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Reduced local energy surface profiles for hydrogen
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Three dimensional molecular reduced local energy error surface profiles
are reported. The calculations are carried out for the hydrogen molecule
using the Hartree—-Fock wavefunctions of Coulson, Goodisman and Kolos
and Roothaan. These surfaces provide both a complete and a simple way to
interpret local errors in these wavefunctions.

1. INTRODUCTION

It is well known that a wavefunction, optimized using the standard variation
method to yield the best energy, does not necessarily lead to equally satisfactory
values for the expectation values of other observables. (See for example the
work of Mukherji and Karplus [1]; a concise account is given in Pilar [2].)
Two factors that are important for an understanding of the preceding comment
are as follows. The standard variational procedure tends to optimize the
wavefunction in a restricted region of configuration space, which is of course,
directly tied to the form of the operators which make up the hamiltonian.
For an operator that depends on a region of configuration space different from
that emphasized in variational calculations, it is not too surprising that the
expectation value of such an operator may not agree with the experimental
value. A second and perhaps somewhat more subtle feature of the variational
procedure concerns the possible cancellation of errors in energy computations.
It is possible that the wavefunction may be inaccurate in the region important
for determining the energy, but offsetting errors in different regions of con-
figuration space lead to an overall value of the energy which is very good.
For an operator emphasizing a different region, there may no longer be the
same cancellation of error, with the obvious result that a less satisfactory value
for the expectation value is obtained.

There is one obvious way to examine if the above mentioned factors are
important, and this is to explore the local behaviour of the wavefunction. This
idea has been in the literature for a considerable time. Some years ago Frost
[3, 4] considered the problem in the following way. Dividing the usual
Schrodinger equation by W leads to

-0, M)

If ¥ is exact at each point of configuration space, the right hand side of equation
(1) should be a constant equal to the exact energy of the system. If a trial
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wavefunction ¢ is employed, then (Hy)/i is a function of each particle coordinate.
Clearly, the constancy of (Hy)/y may be used as a criterion for the accuracy
of the trial wavefunction. Frost took the idea one step further and proposed
determination of the energy using
(HY)
e=—= 2)
¥

where a suitable set of representative points in configuration space were selected.
Parameters appearing in the trial wavefunction were optimized in a least squares
procedure by minimizing the variance of e. A number of authors have taken
up this approach [5-20].

2. REDUCED LOCAL ENERGY

The main difficulty associated with the Frost approach is that, for an N
electron wavefunction, the dependence of ¢ on 3N electronic coordinates makes
this approach difficult to implement. A simplification of the Frost local
energy concept was suggested by Rothstein and co-workers [21, 22]. These
authors introduced the notion of a reduced local energy, defined for a system
of N (=2) electrons by

By(ry)= [ W*(ry, vy . )HY(ry, 1y, . ry) dsydrydry .. dry
L T % (e, 1y, .ty ) WPy, 1y, oo Fy) dsydrydrg o dTy

)

For the exact wavefunction, E;, defined by equation (3) is a constant for all
points in configuration space. Equation (3) has the advantage that interpre-
tation of the local behaviour of ¥ is simplified in comparison to equation (2),
however it should be noted that there may be subtle cancellation of inaccuracies
arising in equation (3). Equation (3) may be used as a necessary condition
for determining the local accuracy of the wavefunction, but it is not a sufficient
condition.

The recent work of Cohen and Frishberg [23] and Nakatsuji [24] has shown
that a result of the same form as equation (3) holds when ¥ is the Hartree-Fock
wavefunction and E is replaced by the Hartree-Fock energy, that is

§ Wap*(ry, ra oo rN)H Y gp(ry, ry, oo ry) dsydrydry ... dry
§ Wur*(ry, roy oo ry)Fup(ry, ro, - ry) dsydrydrg .. dry

E M8 (r) = 4)
Several generalizations and applications employing the reduced local energy,
the reduced local energy matrix and the related density matrix equation have
recently appeared [25-30].

Since the vast majority of atomic and molecular wavefunctions in the literature
are of Hartree—Fock quality, equation (4) should represent a very useful pro-
cedure to test the local accuracy of such wavefunctions. Equation (4) has only
very recently been utilized to study the local accuracy of wavefunctions. Two
of the authors have examined the local behaviour of the Clementi [31], Clementi-
Roetti [32] atomic Hartree-Fock wavefunctions and some locally refined
wavefunctions [33-35]. A study by Grelland and Almléf of the local accuracy
of the Hartree-Fock wavefunctions for H,O and CH, has just appeared [36].
These authors determined some surface contour maps of the local behaviour
of the wavefunctions for these molecules.
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3. REDUCED LOCAL ENERGY ERROR PROFILES

The purpose of the present work is to present three dimensional maps of
the local behaviour of a molecular wavefunction, using the reduced local energy
defined in equation (4) as a measure of the error in different regions of con-
figuration space. Because symmetry will be employed to reduce the coordinate
dimensional space from 3 to 2, our profiles are three dimensional in the sense
that E HF is employed in place of the eliminated angular coordinate. The
molecule of interest in this study is hydrogen. Our attention has been focused
on this molecule for two reasons. It is a two-electron system, so computations
on a large number of points in configuration space are possible without using an
excessive amount of computer time. Also, the hydrogen molecule has been
well studied in the literature and the present study provides an examination
of the local accuracy of some carefully prepared wavefunctions.

The orbital functions that have been examined take the form

p= 2 Cif™n™ exp (- 8¢), (5)
where the elliptic coordinates are
_ rA + TB _ rA _ TB
(=% 1="g (6)

R is the internuclear distance and r, 75 are the appropriate electron-nuclei
distances. & is a parameter that has been selected to optimize the energy.

The parameters employed in the wavefunction, equation (5). For each wavefunction
6=0-75 and R=1-4 a,.

Number
Wavefunction of terms (m;, n;) values Electronic energy/En
Coulson [37] 5 0, 0), (1,0), (2,0) —1-847462
©0,2),(1,2)
Goodisman [38] 9 0, 0), (0, 2), (1,0) —1-847859

2,0),(1,2),(0,4)
(1,4),(2,2), (3,0
Kotos-Roothaan [39] 9 (0, 0), (1, 0), (2, 0) —1-847903
0,2),1,2), 3,0)
(4, 0), (2,2), (0,4)

Three different Hart:ee-Fock wavefunctions for hydrogen have been
examined. The appropriate values of 6, R, m and n are given in the table.
The first wavefunction studied is based on an old calculation, which is primarily
of historical interest, made by Coulson in the pre-computer era [37]. Coulson
developed several wavefunctions for hydrogen. However, we have only
examined his best function which contains five basis terms in the expansion
given by equation (5). We have recalculated the Coulson expansion coefficients
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C,; using the same values of m; and #n; which he employed. The refined coeffi-
cients have been employed to compute the reduced local energy error profile.
The second and third wavefunctions considered represent rather accurate
Hartree-Fock descriptions for the energy of the hydrogen molecule [38, 39].
The expansion coefficients were calculated from our own Hartree-Fock program.

To simplify equation (4), we have taken advantage of the cylindrical symmetry
and integrated both the numerator and denominator with respect to the angle ¢.
The reduced local energy is now a function of the two elliptic coordinates ¢
and 7, that is, EH¥(€, n). The reduced local energy error surfaces have been
constructed with ¢ and % the in-plane coordinates, and the vertical coordinate
represents the absolute value of the electronic contribution to the reduced
local energy. The origin for the vertical axis has been set at 1-848 E; which
represents the absolute value of the Hartree-Fock electronic energy of the
hydrogen molecule (to four significant figures). The rest of this paper will be
concerned only with the total electronic energy.

The evaluation of the appropriate matrix elements appearing in equation (4)
is straightforward, though somewhat more tedious than the determination of
the matrix elements required for the evaluation of the Hartree—Fock energy.
There is a loss of symmetry which arises because integration over all coordinates
is not performed, with the result that the final expressions for the matrix elements
are somewhat more involved. All the computations reported were carried
out on a Honeywell DPS 8/20 using double precision.

Figure 1 shows the results for the Coulson wavefunction. Figure 1 (a)
gives an overview of the whole surface and figures 1 (b) and (c) show cross-
sectional cuts along the internuclear axis and perpendicular to the internuclear
axis (passing through one of the hydrogen nuclei). The long axis horizontal
scale corresponds to three times the H, bond length. The short axis scale
is based on the same scale. The reduced local energy scale is indicated in

I Il
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Figure 1. Reduced local energy error surface for the hydrogen molecule using the Coulson
five-term Hartree—Fock wavefunction. (a) shows the whole surface. The vertical
axis represents |ELEF({, 5)| in En. The elliptic coordinates ¢ and 7 are the other
two axes. The horizontal long axis corresponds to three times the hydrogen bond
length. The horizontal short axis is based on the same scale. (b) shows a cross-
sectional cut along the internuclear axis. (c) shows a cross-sectional cut perpen-
dicular to the internuclear axis and passing through one hydrogen atom. The
grid origin is set at |ELHF|=1-848 En.
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figure 1(a). The position of each hydrogen atom is indicated by the two
spikes in the figure. The plane defined by the frame in figures 1 (b) and (c)
indicates the absolute value of the exact Hartree-Fock electronic energy.

The exact Hartree-Fock wavefunction for H, would yield a flat plane,
since |ELM¥(£, 7)| is a constant independent of ¢ and ». The most obvious
feature from the figure is that the reduced local energy changes abruptly in
the region of each hydrogen nucleus. At each nucleus the reduced local energy
becomes infinite. It is also clear from the figure, particularly from the long-axis
cross-sectional cut, that E; HF deviates significantly from a constant value in the
region between the two nuclei. This is the region of configuration space which
is important for the calculation of most typical expectation values. It should
also be noted (see the cross-sectional views) that there are both positive and
negative deviations from the constant EHF. Since the total Hartree-Fock
electronic energy is obtained by integrating EyHF(¢, n) multiplied by the ¢
angle averaged electronic density, the positive and negative deviations partly
offset each other, with the result that a reasonably accurate value of EHF is
obtained. However, this cancellation of errors would not be expected to be
equally fortuitous for a wide range of different expectation values.

The second wavefunction examined is due to Goodisman and the reduced
local energy error surface is shown in figure 2. The Goodisman function is
observed to lead to a much more accurate E; HF surface, compared to the results
obtained from the Coulson wavefunction. A comparison of the long-axis
cross sectional cuts (figures 1 (b) and 2 (b)) shows that the Goodisman E}HF
is better in the important internuclear region. The Goodisman reduced local
energy displays some oscillatory behaviour along the internuclear axis. The
low point, at the midpoint of the internuclear separation, corresponds to | E;BF| =
1-823 E,, and the neighbouring crest corresponds to |E HF|=1-899 E;. Since
the region between the nuclei is important for the determination of the total
electronic energy, there is obviously some favourable cancellation of errors of
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Figure 2. Reduced local energy error surface for H, using the Goodisman nine-term
Hartree—Fock wavefunction. (a) is the whole surface ; (b) and (c), cross-sectional
views. The scales are the same as for figure 1.

opposite sign, implicit in the value of EHF obtained with the Goodisman wave-
function.

The third wavefunction examined is a 9-term expansion due to Kolos and
Roothaan. These authors have given an extensive number of Hartree-Fock
wavefunctions for the hydrogen molecule. We have selected the wavefunction
with the same exponential parameter (8 =0-75) and bond length used by Coulson
and Goodisman. The reduced local energy error surface computed from the
Kolos-Roothaan wavefunction is shown in figure 3. From figure 3 the Kotos-
Roothaan E;HF surface is observed to be superior to the Goodisman E;HF
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surface. The Kolos—-Roothaan E HF diverges (that is, E{HF - — c0) at each of
the hydrogen nuclei, a feature common to all three wavefunctions investigated.
The spikes on the Kolos—Roothaan surface are slightly sharper than the corres-
ponding spikes on the Goodisman surface. The most obvious feature observed
from figure 3 (a) is the constancy of EyHF everywhere except the two nuclear
positions. An indication of how close the flat region corresponds with the exact
Hartree-Fock electronic energy can be obtained from the cross-sectional views,
figures 3 (b) and (¢). The baseline of the grid in these cross-cut views denotes
the exact energy, and is observed to be almost superimposed on the EHF
surface plane. For the Kolos—Roothaan wavefunction favourable cancellation
of errors of opposite sign for E BF is expected to be less important compared
to the Goodisman wavefunction.
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Figure 3. Reduced local energy error surface for H, using the nine-term Kolos—Roothaan
Hartree-Fock wavefunction. ‘The scales on the whole surface (@) and cross-
sectional views (() and (c)) are the same as for figure 1.

4. DiscussioN

There is a simple explanation for why the total electronic energy remain
finite, despite the appearance of extremely large (infinite!) errors in the reduced
local energy at the site of each nucleus. It can be shown (with some tedious
algebra) that Ey H¥(¢, ) for the approximate wavefunctions [37-39] considered
in this work blows up like

ELRE(E, n)oc(é49) (7)

at each nucleus. Recall from equation (6) that £ 1 and n—>=+1 at the hydrogen
nuclei. When the total energy is evaluated from E H¥(¢ 7), the required
volume element factor (the angular term has already been taken into account in
E BE(€, m)) is

dV = }Ra%(£2—n?) d¢ dy. 8)

The critical factor in equation (8) is the term (€2 —7?), which effectively wipes
out the large errors present in the wavefunction in the region of each nucleus.
There is no reason to expect that the evaluation of all expectation values,
particularly those based on operators emphasizing the region very close to the
nuclei, would exhibit exactly the same favourable reduction of errors in the wave-
function in the near nuclear region. Relevant discussion on the singular
behaviour of the wavefunction applicable to the present study, can be found in the
work of Kolos and Roothaan [39] and Pack and Byers-Brown [40].

The reduced local energy surface provides a very stringent probe of the local
accuracy of the wavefunction, which in turn may be employed to predict the
probable accuracy of various expectation values emphasizing different regions of
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configuration space. In the present study we have computed the reduced local
energy for a very extensive number of configuration space coordinates. For
larger molecules, a simpler and less expensive approach would be the examination
of the region in the immediate vicinity of each nucleus and each chemical bond.
This approach would provide the key information necessary to examine the
accuracy of the wavefunction in the region of principal chemical interest.

The authors thank Brian Dalke for some useful observations. Acknowledg-
ment is made to the Donors of Petroleum Research Fund, administered by the
American Chemical Society, for support of this research.
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