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An  analysis is presented for the
P _ —ar, —Br, —yr
[ririrsrtrgirne 17

evaluation  of

integrals of the form

3dr,dr,dr; which arise in the determination of certain properties for

atomic three-electron systems. All convergent integrals with (= —2, j>—2, k= —2, m 2 —1, and
n = —1 are discussed. These integrals are solved by reduction to one-dimensional quadratures of the
form f;f(x)w(x)dx, where w(x) is one of the four functions In[(1+x)/(1—x)],
x 'In[(14+x)/(1—x)], In[(1+x)/(1—x)]In(x 1), and x 'In[(14+x)/(1—x)]In(x ~'), and f(x) is a
well-behaved function on the interval [0,1]. The polynomials, which are mutually orthogonal over the
interval [0,1] for each of the preceding four weight functions w(x), are determined. These polynomials
allow specialized numerical quadrature calculations to be performed, which leads to an efficient algo-

rithm for evaluation of the above integrals.

PACS number(s): 31.15.+q, 02.60.+y

I. INTRODUCTION

The integral defined by
I(i’jykylﬁm)n’ayﬁ’y)

= frﬁr£r§r£3r§"2r{'2e = "drdrdr,, (1)
where 7; is the electron-nuclear coordinate and r;; is the
interelectronic separation, occurs in several contexts for
the three-electron atomic problem [1-8]. Evaluation of
certain relativistic contributions and the determination of
lower bounds for energy levels involve these integrals,
when a Hylleraas-type expansion is employed for the
wave function.

Special cases of the above integral have received atten-
tion in the literature. The most difficult cases occur for
I =—2. For | =—2, the case m =0 and n =0 being well
studied, as the two-electron integrals contained in Eq. (1),
are those required for the evaluation of relativistic contri-
J
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butions and lower bounds in the two-electron problem
[9-12]. A generalization of Eq. (1) has been discussed in
the literature [13] for the cases /,m,n, > —1.

In a recent investigation [14] one of the present authors
succeeded in evaluating some of the I integrals for the
case /| =—2. That work should be consulted for addi-
tional references and theoretical background.

The focus of this investigation is the reduction of the I
integrals to a form suitable for numerical quadrature
techniques. Because many I integrals may occur in the
course of a single atomic calculation, efficiency of the
evaluation technique becomes a critical concern. Special-
ized quadrature procedures are developed to yield an
effective approach to the evaluation of the I integrals.

II. REDUCTION OF I
TO THREE-DIMENSIONAL INTEGRALS

Two expansions for the interelectronic coordinates are
required. 7,% can be expanded as [14]
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A slightly modified version of Eq. (2) has been given by Pauli and Kleindienst [15]. The standard summation conven-
tion 37—, =0 when m <n, is employed throughout this work. (§) denotes a binomial coefficient. The Sack formula

[16] for the expansion of 7§} is

ririnl = 2 Rmp(r3,rl)Pp(008931) ,
p=0
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where P,(cosf;,) are the Legendre polynomials and R,,,(r3,7, ) denotes the radial functions. If Egs. (2) and (3) and the
analogous Sack expansion for rJ; are inserted in Eq. (1), then the I integral simplifies to
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which can be evaluated on employing the standard expansion of the Legendre polynomials
!
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to yield
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where §;; is the Kronecker delta. To simplify the notation set
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The functions F(l,x) and G (/,k) defined in Eqgs. (8) and (9) are independent of the arguments of any particular I in-
tegral, so the most efficient computational procedure is to compute and store arrays for both functions. This actually
becomes a necessary approach for odd-m odd-n I integrals. For these cases F and G functions involving large argu-
ments are required. Equations (8) and (9) are not stable for standard numerical evaluation for these cases. This
difficulty was solved by evaluating the F and G arrays using exact arithmetic (with MATHEMATICA [17]), and then con-
verting to floating decimal point values suitable for input to our Fortran code. The results were checked by direct cal-
culation using multiple precision arithmetic. Liichow and Kleindienst [18] have just published an investigation of some
of the properties of the functions G and F.

Inserting Egs. (7)-(9) into Eq. (4) yields
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Equation (10) can be simplified to
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where
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and
W(L,M,N,a,b,c)=fwae_“"dxfwyMe*"ydyfsze_“dz , (14)
+
W (L,M,N,a,b,c)= fxe‘"‘dxfyebydyfzeczln idz, (15)
© _ o _ +x © —
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_ zZ+x
—ax —b c:
WL3(L,M,N,a,bc f xte dxf yMe ”dyf zNe ~n s dz . (17)
The coefficient a,,, in Eq. (11) is defined by III. SIMPLIFICATION OF THE W, INTEGRALS
_(w=n/2)(—5—n/2) The W, integrals defined in Egs. (15)-(17) can be eval-
Guons = ! 3 (18) uated analytically for certain values of L, M, and N.
sNw +3)

However, for most negative values of these parameters,
and (m), denotes the Pochhammer symbol. Efficient the integrals, despite their relatively simple appearance,
methods exist [4] for the evaluation of the W integrals become rather difficult to resolve in a form that is stable
defined in Eq. (14). for numerical evaluation. Efficient evaluation of these in-
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tegrals is paramount to the usefulness of Eq. (11), particu-
larly for the case when m and n are both odd. In this case
the lead summation in Eq. (11) does not terminate. The
second and third summations both terminate at finite
values for m and n even or odd, based on the properties
of the Pochhammer symbols [see Eq. (18)].

The approach adopted below is to convert each of the
W, integrals to an essentially similar set of one-
dimensional integrals. These are then evaluated by spe-
cialized numerical quadrature procedures.

A W, . integrals

The WL1 integral converges for

5409
W (L,M,N,a,b,c)= 'f LMy |10 G,
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L
Xfl wdw 1
0 (qwt +bt +c)1™*
(22)
with
q=L+M+N+2. (23)

Equation (22) can be simplified to yield several different
expressions. The most convenient form, for reasons that
will be apparent in Sec. IV, is to retain the distinct factor

tL+M+1 By differentiating with respect to a parameter
L>0, (19)  in the second integral, the following result is obtained:
L+M=>-2, (20) 141
1 t
L+M+N>—2. 1) We, (LM, N,a,b,c)=q! [ 1M+ in | -=— | f(1)d
The constants a, b, and c appearing in Egs. (14)-(17) are (24)
greater than 0. With a suitable change of variable, Eq.
(15) can be recast as with
J
L
e {7V (—ey
— —€
(1) In(1+¢€)+
/ (bt +c)i*! ekt Z'l j
Z (=1 kD (L+k—j—1)
+ . (25)
k:max[zl,q_u k(g —kML —gq +k)! Eo (k—j—1N1+e) !
[
and With appropriate programming, the calculation of fac-
torial terms can be entirely avoided in the evaluation of
~_at (26)  Eq.(28)
bt+c’ - 128
where (}) is a binomial coefficient and
L B. W, _ integrals
q =0 for L <gq (27) 2

has been employed. The function f(¢) is well behaved for
all values of ¢ on the interval [0,1]. For small values of ¢,
separate evaluation and combination of the factors
In(1+e€) and 3E_(—€)//jleads to significant figure loss,
particularly for large values of L. In such cases, these
two factors can be combined by appropriate expansion of
the term In(1+¢€). When large negative arguments for
the WLl integral are encountered, a superior approach to

the evaluation of f(¢) is to utilize the following result:

€L+l
—  for M+N+1=0
(e+1)HL +1)
L! (j+q)

q'l(a+b)t+c]?*! 2
for M +N +1<0.
(28)

GH+L+1)N(1+e 1Y

The conditions for convergence of the WL2 integral are

L>-1, (29)
L+M=—-1, (30)
L+M+Nz-2. (31)

With a change in integration variables Eq. (16) can be
simplified to yield

W, (L,M,N,a,b,c)
2

=q!folln

wL+M+ldw

(awt +bw +¢)1 !

(32)

tldt f 01

and q is given in Eq. (23). Evaluation of the second in-

tegral in Eq. (32) leads to



5410 KING, DYKEMA, AND LUND 46

— ! 1+t
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and where p =L +M +1. N <0 implies p +1> g so Eq. (36)
_ -1 provides a stable procedure for evaluating g (¢) for large
B=c(at+b) ", (35) negative values of N.
and the prime on the summation in Eq. (34) signifies that .
the second term involving the factor (N +1+j)7! is C. W_, integral
omitted if N +1+;=0. By inspection, g(¢) is observed .
to be well behaved for all values of ¢ on the interval [0,1]. The W, integral converges for
For large values of L +M +1 and large negative values L>_1 (37)

of N [a situation which arises for m and n both odd in Eq.
1)], Eq. (33) can be cast into a more suitable form for nu- L+M>—2, (38)
merical evaluation:

N4l . ) L+M+N2=2-2. (39)
()= (c/a) L’ 2 J+q)'
4 [t+(b+c)/al?t! g! o G+p+1) N(1+8) This integra} is most convsniently trea?ed by consideripg
two cases: (i) M =0 and (ii) M <0. With a change of in-
(36)  tegration variable Eq. (17) simplifies to
J
L+M+1 _ M
1, (LM, N,a,b,0)=q! [ dexf‘y In{( 1+"y)/(+11 )] 4 'fl 1+’ L w__ 4
(axy +by +c)? t (at +bw +c)t

on using the transformation formula
ad a , — ad x ) )
fo )’fyf(x y)dx fo xfof(x y)dy 41
Equation (40) can be simplified to yield

_ 1+t |,
W, (L,M,N,a,b,c)= q+1f1 =, [t 42)
with
__ 1 o ; +1
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and the prime on the summation signifies the term involving (L +N +j +2) ! is omitted if L + N +j +2=0. h 1(2) is
well behaved for all values of ¢ on the interval [0,1].
For case (ii) with M <0, Eq. (40) can be transformed by differentiation with respect to a parameter, to the form

WLJ(L,M,N,a,b,c)= (I;IH ((L_+N+1 [f 1+t Int Ly ~L =N =24y
1+¢ tUn 1ty | —L-~n—2
+f1 [ P, dt

1+t

+f1

L+M+1h2(t)dt] (45)
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and y is defined in Eq. (44). By inspection, h,(¢) is well
behaved for all values of ¢ on the interval [0,1].

IV. EVALUATION OF THE W, INTEGRALS

Equations (24), (33), (42), and (45) represent the basic
results for the evaluation of the W, integrals. The struc-
ture of the integrands are not very suitable for standard
numerical quadrature. For example, a 32-point Gauss-
Legendre quadrature of

f In

yields the result 1.385696, while a 384-point Gauss-
Legendre quadrature leads to the result 1.386290 090.
Neither value is in very close agreement to the exact re-
sult of 2In2=1.386294 36. . .. One can, of course, resort
to interval disection techniques, but these are likely to be
ineffective. The reason for these poor results is obvious:
the integrand is a rather slowly converging series, and a
great number of terms are required to yield an accurate
result. A close inspection of the final results for the W,
integrals will make it clear that the integrands can be
more of a problem than the illustrative example just dis-
cussed above. For WLl’ (L +M +1) may equal —1, in

which case the integrand has the basic form
t “'In[(141¢)/(1—1)] [f(¢) does not affect this behavior],
which means additional care would be needed in any
quadrature approach as t—0. A similar situation arises
for the case when L =—1 for WL2 [see Eq. (33)], and for

WL3 when M >0 [see Eq. (42)]. The WL3 integral for the

case M <O involves integrands like In[(1+¢)/(1—1)],
t " Mn[(14+1)/(1—1)], In[(14+¢)/(1—1¢)]Int, and
t 'In[(141¢)/(1—¢)]Inz. The latter three integrands will
all require considerable additional care in the region
t—0. From the preceding comments, it should be ap-
parent that a conventional quadrature scheme is likely to
be particularly ineffective.

The final results for the W, integrals can be cast into a
form depending on one of the following integrals:

fl
1 1+1¢
Jyhn (ﬁ

1+x

1+’ Fy(nd1

t TIF,(t)dt

fl
fl

where F;(t), i =1-4, are well-behaved functions with no
singular behavior on the interval [0,1]. These integrals
can be very efficiently evaluated by finding the set of poly-
nomials which are orthogonal on the interval [0,1] with
the weight functions

1n(t”‘)F3(t)

l+t

t In(t "HF(t)dt

w(H=ln | 1L 47)
1—t
gy 1
wy=1""m |75 (48)
wsy(1)=In ii; ]ln(t_l), (49)
wy()=t"'In [% ]m(r"‘) . (50)

We are not aware of any discussion of these polynomials
in the literature. Standard sources do not provide any
quadrature points for the above functions, though a re-
mark in one text [19] gives a hint of the difficulty to be
expected working with the simple weight function
In(x 1),

The polynomials were determined using the recurrence
relation

PoltI=1 (51)
{pi(t|p; (1))
piw(1)= [t—m (1)
(pi()lpi(1))
h <p,~i(z>:§,._l(t)>Pf—l(”’ i1, (52)
where
(pu0lpi0)) = [ 'w(0lpi(1) e 53

and w;(¢) is one of the four weight functions given in Eqs.
(47)-(50).

The recurrence scheme given above is well known to
have numerical limitations [20]. There is potential for
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considerable loss of significant figures in determination of
the coefficients of the polynomials. An initial double pre-
cision test calculation followed by an extended precision
calculation involving w,(?) on a Vax mainframe gave
poor results. The problem for w,(¢) was initially resolved

J
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by evaluating the polynomials analytically using the sym-
bolic algebra capabilities of MATHEMATICA [17].

The moments of each weight function are required for
the evaluation of the inner products {p;|p; . The results
employed are

R &2 R (1+m)~" for m>0 (54)
fox ol el o [1+( JIn i§1 2112 m orm=>0,
where [(m +1)/2]=(m +1)/2 if m is odd and m /2 if m is even.
flx'"ln I+x x " ldx
0 1—x
is evaluated using Eq. (54) and for m =0 the result
2
flx*lln I +x dx =" (55)
0 —X 4
is employed. Also
1 1+x - ) 1+(—1"
" In(x Ndx=—(m+1)"" i —=[2—(—=D"]— In2
[ x n[l——x n(x ~Ddx=—(m +1)"1 2= (= 1)"]= = —==ln
m+1 __1ym+n
1 (m+n+1)[14+(—1) ] for m>0 . (56)
m+1 < n?
V. RESULTS
flx’"ln I+x x “Un(x " Hdx
0 —x
The polynomial determinations and the evaluation of
. _ he x; and w; for each polynomial were initially carried
luated from Eq. (56), and for m =0 the x; i poly y
is evaluated from Eq. (56), and for m out on a PS/2 (model 70) personal computer with no
_ . math coprocessor. The calculations were somewhat slow
f’ In[(1+x)/(1—=x)]In(x ~")dx _ 78(3) 57) on the PS/2 and it became necessary to continue the

0 X 4

where {(n) is the Riemann zeta function.

The polynomial coefficients become extremely complex
very quickly. Analytic expressions for the first few poly-
nomials can be obtained from the authors. To speed up
the calculations, the coefficients of the polynomials were
determined numerically, using the variable precision op-
tion of MATHEMATICA. Once the polynomials were
found, the abscissas x; of the N-point quadrature and the
corresponding weight w; were determined by standard
procedures [21]. As a check on the x; and w; values, the
integrals in Eqgs. (54)-(57) were evaluated by quadrature
on a Cray YMP in double precision. The results were
found to be in excellent agreement with the analytical re-
sults (the relative error was typically ~10~2%). The re-
quired integrals were then evaluated using the standard
formula

N
dx= 3 F(x;))w; (58)

=1

['F\(x)n
0

1+x
1—x

with similar results for the other integrals discussed
above.

problem on a RISC/6000 work station. Even on this
machine the calculations were rather slow for the evalua-
tion of the polynomial associated with the fourth weight
function, due in part to the result for the zeroth moment,
Eq. (57). Some trial and error experimentation was
necessary to find the appropriate number of digits of pre-
cision to carry in the calculations, in order to accurately
determine the x; and w; values. The values of x; and w;
may have applications in a number of problems, and have
therefore been submitted to the Physics Auxiliary Publi-
cation Service [22].

To show how effective these specialized quadratures
are, results for the evaluation of some representative W,
integrals are shown in Table I as a function of the num-
ber of quadrature points. Table II gives a selection of
values of the W, integrals, with some additional difficult
cases considered.

A few representative I integrals are tabulated in Table
III based on the use of Eq. (11). To show the conver-
gence of the w summation in Eq. (11), six examples are il-
lustrated in Table IV where the values of the sum after
each value of w are indicated. All the results reported in
Tables II-1V were calculated with the quadrature point
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TABLE II. Some W, integrals involving negative arguments. All integrals are evaluated using
a=2.7,b=2.9, and ¢ =0.65 and the quadrature point set employed is (100, 100, 100, 90).

Type L M N Integral value

W, 0 -2 0 1.083 879 599 898 198 513 257 178 293

WL1 2 —3 —1 1.250010 973 399 807 433 307 142399 X 10~!
WL, 1 -3 1 3.062 696 750071622 728 513911399 X 10!
Wi, -1 0 2 4.208 102 671 056 596 251 692 555 269

W, —1 2 0 6.907359995821510518498 717951 X 1072
Wi, -1 2 3 2.400459 131058917517 788 881 101

Wi, -1 0 2 2.764 499 740 806 429 169 877 617 486 X 10!
W, —1 1 -2 2.037462701 111799221 300 890409 X 10!
WL, 3 -1 2 6.227 779 185 629 390 790 392 624 846 X 10*
WL, 0 —1 2 1.102 428 636266 714271 801 334512 X 10!
Wi, 0 —1 -1 1.660 849 370085 631 845 528 907 460X 10~!
W, 0 -2 0 4.705 557 080 602 339 931 684 159418 X 107!
Wi, 1 -3 0 3.073732 135871503 739 127 446 372X 10!
Wy -1 -1 3 3.543 868 845 554 504 664 788 125 473

W, -1 —1 0 9.876 051 123075226 886 136 545810X 10!

set {100, 100,100,90}; 100 points employed for the first
weight function, 100 for the second, etc.

VI. DISCUSSION

The key observation to be made from the results of
Table I is the extremely rapid convergence of the W, in-
tegral values as the number of quadrature points is in-
creased. In several cases (particularly for W,_z), approxi-

mately 27 digits of precision are obtained with only 20
quadrature points. All the results reported in Table I
were matched with the values computed by independent
methods which yield, in certain cases, a smaller number
of digits of precision. Typically 16—23 digits of precision
were found to match between the different methods of
calculation.

The fast convergence for many of the W, integrals is
tied to two factors. The logarithmic terms have a poor
representation as a polynomial expansion, but this prob-

lem is entirely avoided by the nature of the specialized
quadrature procedures employed. The rate of conver-
gence for a particular W, integral is thus determined by
how well the functions f(¢), g (¢), h (), and h,(¢) can be
represented by a polynomial expansion. Since none of
these functions have any singularities on the interval
[0,1], a very good polynomial representation is possible,
subject to the values of the arguments for each particular
integral. For large negative values of M or N, the above
functions are less likely to be accurately approximated by
polynomials of short length. In these cases, a large num-
ber of quadrature points are necessary to obtain an accu-
rate value for the integral.

The WL, results reported in Table II were evaluated

using Eq. (25). A large number of additional W, integral
test cases were examined. A focus of the effort was the
examination of integrals involving large negative argu-
ments for M and N (up to —200). These are the most
difficult cases, but are extremely important for the evalu-

TABLE III. Values of I(i,j,k,I,m,n,a,B,y) computed using Eq. (11).

i J k 1 m n a B v I

0 0o 0 -2 0 0 25 30 06 2.6259988892981254221469628X107!

0 o 0 -2 4 6 25 30 0.6 4.509905007964538011X%10°

0 o 0 -2 6 6 25 30 0.6 3.333172436048289562605531173X 108
-2 -2 4 =2 2 2 25 30 0.6 3.761971636531376663 166 128 677 X 10°
—1 -2 2 -2 2 4 25 30 06 1.590374828884498105225072180X%10°

0 0 0 -2 —1 0 25 30 0.6 1611019909 354640984938494180X 10’

0 0o 1 -2 —1 2 25 30 06 6.017750485629056093536290760X 10

1 2 3 -2 1 2 25 30 06 6.833815746120315435488530589X%10*
—2 2 2 -2 =1 2 25 30 06 7.555096795290 167516269 164257 X 10?
-1 —1 3 -2 5 4 25 30 06 1.105739136640783062978512954X 10°

1 -2 1 -2 1 2 25 30 06 4.141831292273281421100703936X 10°
-2 -1 1 -2 —1 2 25 30 0.6 1.056402594446466 865747747 807X 10?
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ation of I integrals with m and n both odd. Effective
evaluation of these integrals required the alternative
forms for f(t) and g(z) given in Egs. (28) and (36). The
final entry shown in Table I is representative of the ob-
served convergence behavior when large negative argu-
ments are involved. Clearly, in this example (and in
many other test cases examined) a large number of quad-
rature points are necessary to obtain an accurate value of
the integral.

The most difficult I integrals to compute are those in-
volving odd-m and odd-n values. The w summation in
Eq. (11) is nonterminating in this case. Table IV illus-
trates the convergence for some examples of this type as a
function of the w summation index. The poorest conver-
gence is observed for the m =—1, n =—1 integral, with
approximately 67 digits of precision obtained after 150

KING, DYKEMA, AND LUND 46

terms have been employed in the sum. In contrast, the
case m =1, n =3 has converged to approximately 19
digits of precision using 150 terms.

In summary, a viable procedure has been presented to
evaluate some of the more difficult integrals arising in
certain aspects of the atomic three-electron problem. Ex-
tensions of the approach to more complicated integrals
are being explored.
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