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The radial electronic density function Dy(7) has been evaluated in closed form for the %S states
of three-electron systems that are described by Hylleraas-type wave functions. The density

function Dy(r) can be reduced to the form:

7 8
DN =73 3 rke .

I=1K=0

Numerical values of the expansion coefficients .o, summation limits g, and exponents «, are
determined for the ground states of the following members of the Li I isoelectronic series: Li,
Be*, B2+, C3*+, N*+, O°*, Fé*, and Ne’*. A discussion is given on the constraints that must
be imposed on the choice of the basis set for the Hylleraas wave function, in order that Dy(r)
be reducible to the aforementioned compact analytic form. Expectation values for several
moments (") are calculated using D,(r). The electron—nuclear cusp condition is evaluated for
the wave functions used to determine D,(r) for each member of the Li I sequence examined in

this investigation.

I. INTRODUCTION

There is a dearth of results in the literature that allows
the determination of relatively accurate electron densities
from fairly simple and compact analytic expressions. While
reasonable quality electronic densities can be obtained from
the extensive Hartree—Fock tabulations of atomic wave
functions by Clementi and Roetti! (with a small investment
of labor), the situation for the rapid determination of elec-
tronic densities giving a good account of electron correlation
is considerably more limited.

The principal efforts that have taken place so far have
been restricted to two-electron systems. A key paper in this
area is that of Benesch,? where a formula manipulation pro-
gram is used to derive expressions for the electron-nucleus
and electron—-electron distribution functions in closed form,
starting with Hylleraas-type wave functions. Benesch ana-
lyzed the S ground state wave functions of Hart and Herz-
berg® for several members of the helium isoelectronic series.
Some earlier work by Coulson and Neilson* gave compact
closed-form expressions for the electron—electron distribu-
tion function, however, this work was based on a small basis
set. Later efforts for two-electron systems®~” have focused
attention on analyzing wave functions of higher quality than
those employed in the Benesch study.

For atoms with- more than two electrons, two ap-
proaches are commonly taken for presenting correlated den-
sities. The first involves numerical tabulation of the density
at various values of the radial coordinate.® The second ap-
proach involves expressing the electronic density in terms of
the natural radial orbitals, and tabulating orbital expansion
coefficients and occupation numbers, which allow the den-
sity to be evaluated as a function of the radial coordinate.®

*) Camille and Henry Dreyfus Teacher-Scholar.
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Il. THEORY
A. Reduction of Dy(r) to basic integrals

The radial electronic density function Dy(r)is evaluated
from

T 21
Dy(r) = f f Po(r)dQ, (1)
0 (4]

where
p(r) = Nf P* (X15X25X 350 X N VWX 15X 5, X5,... X )

Xds, dx, dx; - -dxy. 2)
The following standard notation has been employed in Egs.
(1) and (2). dQ) = sin 6 d8 d¢, x, denotes a combined spa-
tial and spin coordinate, ¥(x,,X,,x;°**Xy) is a normalized
wave function and in the present work N = 3. The wave
functions employed in this study are of Hylleraas type,

Y(x,%0%3) = & P(x,,%,,x3) (3a)

e
=Y CobXor (3b)
M

where &7 is the antisymmetrizer, C, are the variationally
determined expansion coefficients, .#" is the number of basis
functions, and y,, denotes the doublet spin eigenfunction.
The wave functions utilized in this work have employed a
single doublet spin eigenfunction:
Y. =a(D)B(2)a(3) —B(1)a()a(3) (ally). (4)
The basis functions ¢, appearing in Eq. (3b) take the form
¢y E¢;4 (rl’r21r3’r23’r3hr12)
= r'i“ré"‘rf“rﬁ“sr?{‘r?% exp( ~ a,rn _Bpr2 - 7’,;’3)’
(5)

where the exponents i,,, j,, k,,, 1, m,, and n, are each >0.
Additional constraints on these exponents will be imposed
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below. Inserting Eq. (3a) into Eq. (2) leads to

p(r) = Nf{g(l — Py — Pi)®(x,%,,%5) }

X{Z( — 1)”97’¢(x,,x2,x3)]ds, dx, dx,, (6)
P

where 2,(—1Y? =1 —P,; — P, + P33 — P53+ Py,
Equation (6) can be contracted for the problem of interest
from the 18 separate integrals in Eq. (6) to a total of 12
integrals. The 18 permutations have been efficiently handled
by a computer. If Eq. (6) is inserted into Eq. (1), then

DO(r) = J[Z( - l)pl'@'¢(xl’x29x3)]

P

X [Z( — 1)"@<I>(x,,x2,x3)]ds1 dx, dx, r* d}

=syac [lg-vresn

v

X{Z( — 1)‘”9’(;5,,)(1,}ds1 dx, dx, ¥ dQ, ©))

P
where 2, ( — 1)7 7' denotes the restricted sum of permu-
tations (1 — P,, — P,;). Equation (7) is a sum of integrals
that take the form

I(r)) =1(ij,k,l,mn,a,B,y,r)

_ f P+ 2 eyl ylute—n =B dQ), dr, drs,
(8)

where u, = ry;, u, = r3,, and u; = ry,.

Integrals related to those in Eq. (8) have been discussed in
the context of matrix element evaluations for the atomic
three-electron problem.'®!* The integral in Eq. (8) can be
evaluated as follows. The Sack expansion'® for each u; is
employed:

ui = 23 = 2 R"l (r2,r3)P1| (COS 923), (9)
=0
where P, are the Legendre polynomials, 8,; is the angle

J
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between r, and r;, and Sack has derived the following re-

sult!é:
(—1/2),
R ) = ————L 0
i, (Fasts (1/2)1,
I 11 v
Fll, —— ———-=—1,+3/2—=). (1
X(lz > 21+/r2>)(0)

In Eq. (10) (a), denotes the Pochhammer symbol,

r.=ry . =min(ryr3), r, =y, = max(r,r;) and
F(a,b,c;p) denotes a hypergeometric function. Inserting Eq.
(9) and analogous results for u, and u; into Eq. (8), and
employing the standard expansion of the Legendre polyno-
mials in terms of spherical harmonics leads to

& 1
Iy =64 3 o+ 1)

XJ rt 2r{+ 2;"3‘+2e“’" —~Bry— v
1

Xle (r2,7'3)me (r3’rl)Rnw (rl9r2)dr2 df'3.
(11)

If the Sack functions R, (r,7;),R,,, (rr), and
R, (r,, r;) are now inserted into Eq. (11) and the following
integral notation introduced:

A(k,a) =J:o z%e — ** dz, (12)

B(k,a,x) =fw zfe %2 4z, (13)

C(klaB) = J: ye—dy fw Z'e P dz, (14)
v

D(k,LafBx) = Jw ye=*dy jw Zle =P dz, (15

y

then Eq. (11) can be evaluated to yield (see Appendix A for
details and notational simplifications):

I(x) =647~ Y Guin D Gumr D, Gums Y, Gt \XB(@1,8,%) [A(0,7) — B(@y7:x)]
w=0 r=0 s5=0

t=0

+ xme(&)y}’,x) [A (wmﬁ) - B(w4,ﬁ,x) ] + x“’u{D(wS,a)z’ﬂ’}/’x) + D(0)61m4’yrﬂyx) - C(a)5,w2;ﬁ’1/) - C(w6’a)4’7,ﬂ)
-+ A((z)z,’}’) [A(wsﬂ) - B(ws,ﬁ,x) ]+ A(wmﬁ) [A((D(,,V) - B(way'}’rx) ]}

+ xw"[D((I)wws,ﬂ,?’,x) + D(a’s’wv?’,ﬂ,x) ]}'

B. Constraints on the set {//kimn}

The basis functions appearing in Eq. (5) were defined
with each exponent being >0. With only this set of con-
straints a simple compact closed form for the 7 integral, and

2

(16)

r

hence D,(r) does not appear possible. In order to obtain a
functional form for D,(r) suitable for numerical evaluation,
additional constraints on the basis set {i, j, k, [, m, n,}
are imposed. The constraints to be employed are obtained
directly from a consideration of the 4, B, C, and D integrals
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defined in Eqgs. (12)—(15). These integrals can be evaluated
as

A(k,a)=;,’f% k>0, a0, (17)
B(k,a,x):k;i::x ,é:o (";‘)j k30, a>0,  (18)
C‘(k’l’aﬁ)zﬂﬁl j:io ﬂ(ff;;i)i“ f:(g’ ;zg,
(19)
—(a+ B3] ! J (k4 )
D(k’l’a’ﬂm=ﬁ’f'(a+ﬁ)k+‘j=o(aiﬂ) e

k+j (a +ﬂ)mxm
m!

X k>0, a>0, B>0.

(20)

The B, C, and D integrals are defined for ranges other than
those given in Eqs. (18)-(20). B(k, a, x) is directly related
to the exponential integral £ _, (ax) for negative values of
k. C(k,,a,3) actually converges for k>0, k + I> — 1. The
general Cintegral has been discussed in several places in the
literature. 11217

The necessary constraints that must be imposed on the
set {ijklmn} to ensure the conditions stated in Egs. (17)—
(20) are satisfied can be found by examining Eq. (16). The
arguments of 4 are w,, @,, ws, and @, and are required to be
>0. &, and , are both positive by inspection of Egs. (A7)
and (A9). To prove that o5 and w, are >0, we need to deter-
mine the maximum value of tin Egs. (A10) and (A11); this
can be done by an examination of Eqs. (A3a) and (A3b). If/
isodd (and > — 1) then the maximum valueof tis (/ 4 1)/2
because of the Pockhammer result:

m=0

(—a),=0 for b>a and integer a. 2D

For / even the maximum value of w is bounded above by
4/; the actual maximum for wis } (smallest even value of the
set /, m, n), which follows from an inspection of Egs. (A3a)
and (21). Hence for / even (and>0) we have w — § /<0, and
therefore ¢ has amaximum value of§ / — wusing Egs. (A3b)
and (21). Therefore for odd and even values of / (and
I> — 1) ws and w, are both positive values.

We next turn our attention to the B integrals in Eq.
(16). If Eq. (18) is utilized for the B integrals, this avoids
Eq. (16) having a complicated dependence on the exponen-
tial integrals E, (x), which requires that the constraints
;>0 for i = 1 to 6 be satisfied. The cases w,, ®,, ws, and wy
have already been discussed above. The conditions that must
be imposed on the set {ijk/mn} in order that @, >0 and w, >0
are now examined. If the set {/mn} contains no even entry,
the w summation in Eq. (16) does not terminate for any
finite value, since there is no longer a termination condition
on the coefficient a,,,, defined in Eq. (A3a). In order to
arrive at a functional form for Dy(r) suitable for simple nu-
merical evaluation, an obvious requirement is to avoid any
possible infinite expansion for the I integral. Therefore, the

constraint
Im,n not all odd (22)

is imposed. Without the above constraint, w, and », both

take on negative values. Now consider the situation that one
member of the set {Imn} is even. If that member is m, then
, and o satisfy

o, =j+2+l+n—m—(n+1)—(+1)

=j-m (23)
and
o3=k+2+14+m—-2w—(m—-2w)—({U+1)
=k+1. (24)

From Eq. (23), it is necessary to impose the following condi-
tion:

j>m if Lin odd; m even (25)

in order to ensure that @,>0. From Eq. (24), w, satisfies
@;>0. A similar analysis for the cases / even, m and n odd,
and »n even, / and m odd yields the single constraint

k>n if Im odd; n even. (26)

When only one member of the set {Imn} is odd, no addi-
tional constraints emerge. With the imposition of the con-
straints given in Eqgs. (22), (25), and (26), the B integrals
appearing in Eq. (16) involve only finite sums.

Attention is now turned to the Cand D integrals appear-
ing in Eq. (16). The constraints given in Eq. (19) require
that ;>0 for i = 2, 4, 5, and 6. As discussed above, these
conditions are satisfied. In order that Eq. (20) can be em-
ployed for the D integrals in Eq. (16), it is necessary that
;>0 for i =1 to 8. The first six values of w; have been
considered above. @, and w4 are also both >0 on employing
Eqgs. (A12), (A13), (A3b), and (21).

Since D, (r) is a sum of integrals of the form represented
by Eq. (16), it is necessary to ensure w,; >0 for i = 9 to 12.
@,,>0 by inspection of Eq. (A17). oy and w,, are both ob-
served to be positive on using Egs. (A14), (A15), (A3b),
and (21). Since we have previously imposed the restriction
(22), the only other situation requiring discussion occurs for
! even, m and n odd. This latter case requires

i»>l if mn odd; I even 27

in order that w,,>0. All other possibilities for the set {/mn}
yield @,,>0.

Once the constraints necessary for the 4, B, C, and D
integrals to be expressed by Egs. (17)—(20) are determined,
it is straightforward to decide what individual basis func-
tions are allowed. An examination of the product of a basis
function with itself and every other selected basis function is
made, to ensure the appropriate constraints listed above are
satisfied. Simple inspection of the odd—even character of the
basis functions has been employed to minimize the selection
effort.

C. Simpilification of the / integrals [Eq. (16)]

The first step in the simplification of Eq. (16) is to rear-
range products of sums (from the multiplication of two B
integrals) of the form

k

]
Y ax ¥ b,x"
m=0

j=o
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and double sums (from the D integrals) of the form

B(k,B.x)B(l,y.x)

k+j k|l|e—(ﬂ+7)x{k+1 J B’"yf""

2 z d d - ﬁk+l’}/]+1 jg xj mgo m'(]—— m)'
into the format B ; J Bryi—m
. j=Z’ x 2 m!(j — m)!
N b
Zajx Z m? k+ J B mym
o ————] (28)

where the upper and lower limits on the latter sums are de- j=Te1 mZT+1 G—m)im!
termined from the previous summation limits. A product of  For the D integral double summation, the following rear-
B integrals can be written as rangement can be written:

1
—(B+vix]Jy k+1 b m '
D(k1Byx) = — & [ B+ y)x Z( 4 ) (k + m)!
B+ S A ~o\B+ 7 ml
k1 od k1 m '
> (y +B)x ( /4 ) (k+m).}' 29
j=kt1 7 mzo \B+7. m!
In order to collect the summations together in Eq. (16), it is advantageous to introduce the notational device
0 j<k
= .
ik {1 j}k (Oa)
and
0 j>k
Vj'k_{l <k’ (30b)

If Egs. (17) to (20) are substituted into Eq. (16) and the summation rearrangements given in Eqgs. (28) and (29) are
employed, Eq. (16) simplifies with the aid of the definitions

RN w5lw,!

a= Tl d= +1lpw,+1° (3D
Bty o |
B .7
b"_j!’ c‘i—j!, (32)
(B+ Y y Y1 B Y1
= -=(—— —- h=l—]— (33)
ST BTGy TG B T
to yield

o0 @ o0

I(X) =6417’3€_ax Z Z z Z [x ”‘z/"!k"""w's’ + z X [“Yljklmnwrst.le B+ 7=

=0r=0s5=0:¢=0

+‘/¢ijklmnwrstJeiﬂx+‘/V‘ijklmnwrstje“yx]}1 (34)
where
w,lws! @4lwg) w,! &
H ctmnwrst = Qrstl [ S + 4 - 8, (ws + p)!
P 5
ijkImnuwrsi wrstimn 7/“,2+|Bws+] ﬁw4+17/0,,+l 1/02+1(ﬂ+7/)w,+1p;o
! 35
B 2 ) | )
J— w, J — wy J - wy
e'gijklmnwrstl =awrstlmn[AJ,(u| +w.,+1a z b CJ wy—p AJa) a z b CJ Wy — P + A.Iw + wy + 14 2 bJ—m.,—pCp
p=ow +1 p=wr+1
J— oy J—wo
- AJ“’lnd 2 ¢ b'l @i — P + AJ“J1+07|-)+1d z ¢ b-’—wlu—P
p=;+1
J—w w './‘
29 J — wy,
+AJ¢0 +w +1d 2 Ci—w —pbp+
Wy 10 0 . .+ 1
p=ws+1 vyt B+ )t

a)4!f:l—w..
B B

J—ws—w, —1
X[ oo Z gr(ws+PN =By 0,1 > g,,(w5+p)!]+

p=0 p=0

J—w,—w;, — 1
[Alw.. Z h (w6+p)'_ J,we + @y + 1 z hp(w6+p)!]

p=0 p=0
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wﬁigfl-m { @y J ey — w5 — 1
= A g2 g, (w + )!_ A @y - W (w + )s]
'}’w3+‘(ﬁ+')’)w7+l Jywy; pZ:O P 7 p o, + w; + 1 p;o gp 7 p
wl!f:,_w [ @, J—wy— @3 — 1
= a,, hlog+pl—A8,, .. h,(ws + !” 36
ﬂa).-ihl(g_*_?)a)u«}-l 2 33;0 P s TP ooy b @z + 1 = p( 8 P) ( )
Ao Vi + o, @0slby
'lijklmnwrstl = Qoprstimn [AJ,wq V.I,w, + wqa bJ— wy = -’7/024; ’ﬂ mf_*_ f 4 = ]! (37)
80, Viw + o, 0d06C_,
l/’/.ijklmnwrstJ = awrstlmn [Al,w.(, VJ,a)J + w.(,d cJ— @ Lo 2;;:_ 1';/‘:4, |6 2 - ]’ (38)
and
awrs!lmn = awlmn awnrawmsawlr' (39
' 8= 86
D. Compact formula for Do(r) + Y Asxrfe 4+ N A grfem oty
The following restrictions are employed for the expo- £=0 k=0
nents in the Hylleraas expansion {Eq. (5)]: + i o e Qa2 (42)
a, =B, =« (40a) . . k=0 .
- (40b) The explicit form for the coefficients &/, can be found by

Without a restriction to a modest number of fixed exponents,
the possibility for constructing a simple compact formula for
D,(r) is lost. The basic strategy is now to expand both per-
mutation summations in Eq. (7) and collect together terms
for each distinct exponential term that arises. When this is
done the following form for the radial electronic density is
obtained:

Do(r)szZZXP'PEZCqu zzzzawutlmn
P P u v w o~ §
o
X{d}’wm,.f””e—awr’*‘ > rj('@?weﬂﬁrw
J=0

+ Dppe” T+ ?aap'me_ep'p’)}: (41)
where the values of the exponents ap.p, Bpp, Vpp, a0d €p.p
for the different permutations are collected in Table L. y 5. p is
the spin factor from Eq. (7). The structure of the functions
A popw,s B pprs D prpys and & p.p; can be written down by
examination of Eqs. (34)-(38). By noting, for example, the
first entry of Table I and that the exponents appearing in Eq.
(8) and hence Eq. (34) are a=a, + a, = 2a (in Table I);
B=8, +B,=28=2a and y= y, + 7,~ 2y [recall Egs.
(40a), (40b) 1, the functional forms of
A ppo,s B s D ppy, and & p.py are given in Egs. (35)-
(38) exclusive of the a,,,,;,,, factor.

Examination of Table I indicates that seven distinct ex-
ponential terms arise. Therefore, Eq. (41) can be simplified
to:

£ g2
Do(ry= Y & xrXe @+ N A rie
K=0

K=0

E:4) Ba
+ E .xafmrxe‘z”'-i- z .f/mr"e—“‘"‘*‘”)’
K=0 K=o

collecting terms with the same exponential factor that ap-
pear in Eq. (41). Utilizing Table I, we have, for example:

'MSK = 64173 z z Cu Cz; {X:&S 2 2 2 z Ay, stimn ‘52(35(»..
u v w o~ 5

+ X6 Z Z z z Ay, sttmn Mssw,, ]
w o, 8§ 1

(43)

o sk =647P22Cucu{xnZZZEGw»sllmn
u v w oo 5 z
4] 0
Xlzoe-@lu +Xiszzzzaw,sﬂmn Z D135
= w o~ 5 J=0

TABLE 1. Exponential factors that arise for the different permutations in
Eq. (41).

Permutation Exponents

(P'P) App Ber Yer €pp
(L1 2a 4a +2y 4a 2a 4+ 2y
(1,2) 2a 4a+2y da+vy Ja+vy
(1,3) 2a da+2y 4a 2a 4+ 2y
(1,4) 2a da+2y 3a+vy da+y
(1,5) a+y 4da+2y 3a+vy 2a+2y
(1,6) a+y 4a+2y 3a+v 2a+2y
(2,1) 2a 4a+2y A4a 2a + 2y
(2,2) 2a 4da+2y da+vy da+y
2,3 2a 4a+2y 4o 2a + 2y
2,4) 2a da+2y 3da+vy a4y
(2,5) a+y da+2y 3lda+y 2a 42y
(2,6) a+y 4a+2y da+vy 2a + 2y
(3.1) a+y 4a+2y 3a+vy 2a + 2y
(3,2) a+y 4a+2y 2a+2y 3a+y
3,3) a4y 4a+2y 3da+vy 2a+ 2y
(3,4) a+y 4a+2y 2a42y 3a+vy
(3,5) 2y da+2y 2a+2y 2a+2y
(3,6) 2y 4a+2y 2a+2y 2a+2y
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a
+ X2 z z Z E @y stimn JZO D s
o
+X23222:Zaw»stlmn z "@2311' (44)
w o~ 5 ¢ J=0

It should be kept.in mind the multiple sums 2, 2 3 X,
depend explicitly on the particular combination of permuta-
tions made, and hence these four nested summations cannot
be simply factored in Egs. (43) and (44).

The summation limits g; appearing in Eq. (42) are de-
termined by examination of the entire basis set to be em-
ployed. g;, i = 4to 7, each have 2, as the upper limit where

Q, =6+2max{i, +j, +k, +1, +m, +n,} (45)

and the index u spans the entire basis set employed. The
maximum values of g;, i = 1to 3 are determined by the maxi-
mum value of @, [see Eq. (A16)] for the appropriate per-
mutations listed in Table I. For example, g, is given as the
maximum value of (i, + m, +n,) + (i, + m, +n,) +2
or of any of the possible permutations of the bracketed fac-
tors.

Equation (42) can be written in the compact form

7 &r
Dyr)=3 3 o ke ", (46)
I=1K=0

where the values of & ;; and a; can be obtained by examina-
tion of Eq. (42). Equation (46) is the principal result of this
study.

1ll. COMPUTATIONAL DETAILS

Evaluation of the coefficients .« ,, appearing in Eq.
(46) has been carried out for several members of the Li I
isoelectronic series. The wave functions that have been em-
ployed in the present work are derived from more elaborate
wave functions reported elsewhere.'®!? Four different size
basis sets were employed in this work. Table II shows the
basis functions used in the construction of D,(r). The calcu-
lations for Be II employed the first 164 functions, for B III
the first 201 functions were used, for each of C IV through
Ne VIII all entries except those with a value of seven or
greater for any member of the set {i, j, k, I, m, n} were used
(leading to 213 terms) and for Lil, all 233 entries in the
table were employed. The selection of basis functions was
made in accordance with the constraints listed in Egs. (22),
(25), (26), and (27). The fixed exponents that have been
employed can be found in Refs. 18 and 19. In order to get
some idea of the quality of the wave functions employed in
this work, the nonrelativistic ground state energy Eyy for
each wave function is reported in Table III. These energy
values are compared with the best literature values available
for Eyg, and an estimate of the correlation energy is also
reported in Table II1. Although Egs. (22), (25), (26), and
(27) do put restrictions on the basis set, and prevent in prin-
ciple a complete set of Hylleraas functions from being em-
ployed, this is not really a practical restriction at all, as the
high quality of the wave functions is clearly evident from the
results in Table II1. Further justification for this statement is
the quality of the moments of {r7) given below.

The calculations were carried out on a Honeywell
DPS8/49 at the University of Wisconsin-Eau Claire, on a
Cray 18 at Cray Research, Inc., and on a Cray XMP/48 at
the National Center for Supercomputer Applications at the
University of Illinois at Urbana-Champaign. All caicula-
tions were performed in double precision.

iV. RESULTS

Values of the exponential factors a,, summation limits
g; and &7 ;¢ coefficients for each member of the Li I isoelec-
tronic series studied are available from the Physics Auxiliary
Publication Service (PAPS).” Using the tabulated @, and
g, factors and the & coefficients, Eq. (46) has been em-
ployed to evaluate the moments of () defined via

M= Wi, (47)

i=1

The required formula is

()= fm Dy(r)r dr, (48)
o

which has been evaluated using a Gauss-Laguerre quadra-
ture. Because of the simple analytic form obtained for Dy (7),
the integral in Eq. (48) is trivial to evaluate. The electron
density at the nucleus

p(0) = (8(r;)) (49)
has also been evaluated.

A check was made to ensure that the results obtained
using Eqs. (46) and (48) were in agreement with the values
obtained directly from the use of the wave function [Eq.
(47) ]. Complete agreement was found for all moments cal-
culated. Tables IV to XI list some calculated moments and
the electron density evaluated at the nucleus. Also listed are
some values taken from the literature'®!® which have been
obtained using wave functions employing somewhat larger
basis sets. All results are given in atomic units and have not
been corrected for the finite mass of the nucleus.

The results reported in Tables IV-XI were computed
using the coefficients &/, evaluated in double precision.
The o/ ;. coefficients available from PAPS, which report 12
decimal digits, were employed to reevaluate the moments
(7). Injust afew cases, a small change was noted in the eight
significant figure, which led to a change on roundoff of one
in the seventh significant figure for some values of the mo-
ments reported in Tables IV-XI.

V. DISCUSSION
A. Calculation of p(0)

From Eq. (1), the electron density at the nucleus can be
evaluated using

D (r)}
0) =122~ .
p() [41rr2 r—0 (0

It is not immediately clear from the form of Dy(#) given in
Eq. (46) that the right-hand side of Eq. (50) is in fact well
defined. Substitution of Eq. (46) into Eq. (50) leads to
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TABLE II. Basis functions employed to evaluate Dy(7).
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TABLE II1. Nonrelativistic ground state energy and percentage of the correlation energy calculated employing the wave functions of the present study.

wave functions of the

present work*

Lowest Eyy reported

in literature®

Nonrelativistic ground

state energy

Number of terms

in wave function

Species

99.95
99.88

— 7.478 059 (602)°
— 14.324 760 (401)°
— 23.424 604 (503)°
— 34.775 509 (561)°
- 48.376 896 (561)°
— 64.228 540 (561)°
— 82.330 336 (561)°

— 102.682 229 (561)"°

—7.478 051
— 14.324 751
— 23.424 597
- 34.775 505
—48.376 892
— 64.228 536
— 82.330333

— 102.682 226

233
164
201
213
213
213

Li
Be*

99.71
99.52
99.23
99.19
99.13

213
213

Bz+
C3+
N4+
05+
F6+

99.06

Ne7+

9Data from Refs. 1 and 20 to 24 has been employed to estimate the correlation energies.

Size of the wave function is shown in brackets.

®Values taken from Ref. 19.
¢Value taken from Ref. 18.
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TABLE IV. Expectation values for the 25 ground state of Li.

TABLE VII. Expectation values for the 2S ground state of C IV.

Expectation value Evaluated from D,(7) Literature values Expectation value Evaluated from Dy(r) Literature values
{(rm? 3.024 071 (1) 3.024 6 (1)® {(r 1.360 328 (2) 1.356 57 (2)*
(rh 5.718 087 5.718 110° (r" 1.247 620 (1) 1.247 620 (1)*
(r) 4.989 765 4.989 538° (r) 1.812 800 1.812 796°
) 1.835707 (1) 1.835474 (1) () 2.098 812 2.098 797°
(r}) 9.262 792 (1) 9.260 364 (1)° 1t 3.309 300 3.309 249°
0 5.504 163 (2) 5.4580 (2)° () 6.151 805 6.208 5*

r) 3.706 018 (3) (r}) 1.287913 (1)
() 2.788 971 (4) () 2983012 (1)
() 2.340 648 (5) M 7.567432 (1)
1t 2.232172 (6) () 2.087 147 (2)
(r) 2.582 619 (7) () 6.220 152 (2)
(r'® 4.074 779 (8) (r'% 1.992 588 (3)
{8(r))) 1.384 170 (1) 1.384 182 (1)® (8(r,)) 1.269 645 (2) 1.269 640 (2)®

“The notation (#) signifies X 10",
®Literature values taken from Ref. 26 and are derived from the 45 term CI
wave function of Weiss, Ref. 23.
¢ Literature values taken from Ref. 19 and are derived from a wave function
employing 602 expansion terms.

TABLE V. Expectation values for the %S ground state of Be*.

Expectation value  Evaluated using D,(r) Literature values
(r=% 5.699 557 (1) 5.700 4 (1)®
rmh 7.973 875 7.973 888°
(r;) 3.101 439 3.101 401°
(7 6.508 210 6.507 998°
() 1.868 829 (1) 1.868 715 (1)°
0ot} 6.323 114 (1) 6.3711 (1)
{r) 2.414 227 (2)

) 1.023 073 (3)
() 4.767 613 (3)
(#) 2.430 401 (4)
() 1.355799 (5)
r’% 8.372 421 (5)
{5(r;)) 3.510330 (1) 3.510357 (1)®

®Literature values taken from Ref. 26 and are derived from the 45 term CI
wave function of Weiss, Ref. 23.
b Literature values are taken from Ref. 18, and based on a wave function

with 401 terms.

TABLE VL. Expectation values for the %S ground state of B III.

® Literature values taken from Ref. 26 and are derived from the 45 term CI
wave function of Weiss, Ref. 23.
® Literature values are taken from Ref. 19 and are derived from a wave func-
tion employing 561 expansion terms.

TABLE VIII Expectation values for the %S ground state of N V.

Expectation value Evaluated from Dy(r) Literature values
rm 1.883 062 (2) 1.883 20 (2)*
(r=" 1.472 654 (1) 1.472 654 (1)®
(r;) 1.505 322 1.505 320°
() 1.428 073 1.428 065°
(r 1.842 296 1.842 276°
" 2.802 382 2.8139°
(r) 4.798 954
() 9.085 959
() 1.882 907 (1)

) 4.239639 (1)
(r) 1.030 909 (2)
(rl%) 2.692 792 (2)
(8(r)) 2.056 795 (2) 2.056 786 (2)°

* Literature values taken from Ref. 26 and are derived from the 45 term CI
wave function of Weiss, Ref. 23.
® Literature values are taken from Ref. 19 and are derived from a wave func-
tion employing 400 expansion terms for the expectation values (r;), (),

and (r?) and 561 terms for (»,~') and {(5(r,)).

TABLE IX. Expectation values for the S ground state of O V1.

Expectation value  Evaluated from Dy(r) Literature values Expectation value  Evaluated from Dy(r) Literature values
r® 9.226 189 (1) 9.2271 (1)* (r7? 2.490 810 (2) 2.49098 (2)*
r=h 1.022 552 (1) 1.022 553 (1)®° (rh 1.697 673 (1) 1.697 673 (1)°
{r) 2.282 859 2.282 848° (r)) 1.287 827 1.287 826°
) 3.398 147 3.398 093° ) 1.035 562 1.035 560°
(rn 6.902 840 6.902 609° ( 1.131 070 1.131 063°
6] 1.652 841 (1) 1.663 6 (1)* 48] 1.456 792
) 4.460 256 (1) (r) 2.111 773
) 1.333 398 (2) G 3.383 070
1) 4.376 609 (2) A 5.929 356
%) 1.571 403 (3) ) 1.128 655 (1)

) 6.210715 (3) () 2.319209 (1)
(1% 2.787 850 (4) (r% 5.117315 (1)
(6(r.)) 7.145 810 (1) 7.145 863 (1)° {8(r))) 3.116 619 (2) 3.116 604 (2)°

* Literature values taken from Ref. 26 and are derived from the 45 term CI
wave function of Weiss, Ref. 23.
® Literature values are taken from Ref. 19 and are derived from a wave func-
tion employing 503 expansion terms.
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TABLE X. Expectation values for the %S ground state of F VIL

Expectation value  Evaluated from Dy(r) Literature values®
rm% 3.183 568 (2)
(r " 1.922 685 (1) 1.922 685 (1)
{r)) 1.125 614 1.125 614
() 7.857211(—-1) 7.857196 (— 1)
(r) 7443151 (- 1) 7.443120(-1)
") 8315050 (— 1)
(r}) 1.045 291
() 1.451 732
() 2.205 077
(% 3.636 541
P 6.472 472
(rl® 1.236 763 (1)
(8(r,)) 4.489 703 (2) 4.489 681 (2)

2 Literature values are taken from Ref. 19 and are derived from a wave func-
tion employing 561 expansion terms.

1
p0) = [ zdlo'*"—z(&[n—al-ﬁlm)]
I=1 r—0
41” z (A, —a; o gy +1a,.r<i,0) (51)
=

The requirements for a well behaved electron density at the
nucleus is that the following two conditions hold:

7
S Ao =0 (52)
I=1
7
S () — o 19) =0. (53)
I=1

See Appendix B for a discussion of these two equations.
Equations (52) and (53) have been evaluated numerically
for each atom studied, and have been found to be satisfied to
an accuracy expected on the basis of some accumulation of
roundoff errors. The values of p(0) reported in Tables IV to
XI have been evaluated using the result

p(0) =— 2 (L2 —

I=1

a, o +%a§d10)' (54)

TABLE XI. Expectation values for the S ground state of Ne VIIL

Expectation value  Evaluated from D,(r) Literature values®
(=% 3.961 332 (2)
" 2.147 693 (1) 2.147 693 (1)
(r) 9.998 807 ( — 1) 9.998 803 (—1)
A 6.167417(—1) 6.167409 (— 1)
() 5.158932 (—1) 5.158917(—1)
) 5.089250 ( — 1)
(r) 5648780 (— 1)
(%) 6.925128 (—1)
) 9.282768 (— 1)
(") 1.350 685
A 2.120 623
(r® 3.573 861
(8(r,)) 6.216 629 (2) 6.216 599 (2)

# Literature values are taken from Ref. 19 and are derived from a wave func-

tion employing 561 expansion terms.

The values of p(0) tabulated are in excellent agreement with
the results determined from much larger wave functions.

B. Evaluation of the moments (r;') and (r;"?)

To evaluate (r,~ '), the following approach was taken:

(rrh = fm r~'Dy(r)dr
0

© 7
=J vy o e dr (55)
0

I=1

8 o
§ at [ e
0

I=1K=1

The second integral in Eq. (55) is trivial and the first can be
evaluated using Eq. (52) to yield

= 2 J{Io ln(a-;/a,). (56)
I=1

In a similar fashion, the moment {r,” 2) was evaluated as
(rrd = f r=2Dy(r)dr
(1]

© 7
[ 3 et a5
c I

=1

7

+ z IKJ r*=2” " dr.

I=1K=2

The second integral in Eq. (57) is trivial. The first integral
can be written as

o 7
[ 3 et
0 I=1

;
[ 2 -‘{m] - z a; o 1o
r—0  I=1

+r e, )dr

r =t
+I —l Z(d“—a,ﬂ,o)e_a"dr
I=1
- z a,of 1o + 2 (o} —a; e ;o) Inla,/a;)
I=1 I=1
(58)

on employing Egs. (52) and (53). It has been established
numerically that

7
S a0 =0, (59)

I=1

which allows the integral in Eq. (58) to be simplified.

C. Electron-nuclear cusp condition
The electron-nuclear cusp condition takes the form?®

dp(r)

—2Zp(0), (60)
a’ r=0
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TABLE XII. Cusp condition check.

Species P —2Z p(0)
ar lr-o
Li —8.303 171 (1) —8.305019 (1)
Be* — 2.808 100 (2) —2.808 264 (2)
B+ —7.144 828 (2) —7.145810 (2)
c* — 1.523 448 (3) —1.523574 (3)
N4+ —2.879 305 (3) —2.879512 (3)
(1308 —4.986 279 (3) —4.986 591 (3)
Fé+ — 8.081016 (3) — 8.081 465 (3)
Ne’* — 1.243 264 (4) — 1.243 326 (4)

where Z is the nuclear charge. The right-hand side of Eq.
(60) has been evaluated using Eq. (54) and the left-hand
side is, on employing Eqs. (52) and (53):

do(r) 1 2
b/ AL =— A —a, A, +Llase
Fra B 1=21( I3 1 T

—%a;d,o). (61)
The results checking the extent to which Eq. (60) is satisfied
are presented in Table XII. As can be observed the values for
both sides of Eq. (60) are in fairly reasonable agreement,
which improves with increasing nuclear charge.

D. Quality of calculated moments

It is clear from an inspection of Tables IV to XI that the
computed moments (#/),n = — 1,1,2,3and of p(0), arein
very close agreement with the values computed from much
larger wave functions.'®' The CPU costs required to evalu-
ate (r}) directly from the wave function are significant. This
cost increases considerably for larger values of , because the
size of the integral look-up tables required in the computa-
tion become very large, adding greatly to the cost of the
calculation. It should therefore be clear, just how cost effec-
tive working directly with the analytic form for the radial
electronic density given in this work proves to be.

E. Quality of calculated density

There is a scarcity of numerical data available for the
density p(r) derived from wave functions of high quality for
members of the Li I series. There is, however, one test of the
quality of the numerical results for p(7) that can be made. It
has been proved?®! that p(r) '/?is subharmonic for |r| > Z /
€, where € is the first ionization potential of the atom or ion.
Therefore, p(r) should exhibit no local maximum for
|r| > Z /€. Several failures of this restriction on p(r) were
noted, but these were all observed when the density dropped
below ~1X 107" (or smaller). Such departures from the
rigorous behavior éxpected are attributed to round off er-
rors, which have an increasing impact when p(7) becomes
very small.

VI. CONCLUSION

Expressions are reported in this work for the radial elec-
tronic density for the %S ground states of the Li I series with
Z<10. Since the wave functions from which the radial densi-
ties are derived contain a large fraction of the correlation
energy, the results of this work should represent useful
benchmarks for other density calculations. The simple and
compact nature of the final results should make these formu-
las very useful in practical applications.
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APPENDIX A: DERIVATION OF EQ. (16)

Inserting the Sack formula [Eq. (10)] for each radial
function R, (r;, r;) into Eq. (11) yields

I(r,) = 647°r, 2o

oo o0 o0
X 2 @ yimn z Qynr z Qyms
w=0 r=0 s=0 fe=

o0

a,,
[o]

o0 o0
XJ J‘ dr2d"3r£+2r§+ze_ﬂrz_yr»‘ri;;”—hr%;«:w
0 (1]

—w— 25 w4250 —w—2r w+ 2r
Xl‘;’;> rllu3< '1‘2> ’.1102< ’

(Al)

where the expansion formula for the hypergeometric func-
tions,

= (a),(b),)"

F(a,b,cy) = (A2)
,,Z’o (C)pp'
has been employed and the notational simplifications

(—1/72),(—m/2),(—n/2),

wimn = 3 ) ( ;1 ) (A3a)

Qw+ 1)°[(1/2),]

(w—(172)),(—(1/2) — (1/2)),

= (—(172) — (1/72)) (A3b)

(w+ (3/2)),2!

have been introduced. If we employ the abbreviation

fEf("z,"s) —_ r{-l- 2’,§+2e—Br2— vr,
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the double integral in Eq. (A1) can be reduced to the form

oo o0
— W 28,21+ wn — w— 2500 + 25,0 — w0 — 2r w + 2r
f f dr2d7'3f"; > "%3< r;';> r.lu3< r'l'2> rllu2
(] (1]

<

= fw dr, f O
+ [, [ dr ey e
L B Y B
+f° drsf dry fi,= = o= o gk By a2
N Lr. o, J;r, drzfré’ - 2’r§'+ wr;n_w-—2srl;1+25rql— w—2rr124)+27. (A4)
The double integral in Eq. (A4) can be simplified by using the functions defined in Egs. (12)~(15) to yield

oo <«
—w—2,2t+ w — W — 25 W A 25,0 W — 27w+ 2r
f f d’zd":;f’éb 232 s IV TN ry
0 0

> 12 <

=Pt 2B 42414+ n—2w—2t - 2r,Br)[A(k+ 2+ 2t 4 2w+ 2s5,7) — B(k + 2+ 2t + 2w + 2s,7,7,) ]
+TE B+ 2+ 14+ m—2w—2t —25,9,r ) [AG+ 2+ 2t + 2w+ 2r,8) — B(j+ 2 + 2t + 2w + 2r,5,r,) ]
drp 2k + 2+ 2+ 2w+ 2 [AG+ 2+ 1 =21+ 2r8) =BG+ 2+ 1 — 2t + 218,r))]
+AG+24+ 2+ 2w+ 2rB)[Ak+ 24+ 1 —2t + 25,y) — B(k+ 2+ 1 — 2t + 2s,9,7,) ]
—C+2+1—22+2rk+2+ 242w+ 258,y) — Clk+2 4+ 1 — 2t + 25j + 2 + 2t + 2w + 2r,y,5)
+DG+24+1—-2t+2rk+2+2t+ 2w+ 258,y,r) + Dk + 2 +1—2t 425+ 2+ 2t + 2w+ 2r,y,8,r) }
4wt B 2D+ 242t 4+n—2rk+2+14+m—2w—2t—2587.r)

+Dk+24+2t4+m—2sj+2+14+n—2w—2-2rypr)} (AS5)
i
Since certain combinations of the exponents and summation W =1+4+2+ 2w+ 2r+2s, (A1T)
iz;i;;;i chjcur, the following notational simplifications are Q=itj+k+I4+m+n+6. (A18)
If Eq. (AS) is inserted into Eq. (A1) and some of the nota-
o =j+2+1+n—2w—2r—2, (A6) tional abbreviations just given are employed, then Eq. (16)
0, =k+2+ 2w+ 25+ 21, (A7) in Sec. II results.
o3=k+24+1+m—2w- 25 -2t (A8) APPENDIX B: PROOF OF EQS. (52) and (53)
wy=j+ 242w+ 2r+2t, (AS) In this appendix a proof is presented for Egs. (52) and
ws=j+2+1+2r 21, (A10) (53), which are of central importance for discussing p(0),

the moments (r;"') and {r,~ ) and the cusp condition. Ex-

ws=k+2+1+25 -2, (AlD) pansion of Eq. (46) and Eq. (41) according to powers of r
Wy=j+2+n—2r+21 (A12)  yields
wg=k+24+m-—2s+2t, (Al13) 7 7

D, = o Ay —a, A
wo=i+24+m+42r—2s (A14) o) = 2 o +r[,; no ’°}
Wp=1I+2+n—2r+2s (A15) + terms in higher powers of r, (B1)
on=i+2+4+m+n—2w-2r—2s, (A16) and
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Do(r) = 6477} 2 ZXP'P z Z Cqu z Z z zawrsllmn
PP v v w o r st

X{('MP'PO(Sw“,O + Brpro+ Dpro+ &ppo) +"(-Q/P'P|5w,,,1 +Bppr+Dep + & pp

—app ppobay0 —Bee B pro — VerZ pro — €ppo & prpo)

+ terms in higher powers of r}.

(B2)

In Eq. (B2) §,; is the Kronecker delta. By equating corresponding powers of r for Egs. (B1) and (B2), the following results

emerge:

7
Z ‘MIO =6417322XP'P22C14CUZzzzawrsﬂmn
P u v w r s t

=1 P
X{“Q/P'PIS(UH,O + ‘@P'PO + ‘@P'PO + gP'PO} (B3)
and
7
z (‘Mll - aldlo) = 6417’3 z ZXP'P Z z CuCu Z z z z D iyrstimn
=1 PP u v w r s t
x{-—‘Z{P'M‘SwH,l + Bppi+Dppr + & ppi (B4)

—app ppobi,0 —Bpp& pro —

Yer? ppo — eP'PgP'PO}'

Equations (52) and (53) can be established if the terms in braces in Eqs. (B3) and (B4) can be proved to be zero. Five

separate cases must be proved. They are

A ppo + B ppo + P ppo + & ppo =0forw,; =0,
B ppo+ D ppo+ & ppo =0forw, #0,

A ppr+ Bppr+ D e + & pp

—BepRBpro —VppZL ppo —€pp& ppo =0forw, =1,

Beopr+Dppr+&ppr —BppBpro—VerL ppo — €pp& ppo =0,

Bori+Dpp1+&Eppr —appd ppo —BppZ pro
—VppD ppo — €pp& ppo =0form,; =0.

For proofs given below, it will be useful to keep in mind the
minimum values of the w, factors. These minimum values
are0,2,0,2,1,1,1,1,1,1,0, 2 for i = 1 to 12, respectively.
The results for & ., etc., given below are obtained from
Egs. (34) to (38) and the abbreviations presented in Egs.
(31) and (33) are employed.

To prove Eq. (BS), the following results are required for
;=0

_ — o, &
-MP’P?_WZ+1(B+7)05+Ipgogp(w5+p)!
w,lws!
7/J)z+lﬂa)5+1
@,! &
_Bw4+l(ﬁ+,y)w,,+lp;ohp(w6+p)!
wlwg!
Bw,,+4l,};,,+1’ (B10)
B _ a)2! & ([l) + )'
PPO = Bt )yt p;ogp s +P)
@,! &
+B("4+l(ﬁj’_y)mh+lpgohp(w6+p)!,
(B11)

(B3)
(B6)
(B7)
for w;;>1 (B8)
(B9)
-
— wlws!
D ppo 2‘7""%‘—4‘_‘7;‘&9 (B12)
— w,4lwg!
gP'PO - B0’4+ 1;’”66+ 1’ (B13)

Adding Egs. (B10) through (B13) thus proves Eq. (BS).
The proof of Eq. (B6) is straightforward. For »,,#0,

B popo =0, (B14)
D popo =0, (B15)
& ppo =0, (B16)

and hence Eq. (B6) is proved. The proof of Egs. (B5) and
(B6) establishes Eq. (52).
To prove Eq. (B7), first note that with the results

% ppo =0
D ppo =0orm,, =1, (B17)
& ppo=0
Eq. (B7) simplifies to
Lppr+Bppr+Dppr +&ppy =0. (B18)

To prove Eq. (B18), the following results are needed for
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w, =1,
— w,)
T S e G 3 s (@5 +p)
@,! &
_5“1+‘(B ‘+ e ,;::ohp“% +p)
(B19)
w,lws! w,lwg
7/("2+lﬁws+l Bw4+l.'/u,,+1’
;! &
B pp = }/02+I(Bi e pgogp(ws +p)!
w,! &
+Bm‘+l(ﬁ :_ '}’)mb+ 1 p;ohp(a% +P)'
(B20)
—ad, , —ds, ;
lws!
Dpp =ab,,, —"7'/‘02—(321;)27, (B21)
log!
Eppr = d‘sw.o Bmﬁ4l—a;tl+l- (B22)

Addition of Egs. (B19) to (B22) proves Eq. (B18) and
hence proves Eq. (B7).

To prove Eq. (B8) we note that Eq. (B17) also holds for
@, > 1, which requires that we prove (for w,, > 1)

'@P'Pl + gP’P] + gP'Pl - aP'P'!{P'PO _BP'P‘%P'PO
@,

PB4 2

=(app—Bpp+B+ 7’)[

w4 <
+ 4 h !]
ﬂm4+l(ﬂ+y)wﬂ+lp§0 P(w6+p)
a,lws! w4lwgl
+ 7,n.~z+lﬂa),+1(yP'P—a”P—ﬁ) + Bw.+4l7/6u,,+l

Now to prove that the right-hand side of Eq. (B30) =0, itis

necessary to prove for each permutation that:
B=vYpp—app, (B31)
Y =¢€pp —Qpp,s (B32)
B +v=_P8Bppr—app. (B33)

By inspection of Table I, it can be shown that:
Bpp—app=7vpp+€pp—2app (B34)

and hence a proof of Eqs. (B31) and (B32) also proves Eq.
(B33). By recalling the remarks made just above Eq. (42),
thatis, =8, + B,and y=y, + ¥, and noting Eqgs. (40a)
and (40b), Egs. (B31) and (B32) can be verified for each
row of Table 1. With these two results, Eq. (B9) is proved.
This completes the proof of Eq. (53).
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