entire sum behaves asymptotically like

1
K~> . (63
l

It should be clear from this result that a large number of terms are needed to obtain an
accurate result foK. Rather than directly summing the series, a convergence acceleration tech-
nique was applied to the infinite series portion of Ef). The acceleration method employed was
the Richardson extrapolatioiwhich has been used previously in the evaluation of other three-
electron integration problenf.The Richardson extrapolation is given by

N k+N
E Shi(n+k)N(—1) , 64
=0 kI (N—k)!
whereS; is an approximation to the total sum in E¢6). A well-known difficulty associated with
the application of Eq(64) is that it is subject to numerical precision loss for higher valuell.of

Careful examination of Eq46) shows it to be composed of two monotonically decreasing
series, one fow,; even and one fow; odd. Because the individual terms of the two series differ
significantly in magnitude, a direct application of the Richardson extrapolation produces quite
poor results. However, if Eq64) is applied individually to these two series, then a significant
improvement in convergence is obtained. For both of these series, chaosihgthe optimal
value ofN appears to be at abobt=23. At this value, approximately 17 digits of precision may
be obtained using 30 digit arithmetic. As was found Fgrand|,, the sign differences on the
coefficients of thew integrals in Eq.(46) do not appear to be problematic. Some representative
values ofl ; are presented in Table IlI.

For the casé andm both odd, evaluation of E(5) via the approach developed in Sec. IV
requires about half the computational time of previously published methods. For a number of test
cases investigated, several more significant digits were obtained using the present approach. The
increased speed of evaluation is directly tied to the much simpler formula that results in the
present work, in comparison with what is obtained by breaking the integral into two separate parts.
For | andm not both odd, evaluation methods may be employed which are both computationally
faster and produce higher-precision restits.

VI. DISCUSSION

In this work, some key integrals are solved which are needed for the evaluatidagf (the
non-fine-structure contributiongor the 2S states of three-electron systems. The basic approach
employed in this work is to treat each of the integrand factofs-¢3)r,, (r3;—r39ri», and
(ri )r as single expansions. For theandl, integrals investigated, the option of splitting
these factors into separate parts does not exist, as each of the separate integrals diverge. A
recursive scheme for an integral related ids developed by Yan and Drake.
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With the evaluation of,, |,, andlj, the difficulties associated with the evaluation of the
matrix elements of the Breit—Pauli relativistic operators now lie elsewhere. Integrals of the form
shown in Eq{(2) with | = —2 also arise in the evaluation bff,, andH,,,ss and these have known
computational difficulties® While several methods exist for their evaluatidn?* they are rela-
tively slow for some choices of the arguments and are subject to precision loss. Development of
better methods for handling integrals of this form would be useful.
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APPENDIX A: DIVERGENCE OF / INTEGRAL WHEN n=-3

This appendix illustrates that EQR) diverges for at least one ¢f m andn=—3. Conse-
quently, Eqs(3) and(4) cannot be broken into separate integrals of the form of(EQ.
Let

(i ,k,I,m,—3,a,,8,y)EJ rirbr&rhor tr e 1A= s dr, dr, drg. (A1)
Because the integrand is everywhere positive,
IBJ rirbrsrbaTr e e A= 7a dr, dr, drs, (A2)
(I‘3*£)>I’p

where (3—¢)>0 andp=1,2.
Furthermore,

; | ; m i v]pKp—3a—ar{—Bro—yr
I= min {r,g min {rgj}f ryrbrire A= s dry dr, drg. (A3)
RO RO (r3fs)>rp

(rz3—e)=rp (r3—e)=ry

Due to the restrictions placed on the region of integration,

min {rhs min {ri}=g""m (A4)
R® R®
(rg—g)=ry (rg—e)=r

Substituting Eq(A4) into Eq. (A3) yields,
I>s'+m><f rirbesr e 1A= s dry dr, dry. (A5)
(r3fa)>rp

Integration over ; produces a finite sum of positive terms involving integrals of the form
J’ rsrir e a1 P2 dr, dr,. (AB)

Choosing perimetric coordinafeis can easily be shown that E¢A6) diverges irrespective of the
values ofs, t, a, andb. Therefore Eq(A5) must be divergent, and so E@\1) must also diverge.
The extension tdN-electron systems is obvious.
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APPENDIX B: EXPANSION FOR rl_z3

The generating function for the Legendre polynomiaf$ is

1

e L) ®

If the operatorf)zl+2r alar is applied to both sides of E4B1)?° one obtains

1-r? - ]
m?:nzo (2n+1D)r"Py(x). (B2

Making the substitutions=r 1, /r 15~ , X=C0s6;,, andn=w, in Eq. (B2) results in Eq.(8).

APPENDIX C: SOLUTION OF ANGULAR INTEGRALS FOR [/,

This appendix discusses the evaluation of the angular inted@rand®, which arise in Eq.
(27). If the addition theorem for Legendre polynomiéls,

Pw,(C0s 015) = Pwl(cos 023) Pwl(cos 031)

+22

< W1+n), PWI(COS 023) P, (€OS O3)cOAN (b5~ ¢3p),  (CI)

is applied toPWl(cosalz) in Eqg. (28), and the integration ovep,; and ¢ is performed, then the
finite sum in Eq.(C1) vanishes. Thus, simplifies to

1 1
&, =472 f_ X P, (X) Pws(x)dxf_lPWl(x) Pu,(x)dx. (C2

Using the standard recurrence relationship
(2 +1)xP,(X)=(v+1)P, 4 1(X) +vP,_1(X), (€3

and the orthogonality property of the Legendre polynomials, allows(E®). to be simplified to
Eq. (30). The result ford, can be obtained by symmetfgwitch 12 andw,« w5 in Eq. (28),
thereby obtaining Eq31)].

APPENDIX D: SOLUTION OF ANGULAR INTEGRAL FOR I3

This appendix discusses the evaluation of the angular intégraEq. (39), which occurs in
I3. We choose our coordinate system such that

dQl sz dQ3:Sin 612 d012 d¢12 sin 031 d031 d¢31 sin 01 d01 d¢1 (Dl)

ExpandingP,, (cos 6,3 by the addition theorem for Legendre polynomials, then integrating over
01a ¢1: Qb]_z, ¢31, and 031, yleldS

3278

la(wy, Wy, W3)= 2wyt 1 w2

J Tw,(COS 612) Py, (COS 615)Sin 615 d6y5. (D2)
0

ExpandingPWz(coselz) in a Fourier sine serie¥,and using the identity
Tw,(€OS 015 =COg W1 61), (D3)

produces
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6ar%” & (Bl (work+)

lo=5—""> 6
2wt 1 Y Y KD (Wt kit D)

fﬂ COS Wy 01,) i (Wo+ 2K+ 1) B35]sin 61, A6y,
0
(D4)

Evaluation of this integral, followed by some straightforward simplification, leads tq42.
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