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The techniques of nonlinear programming are incorporated into the standard
variational method. The set of inequality constraints employed in the nonlinear
optimizations is based on the reduced local energy, evaluated at various points
of configuration space. These constraints give, indirectly, a means to incorporate
the local behaviour of the wavefunction in the variational procedure. A test of
the procedure is carried out using a 20-term Hylleraas type wavefunction for the
ground state of the helium atom. The impact of the constrained optimization on
a variety of expectation values is examined.

1. Introduction

The standard variational technique is the cornerstone of modern quantum chemis-
try. It is a global procedure and gives no information (except for special cases) on the
local accuracy of the wavefunction. Despite this shortcoming, a considerable amount
of experience with the procedure has led to the now well known notion that the
variational method emphasizes the short to medium range region of configuration
space. The near-nuclear and long-range regions of configuration space are often
poorly characterized in the variational method. This has obvious consequences for
expectation values depending on the latter two regions of configuration space.

The purpose of this paper is to consider a refinement of the standard variational
approach, where additional constraints depending indirectly on the local behaviour of
the wavefunction are incorporated in the calculation. The additional constraint to be
imposed utilizes the reduced local energy, defined for an N electron system (N > 2)
by [1, 2]

Yx(r,, tyy - . ., PN HHr, 1y, . .., ry)dy dT,de . . dTy

E (r) = , (D
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where ¥represents an approximate eigenfunction and y, is a spin variable for electron
1. For an exact wavefunction the reduced local energy E; (r) reduces to the exact
energy of the system:

EL(r) - Eexact as ¥ - qlexact' (2)

A constant E; (r) for all r represents a necessary but not sufficient condition that the
exact eigenfunction has been located. Since it is known that an analogous result holds
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for the Hartree-Fock formalism, that is [3, 4]

Prp(ry, ray o s I HPyp(ry, ry, o, ry)dydeydeg . L dry
EFF(r) = , 3)
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and
E (r) — Eg as Hyr > Yhr 4)

exact »

a coordinate independent E; need not indicate that the exact eigenfunction has been
located. In practical calculations, it should be clear which eigenfunction, ¥,,,. or
YHE | one is approaching.

An important pair of questions for the approach taken in this study is why
supplement the variational method with a constraint based on E; (r), and how is E| (r)
likely to improve (if at all) the eigenfunction in a local sense? Equation (1) is a
compromise choice. A superior constraint would be based on the local energy defined
by [5-7]

H¥r,r, .. .ry)

E(r,ry,...,r = . 5

L(l5 2 N) g,(rl’rz’..‘rN) ( )

Unfortunately, for a system with a large number of electrons, (5) becomes extremely
complex because of the multidimensional nature of the function E; (r,, r,, . . . ry).

This would be difficult to implement as a suitable constraint given the current
generation of supercomputers. Using E; (r) incorporates the local nature of the
eigenfunction, but in a somewhat indirect manner. E; (r) offers the primary advantage
that it is computationally manageable. The second question does not have a clear
answer. It appears likely that a rigorous theoretical connection between the quantity
|EL(r) — E.,| and the error in the electron density |p(r) — pecc(#)], Where p(r) is
based on ¥ and p,,.(r) on ¥,,,, will not be found. What is currently known
concerning the aforementioned connection is mostly empirical, based on observation
from calculations and some model studies [1, 2, 8-17].

At any particular configuration space point, an accurate E; (r) does not imply an
accurate p(r). E; (r) may be rather inaccurate at some point of configuration space,
and the electron density may be rather accurate at the point. This observation is either
implicit or explicit in a number of papers [1, 8, 9, 11, 15, 17]. The near-nuclear region
is a good example where this problem arises. Intuitively, it would be expected that if
E, (r) is inaccurate for a sufficiently large collection of points in some region of
configuration space, then p(r) would likewise be inaccurate. Also, it might be conjec-
tured that the converse is true. Since no relationship between E; (r) and p(r) is known,
it is impossible to say how closely the inaccuracies of E, (r) and p(r) will correlate over
a given region of configuration space. The empirical evidence available[1, 2, 8-13, 17]
does appear to support the above working hypothesis. There is a clear need for
detailed investigation on realistic model systems that can be solved analytically.

A principal objective of the present investigation is to explore how the nonlinear
programming modification of the standard variation method affects a variety of
expectation values, emphasizing different regions of configuration space. The ground
state of the helium atom was selected for the present study for two reasons. The small
number of electrons involved allowed for a considerable amount of exploration with
the nonlinear programming phase of the calculations described in section 2. For the
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helium atom, there is an extensive literature available on the accurate evaluation of
a range of properties [19-21]. These will provide an important comparison for the
results of the present study.

2. Theory

The problem investigated in this study is the following optimization task. Deter-
mine the minimum of the quantity

J'I’*(rh ..., ) HHr, ry, ... ry)drdr ... dry
E j—

= , (6)
f Y@, ryy . . . ry) Ay, 1y, . . ry)dTidr, L L dTy

with respect to parameters which appear in the expansion of the trial wavefunction
¥, subject to the following set of constraints,

E — E(r) < q

E—-E(m)<a

: ™
E—-E)=2a

E — E () = a,.

The optimization task presented by (6) and (7) is a nonlinear programming problem.
The angle integrated form (over df2,) of (1) has been employed for the constraints in
.

The initial choice of E employed in (7) is the value obtained from the minimization
of the objective function, (6), without the imposition of the constraints given in (7).
More complicated constraints could be imposed, such as those depending on the pth
reduced local energy [22], where integration is carried out over p electron coordinates.
Such constraints would add greatly to the complexity of the optimization problem,
thereby increasing computer time requirements enormously.

Nonlinear programming problems are much more difficult to solve than the
corresponding linear programming problems [23, 24]. The difficulty associated with
following a boundary of a nonlinearly constrained region creates major compli-
cations. Probably for these reasons, nonlinear programming techniques have been
utilized in a very limited way in quantum chemistry.

In a previous work [12], Rosen’s projected gradient method [25, 26] was utilized
to do nonlinear programming calculations. Rosen’s method, however, has limitations
when the inequality constraints are nonlinear. Because of the general importance of
nonlinear programming techniques, and the diverse fields to which the technique
applies [27], the development of refined algorithms continues to be researched [28, 29].
This growth is likely to continue well into the future. The method used to solve the
optimization problem in this study is the generalized reduced gradient approach. This
algorithm is fully described elsewhere [29].
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3. Computational details
The wavefunction employed in the present calculations was the Hylleraas function

N
Y o= e MY CsiMu, (8)
i=1

where s = r, + r,, t = r, — r,, u = ry,, k is a constant, C; are the variationally
determined expansion coefficients, and N is the number of terms in the basis set. The
results reported in the next section were determined using k£ = 3-50. Refinements
could certainly be achieved using slightly different values of this constant. For the set
{I, m, n}, the selection employed by Hart and Hertzberg [30] was utilized. This choice
has 20 terms, and leads to a fairly accurate ground state energy and reasonably
accurate values for a number of expectation values, based on comparison with the
results of very elaborate calculations on the He atom [19-21]. The set of terms
{1, m, n} employed is (0, 0, 0), (0, 0, 1), (0, 2, 0), (1, 0, 0), (2, 0, 0), (0, 0, 2), (1, 0, 1),
0,2, D, (0,0, 3), (0, 2, 2), (1, 2, 0), (3, 0, 0), (0, 2, 4), (0, 0, 4), (0, 0, 5), (0, 2, 3),
(2,2,0), (4,0,0), (1, 2, 1) and (0, 4, 0).

In some respects, a smaller basis set would have been much more manageable in
the nonlinear optimization phase of the project. A principal objective was to examine
to what extent various expectation values downgrade or improve in the course of the
constrained optimizations when the starting (unconstrained) wavefunction is already
fairly accurate. To test the aforementioned, a basis set of reasonable size is required.

The nonlinear programming phase of the calculations was carried out in three
parts, each focusing on a different region of configuration space. For expectation
values which depend on the medium range region of configuration space, the uncon-
strained variational calculation is expected to produce reasonably accurate values.
Properties sensitive to the near-nuclear region or the long-range region of configur-
ation are generally expected to be less accurate. Constraints were selected in either the
near-nuclear, medium-range or long-range regions for the constrained variational
calculations.

The starting point for each constrained optimization problem was the wavefunc-
tion obtained from the unconstrained optimization. The nonlinear programming
phase of the calculations was carried out in a stepwise fashion. The inequality
constraints were tightened until a solution of the nonlinear programming problem
could not be obtained. Some trial explorations from other starting points were also
carried out.

The placement of constraints is a matter of trial and error. It is driven principally
by two factors: the region of configuration space where attempts are being made to
refine E; (r), and the possibility of actually finding a solution of the nonlinear pro-
gramming problem. Constraints with very tight limits on the allowed error in E| (r)
very quickly diminish the possibilities of finding a solution to the optimization
problem.

4. Results

Table 1 presents a summary of the wavefunctions obtained from the uncon-
strained variational calculation, and from the nonlinear programming calculations.
The number of significant digits of precision included for the coefficients in table 1 is
to allow the tabulated expectation values to be reproduced, and does not signify that
the eigenvector evaluations have converged to this level of precision. For the con-
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Figure 1. Reduced local energy versus the radial coordinate for the near-nuclear region. The
exact reduced local energy should follow the horizontal line at —2-903724. The dashed
curve represents E, (r) derived from the unconstrained optimized wavefunction, and the
solid curve represents Ej(r) derived from the short range constrained optimized
wavefunction.

strained optimizations, the inequality constraints employed are listed at the bottom
of table 1. The resulting E; (r) for each wavefunction is displayed in figures 1-3. The
horizontal line at —2:903724 hartree on each plot represents the behaviour for the
exact reduced local energy.

In order to assess the impact of the nonlinear constrained optimizations, a number
of different expectation values have been evaluated. The notational abbreviations

(WL 0P
0y = ————~ 9
0> P ©)
(H0,L|YP)
On) = i (10)
have been employed. The moments {#/> forn = —21to 6, {r},) forn = —2 to 3,

V= V>, ((r)), {8(r,)> and the energy have been evaluated. 6 denotes the Dirac
delta function. {d(r;))> gives the electron density at the nucleus. The expectation value
{V, * V,> is required for the evaluation of the specific mass shift and the transition
isotope shift, and is particularly sensitive to electron correlation effects. This set of
expectation values were selected because different regions of configuration space are
sampled. In addition, results from more elaborate wavefunctions are available for
comparison. The results for the expectation values are collected in table 2. The ‘exact’
values reported in table 2 that are taken from the work of Pekeris [19] and Drake [31]
are accurate to the number of digits reported. The Thakkar-Smith [21] entries have
an uncertainty that probably resides in the last quoted digit, based on observations
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Figure 2. Reduced local energy versus the radial coordinate for the intermediate region of
configuration space. The dashed curve represents E; (r) derived from the unconstrained
optimized wavefunction, and the solid curve represents E,(r) derived from the
intermediate-range constrained optimized wavefunction.
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Figure 3. Reduced local energy versus the radial coordinate for the long-range region of
configuration space. The longer-dashed curve represents E, (r) derived from the uncon-
strained wavefunction, and the solid curve represents E, (r) derived from the long range
constrained optimized wavefunction. The shorter-dashed curve represents E, (r) deter-
mined from an alternative constrained wavefunction.
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Table 2. Expectation values evaluated from the constrained and unconstrained variational
wave functions.

Constrained
Expectation Constrained intermediate- Constrained
value Unconstrained  short-range range long-range Exact®
ity 120346 12:0514 120346 12-0442 12-0348
ity 3-37663 3-37568 3-:37665 3-37725 3-37663
<y 1-85894 1-85956 1-85892 1-85893 1-85894
Kty 2:38689 2-38238 2-38690 2-38636 2-38697
G 3-93549 3-90006 3-93568 3-93209 3-93589
aty 7-94529 7-76736 7-94608 792995 794707
Ky 19-0014 18-1956 19-0031 189376 19-0075
G 52-5565 48-9585 52-5522 52-2766
iy’ 1-46569 1-46108 1-46569 1-47191 1-46477
! 0-945841 0-944370 0-945877 0-947207 0-945818
{rpy 1-42205 1-42220 1-42202 1-42110 1-42207
{rhy 251634 2-51104 251636 2:51477 2-51644
) 5-30770 5-26937 5-30825 5-30860 5-30800
Vi V) —0-159202 —0-156965  —0-159157 —0-155438 —0-159069
o(r)y 3-62057 3-63950 3-62058 3-62635 3-62086
{6(r,)» 0-107368 0-107345 0-107318 0-108702 0-106345
n 1-:000021 1-004538 0-999817 1-001077
Energy —2:903711 —2903498  —2-903711 —2-903646 —2-903724

“The exact values are taken from reference [19], except {r}), {r!> and (r},) are from
reference [21], {(r}) is from reference [20], and {é(r;)) is from reference [31].

of the convergence pattern of their calculations. For the Chong-Weinhold [20] entry,
the number of digits of precision is uncertain.
Also reported in table 2 is the scale factor #, defined by

—3<
Ty
where (V> and (T are the potential energy and kinetic energy, respectively. All

expectation values reported in table 2 have been appropriately scaled using the values
of n presented in table 2.

(11)

5. Discussion

Since the function E, (r) is playing a central role in the nonlinear programming
problem, it is appropriate to examine how it changes in the constrained optimization.
The reference point in each case is the exact E; , which is the constant function shown
in each figure. Also shown in each figure is E; (r) resulting from the unconstrained
optimization. ‘

At short-range, figure 1 shows the constrained optimization has produced an E; (r)
which approaches the exact E; more closely on the average, than does the E (r)
resulting from the unconstrained wavefunction. Both the constrained and uncon-
strained wavefunctions give a poor E (r) at distances very close to the nucleus.
Neither wavefunction satisfies the cusp condition. At intermediate distances, figure 2
indicates that the unconstrained and constrained wavefunctions lead to E (r) func-
tions that are fairly close to one another. In some parts of the intermediate region the
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unconstrained wavefunction gives a better E; (r), and in other parts, it is the con-
strained wavefunction that does better. For the long-range region, the constrained
wavefunction leads to a better E, (r) in roughly the range r ~ 3-7a.u., whereas the
unconstrained wavefunction gives a better E (r) in roughly the range r ~ 0-3a.u.

During the course of trial explorations, a constrained wavefunction was dis-
covered whose resulting E; (r) function is shown in figure 3 as the curve with short
dashes. This E; (r) is clearly superior to the results from the other functions for
r ~ 2-10a.u., but rather poor in the region r ~ 0-2a.u. Attempts to improve
this wavefunction so that E; (r) was improved in the region r ~ 0-2a.u. were not
successful.

Of particular interest in this study is what changes take place in the expectation
values when the nonlinear optimization is carried out. This should provide some
evidence as to whether or not E; (r) will be useful as a criterion which can be used to
improve the wavefunction. One key factor needs to be kept in mind when comparing
the expectation values evaluated from the different wavefunctions employed in this
work. The unconstrained wavefunction employed as a reference produces results of
fairly high quality, so if improvements are obtained, they will be fairly small. Two
linked questions arise at this point. Is it important to obtain refinements at this high
level of precision? If it is, why not simply go to basis sets of larger size? The answer
to the first of these two questions is driven by the very high precision experimental
data that is now available for a number of systems, particularly few-electron systems
[32]. Quantities like the hyperfine coupling constant have recently been measured in
ion-trap experiments to approximately eleven significant digits [33]. Computational
attempts to reproduce these results reveal significant features about the theoretical
formulations. Transition isotope shifts are particularly sensitive to the quality of the
wavefunctions [33], because they depend on the difference of values which are very
close together. Recent work on the helium atom [31, 35-40] also shows the importance
of high precision calculations. Accepting the case that improving the wavefunction to
high precision serves a useful purpose, expansion of the size of the basis set is certainly
a means to achieve a higher quality wavefunction. There are some well known
drawbacks to this approach, even for simple systems. CPU costs increase significantly
for large basis sets, and numerical problems may also arise. In addition, it can be
difficult to tailor a wavefunction for a particular expectation value, unless specialized
basis functions are employed. It therefore seems desirable to explore other procedures
that may be able to refine the wavefunction.

It is useful to remember that the integrands for the expectation values may depend
on a wide range of points in configuration space. For example, {r’> depends most
sensitively on the regionr ~ 0-2-4-0a.u.; (r¢> depends on the regionr ~ 1-0-6-0a.u.
Examples for other moments can be found elsewhere [12, 18]. This means that
for the accurate evaluation of higher moments, both the intermediate and long range
regions of the wavefunctions must be accurate. Since the moments are global
characterizations of the wavefunction, it is possible that inaccuracies in one part of
configuration space may offset errors from another region, though it is expected in the
present study that this is not a significant consideration. Similar comments apply to
the evaluation of expectation values such as {r;"2). Although the near-nuclear region
of configuration space is emphasized, the near-intermediate region is also sampled.

The best results in this investigation were obtained with the nonlinear optimiz-
ation in the intermediate range. Of the 16 expectation values reported, nine are
improved, two are unchanged, one case cannot be decided for lack of an ‘exact’
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comparison value, and four values are worse. Of the latter four values, the difference
is 2-3 in the sixth digit of precision. Some of the improvements are small but, in
several cases, the unconstrained wavefunction leads to expectation values in very close
agreement with the exact values.

For the wavefunction optimized for the near-nuclear region, all but one of the
expectation values are poorer than those evaluated from the unconstrained wavefunc-
tion. The loss of accuracy for the expectation values emphasizing the intermediate and
long range regions of configuration space is not unexpected, as the near-nuclear
constrained optimization downgrades the wavefunction in these two regions. Expec-
tation values such as {r7?) and {r/'), which are sensitive to the region near the
nucleus, are close to the exact values, but just a little worse than the results arising
from the unconstrained optimization. It is probably the case that the near-inter-
mediate region of configuration space makes a sufficient contribution to the expec-
tation values of {r;?) and {r;'), and this intermediate region is described better by
the unconstrained wavefunction versus the short-range constrained wavefunction.
Hence there is a slight loss of accuracy for the expectation values.

For the long-range optimized wavefunction, the expectation values are a little
worse. Many of the expectation values, even the high moments, depend on the
intermediate range region to some extent. The constrained optimization downgrades
this intermediate region during the optimization procedure. The expectation values
obtained from the wavefunction whose E; (r) is rather excellent from r ~ 2-10a.u. in
figure 3, were somewhat poorer than those resulting from the long-range constrained
wave function. It is conjectured that these poorer quality expectation values arise
from the inferior description of the intermediate range region. Note the poor E (r) in
this region displayed in figure 3. Since this particular wavefunction is inferior to the
long-range constrained optimized wavefunction, the details for this wavefunction are
omitted from tables 1 and 2. _

Given the above observations, it appears desirable to augment any constrained
optimization in the near-nuclear or long-range regions, with sufficient inequality
constraints centred in the intermediate region, so as to maintain, or simultaneously
improve the accuracy in the latter region. The difficulty with this strategy is that if the
binding inequality constraints are set rather tightly, it is not possible to find a solution
to the nonlinear programming problem. This situation could be circumvented by
carefully adding additional basis functions. This was not undertaken in the present
investigation, as it would be rather difficult to assign whether improvements in the
expectation values, relative to those obtained from a reference unconstrained opti-
mized wavefunction, were the result of improvement in the local behaviour of the
constrained wavefunction, the result of the additional basis functions, or some
combination of these two factors.

The CPU costs required to implement the nonlinear programming phase of the
calculations are a significant fraction of the total cost of the calculation. The costs
could have been greatly diminished if less computational exploration had been carried
out. The costs could be further lowered if only a restricted region of configuration
space had been sampled.

The results of this study show that, for the system studied herein, the nonlinear
programming modification of the standard variational method can be used to
improve expectation values, if attenuation is focused on the intermediate range region
of configuration space. The reduced local energy does function as a useful indirect
reflection of the local errors in the wavefunction.

It would be extremely desirable if a theoretical analysis could be carried out to
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unravel, at least in an approximate way, the relationship of |E; (r) — Eq| to Ap(r),
the error in the electron density. Such analysis might provide some insights into the
results obtained in the present study. Calculations on model systems might offer the
best hope to achieve this goal.
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