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A lower bound estimate for the electron density at the nucleusp(a) for S state atoms and ions is derived. A 
refinement is made to the best upper bound estimate for pta) for atomic systems available in the literature. 
A numerical test of the quality of the bounds is presented for members of the helium isoelectronic 
sequence. 

INTRODUCTION 

In the last problem set of his recent book, Thirringl 
poses the following question: "The upper bound (4.3.43) for 
pta) is the exact value if there is only one particle, while the 
lower bound is too small by a factor of 3/16. With more 
electrons the upper bound degrades somewhat and the lower 
bound gets much worse. Find better lower bounds". The 
equation referred to in the above quote is 

-l-IE\ \(E2 - E I ) + a pda)<p(a)<_l- < IJII\71- 211J11), 
21T 21T 

(1) 

where 

pta) = f d 3 XI d 3 X2\IJII(XI,X2W83(xtl, (2) 

pda) = f d 3 XI d 3 X2\IJII(XI,X2W83(XI - x2), (3) 

H~=~~, ~ 

and a = Z - I, where Z is the nuclear charge. The upper 
bound estimate in Eq. (1) was derived by Hoffmann-Osten­
hof et al. 2 A generalization of this upper bound has been 
suggested by Tal and Levy.3 

The lower bound expression given by Thirring applies 
to two electron atoms. For the case of N electrons, Eq. (1) can 
be recast into the form (using atomic units) 

J... [2P(a)+J... EI(E I -E2)]<P(O)<ZN (1JIIrl-
211J1), 

Z 1T 21T 
(5) 

where P (0) is the electron-electron distribution function 
evaluated at 7\2 = 0, i.e., 

P(O) = (IJII ~ 8(r; - rj)llJI) 

N(N-I) = (1JI18(rl -r2)11JI). 
2 

(6) 

In Eq. (5) and below p(rl) is given by 

p(rd =N f IIJI(x\>x2,···,xN Wds, dx2 ••• dxN • (7) 

To the author's knowledge, Eq. (1) is the only published 
lower bound for pta). A lower bound is available for the 
asymptotic behavior of p(7).4.5 

alCamille and Henry Dreyfus Teacher-Scholar. 

The purpose of this note is to consider Thirring's ques­
tion for S state atoms and ions. A slightly improved upper 
bound for general atomic systems is also given. 

LOWER BOUND FOR p(O) 

An improved lower bound for pta) can be derived fol­
lowing the line of argument used by Hoffmann-Ostenhof et 
aU to obtain the upper bound for pta) given in Eq. (5). If the 
following substitutions are employed: 

(8) 

W=r,-2L~ -.f V7+2(f.~-.f Z -E), (9) 
1=2 I <J 7iJ I = I r; 

where r l- 2L i is the angular part of - vi and IJI will be 
assumed real, then the Schrodinger equation takes the form 

-a2u --+wu=a. (to) 
ari 

On combining the expression 

() - N f au a2u - 2 d pO =-- --rl dxl· .. XN 
21T a71 ari 

(11) 

with Eq. (to) and carrying out the partial integrations in­
volved, Hoffmann-Ostenhof et aZ. 2 obtained the result 

+ ;t2 (IJII r l' (r;7~lrtl IIJI) - (IJII ~i IIJI))-

(12) 

If the discussion is restricted to S state atoms and ions, 
the problem of bounding pta) from below reduces to one of 
finding a suitable upperbound for 

/ IJI/ rdrl - r2) /IJI), 
\ 7 1";2 

since Eq. (12) can be put in the form 

(N - I)\IJI\ rl'(r l - r2) \ IJI) + 21T pta) =Z (1JI\71-
2 \1JI). 

7 1";2 N 
(13) 

If (J denotes the angle between the vectors r I and r 12' then for 
the matrix element on the left-hand side ofEq. (13) we obtain 
the following (where the caret denotes a vector of unit mag­
nitude): 

J. Chern. Phys. 80 (9),1 May 1984 0021-9606/84/094317-03$02.10 @ 1984 American Institute of Physics 4317 

Downloaded 02 Jun 2013 to 150.214.205.30. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



4318 Frederick W. King: Electronic density at the nucleus 

(W I r)'~:rt~ r 2
) I w) = (w I i)'idr) - r21 

rt2 

= ( W I i ~:)2 I w) 

=(WIC~20 Iw) 
«w I ~2 I w). (14) 

Combining Eqs. (14) and (13) leads to the lower bound esti­
mate 

P(O);;;':;' {Z(Wlr)-2I W)-(N-1)(Wl r i2 2 I W)}.(15) 

For a number of accurate wave functions, matrix elements of 
ri; 2 are readily available. An upper bound estimate for 
(W Iri2 21 W> in terms of the ground state energy isavailable,6 
i.e., 

(16) 

but this bound is rather rough and not useful for numerical 
estimates for p(O). 

An alternative upperbound for 

(w I rI"!r) - r 2) I w), 
r)rt2 

which is sharper than the result given in Eq. (14), at least for 
some of the systems tested (see below), and which requires no 
additional information, can be obtained as follows: 

_1- (w I (r) - r2)21 W).(17) 
2 r)rt2 

Since the second matrix element on the right-hand side of 
Eq. (17) is obviously positive, 

(18) 

The matrix element appearing on the right-hand side of the 
inequality Eq. (18) can be found in the literature, e.g., Ref. 7, 
but is usually not tabulated. On using the Schwarz-Bunia­
kowski inequality, inequality (18) can be written 

(w I r)'(r) - r 2) I w) 
r)rt2 

< ~ [(W Irl-
2

1 W) (W Iri221 W) ]112. (19) 

Combining Eqs. (19) and (13) leads to the lower bound esti­
mate 

p(O);;;. :;. {Z (W Ir)-21 W) 

-~ (N-1)[(Wlrl-2IW)(Wlri22IW)]1/2}. (20) 

There are two points to note about the lower bound estimates 
given in Eqs. (15) and (20). They both become exact for one 
particle systems, which is not the circumstance for Eq. (1). 
Secondly, only ground state information is required, in con­
trast to the situation for Eq. (1). 

Numerical tests for the three lower bound estimates, 
Eq. (5), Eq. (15), and Eq. (20) are presented in Table I for 
some members of the helium isoelectronic series. 

UPPER BOUND FORp(O) 

The upper bound given in Eq. (1) is fairly sharp, al­
though, as noted by Thirring, would be expected to become 
weaker as the number of electrons increases. The upper 
bound estimate for p(O) for a general atomic system can be 
strengthened by bounding the matrix element 

from below. 
Denote the angle between the vectors r) and r2 by 0)2' 

then it follows that: 

(w I r)'(;:rt~ r 2
) I w) = (w I (r) + r2)~~2(0)2/2) I w) 

;;;.( wi sin2~:2/2) I w). (21) 

TABLE I. Lower bound estimates for some members of the helium isoelectronic series.' 

Lower bounds for prO) 
Species Eq.(5) Eq. (15) Eq. (20) "Exact" 

prO) 

He 0.4565 3.3645 3.3583 3.6209 
Li+ 2.0854 1.2955 X 10' 1.3012 X 10' 1.3704 X 10' 
Be2 + 5.6205 3.2891 X 10' 3.3067 X 10' 3.4392 X 10' 
B3 + 1.1778 X 10' 6.6991 X 10' 6.7343 X 10' 6.9516X 10' 
C'+ 2.1276X 10' 1.1907 X 10> 1.1966 X 102 1.2288x 102 

NS + 3.4831 X 10' 1.9296 X 102 1.9383 X 102 1.9832 X 102 

0 6 + 5.3158X 10' 2.9247 X 102 2.9369X 102 2.9964x 102 

F7 + 7.6974x 10' 4.2142X 102 4.2305 X 102 4.3069 X 102 

Ne8 + 1.0700x 102 5.8363X 102 5.8572X 102 5.9523X 1Q2 
Na9 + 1.4385 X 102 7.8294X 102 7.8554x 102 7.9721 X 102 

Mg lO+ 1.8852x 102 1.0231 X 103 1.0263 X IO' 1.0403 X 103 

"The necessary matrix elements, energies, and exact values for prO) have been taken from Refs. 7-9. All results are in atomic units. 
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TABLE II. Upper bound estimates for some members of the helium isoelectronic series." 

Upper bounds for p(O) 
Species Exact Eq. (5) Eq. (24) 

p(O) 

H- 0.3291 0.3573 0.3498 
He 3.6209 3.8308 3.7950 
Li+ 1.3704 X 10' 1.4255 X 10' 1.4161 X 10' 
Be2+ 3.4392 X 10' 3.5446X 10' 3.5269X 10' 
B3 + 6.9516X 10' 7.1227X 10' 7.0939 X 10' 
C'+ 1.2288 X 102 1.2541 X 10' 1.2499 X 102 

N'+ 1.9832X 102 2.0183x 102 2.0124x 102 

0 6 + 2.9964x 102 3.0429 X 102 3.0351 X 102 

F7+ 4.3069 X 102 4.3662 X 102 4.3563 X 102 

Ne8 + 5.9523 X 102 6.0264 X 102 6.0140 X 102 

Na9+ 7.9721 X 102 8.0617 X 102 8.0466 X 102 

Mg lO+ 1.0403XW 1.05 10 X 103 1.0490 X 103 

"The necessary matrix elements and exact values for p(O) have been taken from Refs. 7-9. All results are in atomic units. 

Applying the Schwarz-Buniakowski inequality to 
(qt Isin2(012/2)I qt) leads to 

(qt I sin2(012/2) I qt)2 

,( qt I sin2~~2/2) I qt) < qt 1 ~2sin2(012/2) 1 qt) 

< ( qt I sin2~~2/2) I qt) < qt 1 ~2 1 qt). (22) 

Combining Eqs. (21) and (22) leads to 

~ [l-(qtlcosOdqt)f <Iqtl Sin
2
(012/2)lqt) 

4 (qtl~2Iqt) \ ~z 

,I qt I rJ"(rl - r2) I qt). (23) 
\ r1rtz 

Substituting Eq. (23) into Eq. (12) leads to the improved 
upper bound 

p(O)'~{Z < qt 1 r l- 21 qt) 
21T 

_~ (N-1)[1- (qtICOSOdqt)12}. (24) 
4 (qtl~2Iqt) 

Matrix elements of ~2' cos 012> and r l- 2 are accessible for a 
number of accurate wave functions. Lower bound estimates 
for 

1 qt I rl'(r l - r2) I qt) 
\ r1rt2 

can be derived in terms of different matrix elements than 
those given in Eq. (23), e.g., 

(qt 1(1 - cos Odl qt )3 1 qt I rl'(r l - r2) I qt) (25) 
S( qt Ird qt)2 < \ r1rt2 ' 

but these results were not as tight as the bound given in Eq. 
(23) for the systems examined. The bound given in Eq. (24) 

remains exact for one particle systems. A numerical test of 
the upper bound estimates given in Eqs. (5) and (24) is pre­
sented in Table II for several members of the helium isoelec­
tronic series. 

From the numerical results displayed in Table I, the 
lower bound estimates represented by both Eqs. (15) and (20) 
are observed to be fairly sharp and much superior to the 
lower bound estimate given in Eq. (1). If the inequality in Eq. 
(IS) had been employed, the lower bound estimates for p(O) 
for the IS state of He becomes 3.5251. 

The upper bound given in Eq. (24) represents only a 
minor improvement over Eq. (5) for the cases examined in 
Table II. This situation prevails in part because Eq. (5) repre­
sents a fairly sharp bound for two-electron systems. For larg­
er electron systems, the correction term in Eq. (24) is likely to 
be more significant. 
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