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Lower bounds are derived for the quantities max[o~'%{(w)] and max[w ~'k(w)], where
k(w) is the absorptive part of the generalized refractive index and w €[0, 0 ). An upper
bound is obtained for min[«(w)] where w lies in the finite spectral range [w,0,] (@, and
w, arbitrary). The results are restricted to a nonconducting isotropic medium, and no
specific assumptions on the nature of the medium are employed.

The determination of the sharpest bounds

O minsOmax for any medium for the optical constant
O(w), ie.,

eminSO((D)Semax ’ we(wbe) (1)

where the spectral range (w,0,) may be finite (ar-
bitrary w,,w,) or infinite, is clearly a problem of
great practical significance. This is particularly so
if the results are not based on restrictive assump-
tions specific for a particular material. Any
knowledge of 6., and 6,,,, would be extremely
useful in testing the quality of experimental data
and would potentially be a powerful adjunct pro-
cedure to the standard techniques of optical data
analysis using the well known sum rule approach.!
Unfortunately, very few general relations exist, and
these are essentially obvious results which follow
directly from the definition of the appropriate opti-
cal constants.

The purpose of this Report is to point out the
existence of some bounds on 6;, and 6,,,, when
0(w) is 0~ 'klw), ™ ?*k(w), and k(w), respective-
ly, where «(w) is the extinction coefficient (absorp-
tive part of the generalized refractive index). For
the bounds on 6,,,,, the infinite spectral range is
employed, whereas for the bound on 6,,;, a finite
frequency interval [w;,w,] is employed.

The underlying assumptions used in the deriva-
tion of the bounds presented below are as follows.
The approach taken makes direct use of some sum
|

fow o~ k(o)1 —d?w?)dw < wa 0~ k(w)e =" de <

If we employ the well-known sum rules®~’

foww_lk(w)dw=%[n(0)—1], (5)

25

1381

rules derived from the Kramers-Kronig relations.
The optical constant under consideration is there-
fore assumed to be a part of a generalized optical
constant which is an analytic function in an ap-
propriate frequency domain. The free electron gas
model is assumed to be valid to determine the high
frequency behavior of the optical constant in ques-
tion. It is to be emphasized that no assumptions
on the specific nature of the medium are made, ex-
cept that it is nonconducting, and our treatment,
has for reasons of simplicity, been restricted to iso-
tropic medium.

If 6, denotes the maximum value of » ™~ 'k(w)
for wE[0, ) and f(w) is a weight function, de-
creasing on [0, « ), then it follows that?

[ 0 k(0)f (©0)d0 < ey [, fl@)dw, @)

where the optimum value of o' is

o

o koo . (3)

0
Because k(o) ~w~'? as @—0 for conductors, the
integral in Eq. (2) may diverge [the integral in Eq.
(3) does diverge], and we have accordingly restrict-
ed consideration to the case of nonconductors, for
which the integrals in question are convergent.
With an appropriate choice for the weight func-
tion, i.e., f(w)=exp(—a’w?), a >0, and the simple
approximation 1—a’w? < exp(—a’w?), then,

O max ' 0 ®
Za foawe““’zda)< Zax fo e do .
[
fow wx(w)dwz%w; R (6)

where n(0) is the refractive index at zero frequen-
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cy and w), is the plasma frequency, then Eq. (4)
yields

ar! 1 (0)—1— 502 ] < Oay - €

Optimizing Eq. (7) for the parameter a leads to the
following bound:

T2 S (0) =11} /0, <max{ o~ k(o) } ,
0E[0,0). (8)

Improvement of Eq. (7), at the expense of addition-
al complexity, can be obtained by using suitable

%aw[n (0)—1— %azwf,] <6 tan" !B,

%aﬂ'[n (0)—1— %azw;] <Omax |77

where B=am[n(0)—1]/26,,,,. Optimum values of
a in Egs. (10) and (11) can be found by iterative
solution of these equations.

The same approach may be employed to bound
o~ Vk(w). If B,y denotes max[o~"%k(w)] for
®€[0, « ), and we choose the weight function
flw)=w"""2 then

fow [w‘l/ztc(w)]a)“l/zdcog@max fow o o ,
where (12)
, 1
0'==
emax

foww_‘/zx(w)da). (13)

From the Buniakowsky-Schwartz inequality, the

following result is obtained using Egs. (4) and (5),
|

1 1/2_ exp(—Bz)
B+(B2+2)I/2

approximations for the integral f Oaw exp(—w?)do
appearing in Eq. (4). If aw’ <0.752763, the ap-
proximation exp( —?) < (1+w?)~! gives satisfac-
tory results; while for aw’ greater than the
aforementioned value, the approximation8

B 1 exp(—p?)
fo exp(—wz)dwgyﬂ'l/z-mﬁ , B>0
(9)

is very satisfactory. Using these two approxima-
tions, the following improvements on Eq. (7) are
obtained:

) (11)

[
fom oV k(w)do 32"5/477'@11,/2[}1 (0)—173%.

(14)
Combining Egs. (12) and (14) yields

7{2[n(0)—1]}°7*
16cop

<max[o~"%(w)], 0E€[0,x)

(15)

An estimate for the upper bound on min[«(w)]
for the finite spectral range [w;,w,] ( arbitrary
®1,0;) can be derived in the following manner.
The starting point is the complementary Bunia-
kowsky-Schwartz inequality’

miM, fwlzgz(w)dw+m2M2 fmlzfz(w)dwg(M1M2+m1m2)fmlzf(co)g(co)dw, (16)

where
O<m<flw)<M;, 0<m,<g(w)<M,
for vE€[w,0,] . (17)

There is considerable flexibility in choosing the
weight function. Let g(w)=k(w) and take
f(w)=w—w,, then Eq. (16) simplifies to

max[f ()] fwlzx(w)f(w)da)
[ oo
@)

min[«(w)] <

’

(18)

f
which can be simplified using the inequality

[, Ko (@do< 7o} (19)
to yield

min[k(w)] < for w €[wy,0] .

(20)

The bounds derived in this Report only require
information on the two asymptotic limits of the
generalized refractive index as w—0 and w— oo .

A central equation used in this work, Eq. (6), is de-
rived from the free electron gas model. If the free



25 BRIEF REPORTS 1383

electron gas model is refined to yield an expression
different from Eq. (6), this change can be readily
incorporated into the bounds derived above.

The results obtained in this Report should prove
to be a useful supplement to the standard tech-
niques of optical data analysis. In the present in-
vestigation, lower bounds for max[w ™ '«(w)] and
max[w~'"*(w)] and an upper bound for
min[«(w)] have been obtained without making as-
sumptions on the specific nature of the medium.
For the purposes of data analysis, it would be of

considerable value to obtain the corresponding
upper and lower bounds for the aforementioned
quantities, both for finite and infinite spectral
ranges. Also of considerable interest is the ques-
tion of how sharp the above bounds can be made.
This problem is under investigation.
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