MoLEcuLAR PHysIcs, 1984, VoL. 51, No. 3, 835-847

Moments of the reduced local energy

A convenient measure of the local accuracy of atomic
Hartree-Fock wavefunctions

by FREDERICK W. KING and MARTIN E. POITZSCH

Department of Chemistry, University of Wisconsin-Eau Claire,
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(Recerved 3 October 1983 ; accepted 24 October 1983)

Compact measures of the local accuracy of a wavefunction are proposed.
They are defined in terms of the reduced local energy. These compact
measures are applied to examine the local accuracy in different regions of
configuration space for some well known Hartree-Fock wavefunctions from
helium through argon.

1. INTRODUCTION

The accuracy of the computed energy is universally regarded as the first
test of the quality of a wavefunction. The computation of a range of expectation
values for observables emphasizing different regions of configuration space
represents an additional means to test the overall quality of the wavefunction.
Close agreement with experimental values for a variety of expectation values is
an important necessary though not sufficient criterion for the accuracy of the
wavefunction.

A problem to resolve for any energy optimized wavefunction is the a priori
prediction of which expectation values are likely to be accurate, particularly
when the expectation value emphasizes a region of configuration space different
from that involved in the energy optimization. The situation becomes most
critical if the experimental result for a particular quantity is not available for
comparison with the computed expectation value.

The most desirable circumstance is to test the quality of the wavefunction in
advance of comparison with experimental expectation values. Some tests are
available, such as the virial theorem [1-4], cusp conditions [5, 6], Armstrong
energy expression [7, 8] and local [9-13] and reduced local energy expressions
[14-18]. These tests may be broadly categorized into three groups. The first
are those tests giving an essentially global assessment of accuracy, although one
region of configuration space may be more heavily emphasized than other regions,
as, for example, with the virial theorem constraint. The second group includes
those tests that provide an assessment of local accuracy which is limited to a
narrow range of configuration space, for example, the cusp constraint. The
third group comprises those tests that examine the local accuracy, either directly
(the local energy functional [9, 10]), or indirectly (the reduced local energy
functionals [14, 18]), for an unrestricted range of configuration space. The
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importance of any particular test is keyed to which expectation value is of
interest ; for example, the satisfaction of the cusp constraint is obviously
important for the calculation of accurate hyperfine coupling constants.
Related information assessing the accuracy of the wavefunction in the near
nuclear region may also be obtained from the local and reduced local energy
functionals.

The purpose of this paper is to propose a convenient set of criteria to assess
the local accuracy of the wavefunction, as measured in a global manner. These
criteria are then employed to assess the accuracy of some standard Hartree-Fock
wavefunctions.

2. THEORY

The reduced local energy is defined for an N electron system (N>2) by
[14]

[WH(ry, vy, oty )HY(ry, vy, oo vy) dsydry ... dTy

) [ W*(ry, vy oo ry)H(ry, 1y, oo Ty) dsy drydrg o dTy ™)

Ey(r

It has been recognized that a corresponding result holds for the Hartree-Fock
formalism [16, 17],
W *g(ry, vy, o P )HY RR(ry, Py, o Fy) dsy dry - dTy

E AF(p )= N 2
() JE*ap(ry, o - Py)Vap(rs, Fey -oo Ty) dsy dry ... dTy (2)

Equation (1) represents a necessary condition on the wavefunction ; in the limit
that the exact eigenstate is available.

Ey(r)=E, 3)

where E is the exact energy. A similar situation holds in the Hartree-Fock
formalism ; if the exact Hartree-Fock wavefunction is available,

E H¥(r) = EHE, “4)

where EHF denotes the exact Hartree-Fock energy.

Equation (2) has recently received some attention, both as a means to assess
the local accuracy, and as a constraint, or set of constraints, in a modified
Hartree-Fock formalism [19-23].

The reduced local energy can be incorporated into global measures of local
accuracy. The following measures of local accuracy are defined :

1 .
Dy, =5 § (BN = B HE(r))* rmp(r) dr, (3)

A= § B = BB () dr, ©)

for values of m which lead to convergent integrals, i.e. m> —2. p(r) is the
Hartree-Flock electronic density. Equations (5) and (6) have been formulated
specifically for atomic systems. To take advantage of spherical symmetry, the
numerator and denominator of (2) have been integrated over the angular co-
ordinates (6, ¢), leading to the quantity E;#¥(r). The density weighting factor
is inserted in the integrands in order to ensure convergence of the integrals in
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(5) and (6). Generalization of (5) and (6) to deal with systems of general
symmetry (including molecular systems) presents no new features. Analogous
expressions may be defined for near exact wavefunctions.

A, and D,, measure the local accuracy in a global manner. In the limit that
the exact Hartree-Fock wavefunction is available, the following results hold :

D,,=0, ™)
4,=0, (8)

for m> —2. Equations (5) and (6) represent stringent a priori tests of the local
accuracy of the wavefunction. No knowledge of any experimental expectation
value other than the energy is required ; in practical applications, the computed
energy from the energy optimized wavefunction is used. The moments A,,
and D,, have the advantage that they offer the most compact means to express
information on the local inaccuracies in the wavefunction.

Equations (5) and (6) represent necessary but not sufficient tests of the
accuracy of the wavefunction. By performing the global integration over
configuration space, it is possible for a particular moment, that errors in one
region may offset errors in a different region. With this fact in mind, it is
obviously advantageous to compute several moments. It is far less likely that a
fortuitous cancellation of errors in different regions of configuration space will
occur when several different powers of r are employed. For this reason, we
believe the moments defined in (5) and (6) will represent a very useful means to
assess local accuracy. Attention may be focused on different regions by examin-
ing different powers of r; the short range behaviour can be studied using
m= —2 and — 1, the long range inaccuracies can be studied using m=38, 9 and 10
and higher values.

3. CALCULATIONS

Equations (5) and (6) have been applied to study the local accuracy of the
atomic Hartree-Fock wavefunctions of Clementi and Roetti [24]. These
wavefunctions have been examined for three reasons. They are very widely
used in the chemical literature, so some assessment of their local accuracy is of
interest. 'They are accurate (in the energetic sense). They are compact ; the
expansion coefficients and orbital exponents are presented in the Clementi—
Roetti tables.

In tables 1 and 2, values of D,, and 4,, are presented for several different
helium wavefunctions. All results in tables 1 and 2 and throughout this work
are expressed in atomic units. From the results given, an understanding of how
basis size alters D,, and A4,, can be obtained. The single zeta quality wave-
function, as expected, exhibits the largest errors. The D,, and A4, values
indicate that this wavefunction is uniformly poor over a large range of con-
figuration space. The double zeta quality wavefunction is observed to be a
substantial improvement over the single zeta wavefunction, for essentially all of
configuration space examined by the tabulated moments. It is already apparent
from the single zeta and double zeta results, that the smallest moments, m =0, 1,
and 2, directly reflect the quality of the wavefunction in the energy important
region, i.e. at modest distances from the nucleus ; »~1—3 a.u. (for He).
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The first three-term entry in tables 1 and 2 is not an improvement over the
double zeta results, and in the energy important region, the values of 4,,and D,,
are worse than the corresponding double zeta values. This wavefunction from
the Clementi—Roetti table is not properly normalized. The energy and expan-
sion coefficients have been recomputed using the same exponents reported by
Clementi and Roetti. The 4,, and D,, values obtained from this new three term
wavefunction are given as the second three term entry in tables 1 and 2. Both
the energy obtained from the recomputed wavefunction, and the observation
that the 4,, and D,, moments for the energy important region are not sub-
stantially better than the first three term results, and in fact for a number of
moments, poorer than the double zeta values, indicates that the quoted three
term orbital exponents are far from optimum.

The first of the five term wavefunctions is taken from Clementi’s older
tables [25], the second is from the Clementi—Roetti tables. The former wave-
function is known to satisfy the cusp condition more closely than the Clementi-
Roetti wavefunction. This is directly evident from the values of 4,, and D,
appropriate to a description of the near nuclear region, i.e.m=—2and —1. The
first of the two five term wavefunctions is also more accurate for most other
regions of configuration space, except the very long range region. The values
of 4,, and D,, for the energy important region are very small, and this is consis-
tent with the fact that both the Clementi and Clementi-Roetti wavefunctions
for helium lead to an error of less than one in the eighth significant figure for the
energy [26]. ‘

It is possible to modify the standard Hartree—Fock calculation by imposing
additional constraints. One version of the constrained Hartree-Fock method
imposes the requirement that the wavefunction satisfy certain expectation value
constraints. For a recent discussion, containing relevant references to earlier
studies, the work of Zeiss and Whitehead [27] may be consulted.

In a recent work from our group [20], a modified Hartree—Fock calculation
for helium was carried out using as an additional imposed constraint, the
requirement that the moment D, be as small as possible. The starting input for
the calculation was the Clementi-Roetti, five term Hartree-Fock wavefunction.
The same orbital exponents were retained, and the expansion coefficients
recalculated using the constrained Hartree-Fock procedure. The resulting
wavefunction was employed to calculate the 4,, and D,, moments recorded as the
last entries in tables 1 and 2. The constrained Hartree—Fock calculation tended
to refine the small 7 region. Graphs of E'¥(r) illustrating the observed changes
can be found in [20]. This improvement in the near nuclear region is to be
expected, because the imposed constraint emphasizes the shorter range be-
haviour of the wavefunction, and the Clementi—Roetti five term wavefunction
does not satisfy the cusp conditign. This improvement in the local accuracy
of the wavefunction at short range is directly reflected by the values of D_s, D_,,
D, and A_,, A_, for the refined five term wavefunction, which are all improved
compared to the corresponding values obtained from the Clementi-Roetti
wavefunction.

Tables 3 and 4 present values of D, and 4,, for the ground states of Li
through Ar, derived from the wavefunctions in the Clementi-Roetti tables.
Sulphur has not been studied because there is an error in the tables for this
atom. In general, the values of 4,, and D,, for m=—2 and —1 for all the
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Figure 1. Hartree-Fock reduced local energy ELHF(r) as a function of 7 for the ground
state of Si for the short range region. The °exact’ Hartree—Fock wavefunction
should yield a reduced local energy which follows the horizontal line at
ErLHF(r)= EHF= —288-85431 a.u.
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Figure 2. EpLHF(r) as a function of 7 for the ground state of P for the short range region.
The ¢ exact > Hartree—Fock wavefunction should yield a reduced local energy which
follows the horizontal line at ELER(r)= EHF = —340-71869 a.u.

atoms indicate poor behaviour for the wavefunctions in the region near the
nucleus. An indication of the poor behaviour of the wavefunctions in the near
nuclear region is illustrated for the case of Si and P in figures 1 and 2 respectively,
where E1HF(r) is plotted versus the radial coordinate ». The ‘ exact ’ Hartree-
Fock wavefunctions would yield the horizontal line indicated in the figures.
Similar behaviour is observed for other atoms in the near nuclear region. The
low order moments (m= —2, m= —1) thus serve to quantify in a compact
fashion the information represented by results such as those displayed in figures

1 and 2.
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region. The ‘ exact’ Hartree—Fock wavefunction should follow the horizontal line
at EHY = —340-71869 a.u.

For the energy important region, all values of A4,, and D,, (m=1-3) are
reasonably small for each atom. This is an expected result, since the Clementi-
Roetti wavefunctions are known to be fairly good in the energetic sense.

The results obtained for 4,, and D,, for high values of m indicate poor
behaviour for the wavefunctions at large distances from the nucleus. Figures
3-6 illustrate results for E;1¥(r) for the atoms Si, P, Cl and Ar, which includes
the longer range region. The reduced local energy for atoms Li through Al
have been presented elsewhere [20]. The general trend observed in figures 3-6
(and also supported by results for the other atoms) is that the deviations of
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E 1¥(r) from EHF increase at long range 7, reflecting inaccuracies in the wave-
functions in this region. Since the Hartree-Fock electronic density being used
to compute D,, and 4,, is derived from the energy optimized wavefunctions,
both sets of moments will reflect in part, inaccuracies in p(r). This is going to
be particularly true at long range. In any case, the deviation of E;HF(r)
from EH¥, and the deviation of the electronic density derived from the energy
optimized wavefunction from the exact Hartree-Fock density, both reflect the
local quality of the wavefunction.
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All of the results reported in this work, except the modified 3-term and the
refined 5-term Clementi-Roetti wavefunctions for helium reported in tables 1
and 2, have employed the wavefunctions exactly as presented in the Clementi
tables. The definitions given in (5) and (6) involve the difference between
EUF and E;H¥(r), which for high quality wavefunctions, may involve the
potential for considerable reduction in the number of significant figures for the
resulting values of 4,, and D,. An indication of the nature of this problem
has been ascertained from the following calculation. Using the orbital ex-
ponents for the Clementi-Roetti 5-term function, the wavefunction was
recalculated yielding slightly more accurate expansion coefficients and then the
D,, and A,, moments recalculated. For D,,, the observed changes were small at
large m, approximately +1 in the third significant figure (i.e. 0-3 per cent
change). This holds down to the energy important region where the change

was ~ 0-6 per cent. However, for the smallest values of m, m= —2 and m= —1,
the results changed by approximately 13 per cent. A4, values are less sensitive
to small changes in the expansion coefficients. Except for m= -2, m= —1

and m =0, where the observed changes were approximately 7, 3 and 0-8 per cent
respectively, higher moments did not change by more than +2 in the third
significant figure.

A description of the program has been given elsewhere [28]. The algebraic
details necessary for the evaluation of E},"'¥(r) may also be found in [28].

As the results in the tables of this paper clearly show, the moments A4,, and
D,, serve as very useful compact measures of the local accuracy of wavefunctions.
Since these represent a priori constraints, it should be possible to construct
better wavefunctions, and hence calculate improved expectation values, by using
several moments, for a range of m covering the short, medium and long-range
regions, as constraints in a modified Hartree-Fock calculation. Plans are
underway to implement such a calculation.

The authors thank Mike Kelly and Mary LeGore for help in the program
development. Acknowledgment is made to the Donors of the Petroleum
Research Fund, administered by the American Chemical Society, for support of
this research.
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