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The moments of the optical rotatory power and circular dichroism are determined for an isotropic
nonconducting medium. The even moments of the optical rotatory power and the odd moments of the
circular dichroism are determined by crossing-symmetry arguments to be zero. Formal expressions for the
odd moments of the optical rotatory power and the even moments of the circular dichroism are also
derived. The possible application of these moments as a necessary constraint on experimental data is

discussed.

INTRODUCTION

It has been recognized for a long time that the
analytic properties of the generalized optical rota-
tory power lead to fundamental interconnections
between the real and imaginary parts of this quan-
tity, that is, between the optical rotation and the
circular dichroism. The relationships are re-
ferred to as Kramers-Kronig transforms. The
analytic properties of the generalized optical ro-
tatory power also serve as a basis for obtaining
fundamental relationships that must be obeyed by
the dissipative and dispersive modes. The pur-
pose of this paper is to employ the analytic pro-
perties of the generalized optical rotatory power
to obtain the moments of the optical rotatory power
and circular dichroism.

The importance of obtaining constraints for a
molecular property such as optical activity be-
come apparent when the present status of the com-
putational side of optical activity is examined.
Accurate theoretical predictions of an optical ro-
tatory dispersion curve are a long way from real-
ization. The reasons for this situation are well
known. Molecules exhibiting (natural) optical
activity do not fit into “the few electron” category.
Secondly, calculations of the rotational strength
require a knowledge of the excited states which
leads to extreme computational difficulties. De-
spite these problems, attempts are being made to
provide accurate calculations of the rotational
strength,' and this is likely to be a stimulating
and challenging area for future molecular calcula-
tions.

The assumptions that form the basic input in this
note are very general and fundamental and not re-
stricted to the particular structure of a given ma-
terial. The price paid for employing such general
assumptions is that the moments apply only to the
complete spectrum of data. That is, experimental
measurements must be accessible in the frequency
interval (0, ).

The complex optical rotatory power for an iso-
tropic medium is defined by

(W) = ¢ (w) +i6(w) , 1)

where ¢(w) is the optical rotatory power and 6(w)
the circular dichroism. In terms of the complex
refractive index,

a(w) =—2%[N+(w) -N_(w)]

:%lm(w)—n-(w)]+;_:l'<+(w)—'<-(“’)]' @

The subscripts (+) and (-) denote left- and right-
polarized modes.

DERIVATION OF MOMENTS

The moments fall into two distinct groups. The
first consists of the even moments of the optical
rotatory dispersion and odd moments of the circu-
lar dichroism. The second group consists of the
remaining moments. The first group can be de-
termined directly from the analytic properties
and crossing-symmetry conditions on ®(w). For
the second group, only formal relationships can
be obtained using analytic properties of ®(w).

The important relation necessary for the deri-
vation of moments in the first group is the cross-
ing-symmetry relationship®:*

B(-0%) = 3*(Q). 3)

In this note, real and complex frequencies are
denoted by w and 2, respectively. The real and
imaginary parts of the complex index of refrac-
tion for an optically active medium satisfy

[m(—w)] _ F[m(w)] , 4)
n_(-w) n_(w)

[m(—w)] _ _F[M(w)} ’ 5)
K_(-w) K_(w)
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where the matrix T is given by

r=[° 1]. (6)
10

The two important crossing relations employed
below are

p(-w) =9¢(w), O

6 (-w)=-6(w). ®)
We now consider the function

F@)-2"@Q), ©)

where m is an integer and evaluate the contour
integral §, F(R)d2, where the contour y includes
the real axis (—=, ©) and a semicircular arc
(radius R) in the upper half complex frequency
plane, and we let R—- <, In the upper half plane
$(w) is an analytic function. The values of m
permitted are those that lead to convergent mo-
ments and that allow the contribution from the
semicircular avc to be discarded. This point will
be elaborated on below. It is also assumed that
negative values of m are restricted by the condi-
tion that there be no singularity at w—- 0. Evalua-
tion of the contour integral leads to

f " 0 (w)dw =0 (10)

since there are no poles enclosed by the contour.
Making use of the crossing-symmetry relations,
Eq. (3) leads to

f”w"'[dto(w)+(-1)"‘<I>*(w)]dw=0. 1)

Substituting Eq. (1) into Eq. (11) leads to the re-
sults

f"w~'¢(w)[1+(-1)"']dw=o, (12)

0

f wm9(@)[1 + (=1)™")dw=0. 13)
(4]

The moments for the first group are therefore

determined immediately to be

f‘nw”‘qa(w)dw =0, m even (14)

0
f w™(w)dw=0, m odd. (15)
[v]

The odd moments of the optical rotatory power and
the even moments of the circular dichroism cannot
be determined from the above integral §, F(R)dS2.
These moments turn out to be considerably more
complicated, and only formal relationships can be
obtained based on a knowledge of only the analytic
properties of ®(R2).

The complex optical rotatory power can be
written in the form

o)= [ e f(nar, 16)
[

where f(7) is a real function which depends on the
properties of the medium. At purely imaginary
frequencies (w'real), we have

B(iw') = ¢ (iw’) +i6(iw’) = f e~V f(r)dr.  (17)
o
1t follows from Eq. (17) that at purely imaginary
frequencies

6(iw’)=0. (18)

We now consider the contour integral ¢,. F(Q)d®2,
where the contour y' is the real axis (0,R), a
circular arc radius R (center the origin), and the
imaginary axis (R,0), and we examine the limit
R~ ©, Then we obtain

«©

f w"‘@(w)dw:i"‘“f” WP ((w)dw . (19)
b}

[

Separating into real and imaginary parts gives

f " " (w)dw = Re(i™Y) f T omolwde,  (20)
0 0

f‘ow"‘()(w)dw = Im (™) fnw”'(j;(iw)dw . @1
1] 0

where Re and Im denote the real and imaginary
parts respectively, and Eq. (18) has been em-
ployed. Equations (14) and (15) are recovered for
even values of m in Eq. (20) and odd values of m
in Eq. (21). From Eq. (20) we have

fn W™ (w)dw = (_1)(m+1)/2
0

xfnw"'zp(iw)dw for m odd, (22)
1]

and from Eq. (21)

f”w"‘e(w)dw= (-1)m/2

(1]

xf w™p (iw)dw for m even. (23)
1]

DISCUSSION

Some special cases of the above moment formu-
las have been derived recently by Smith.® For the
optical rotatory power, Smith has obtained the
special cases of Eq. (14) for m =-2 and m =0.
Smith has also derived two moments for the circu-
lar dichroism. He has given the special case of
Eq. (15) for m =-1. Smith has also calculated the
result for m =1, and reports the result
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© 2
f wG(w)dw=%‘J(Zw§,RM, (24)
0 b

where N is the number of optically active mole-
cules per unit volume, and R,, is the rotational
strength. Emeis ef al.* have also reported the
special case m = -1 for Eq. (15).

Equation (24) is not in agreement with the result
derived above using crossing-symmetry argu-
ments. The origin of this discrepancy is not dif-
ficult to find. The method employed by Smith is
based on an examination of the asymptotic be-
havior of the appropriate dispersion relation for
the circular dichroism. This technique has been
usefully employed by a number of workers to ob-
tain sum rules for optical constants and scattering
amplitudes.®>~® One important prerequisite for
employing the asymptotic expansion technique is
that a precise knowledge of the asymptotic behav-
ior for the relevant property is required, since
moments are obtained by comparison of asymp-
totic expansions. Smith argued that the appropri-
ate asymptotic behavior could be obtained from the
Rosenfeld equation

8 R,,
0(0) =g ML T2 @5)
b a

Smith assumes the validity of Eq. (25) for deter-
mining the limit w— « for both conducting and non-
conducting media. Now it is well known that one
of the fundamental approximations involved in ob-
taining the Rosenfeld equation in the above form
is that the wavelength of light must be much
greater than the molecular dimensions of the op-
tically active species. With this constraint, it is
not possible to determine the limit w— < of the
optical rotatory power and circular dichroism
from the Rosenfeld formula.

To ascertain which moments are convergent re-
quires a detailed knowledge of the asymptotic be-

havior for both the high- and low-frequency limits.

For the case of an isotropic medium, Tobias,
Brocki, and Balazs'® have recently considered a
generalization of the Rosenfeld formulation, in
which the restriction to the long wavelength limit
is removed. The result obtained by Tobias et al.
is

2TH2N (eje;/mym YE© & i
¢ (w) = 1’ _mn.tl 26
(@) c? nf\;,i EQ)? - n2w? , @9

where
Bomss= [ [ da'ut @uz@) (sinkR, kR, coskRy,)
x (kR;;)Ry;- [grad,; u,@") X grad, u,@))

(27)

with Ry; =%, -X;, and u, (¢) are the eigenstates of
the molecule. The other symbols have their usual
meaning.

The number of convergent moments for negative
values of m can be determined using the low-
frequency limit obtained from the Rosenfeld equa-
tion. For w- 0, optical activity vanishes like
w?."' The only negative moments which converge
subject to the constraints of the Rosenfeld equa-
tion are therefore

f”w-w(w)dw:o, (28)
0

fnw"o(w)dw=0. (29)

For positive moments, the Rosenfeld and Tobias-
Brocki-Balazs generalization lead to different
conclusions. In the Rosenfeld formulation, the
optical activity vanishes as ~w™ for w- . This
restricts Eq. (14) to the single positive value m
=0. As we noted above, however, the limit w— «
cannot be obtained from the Rosenfeld equation.
From the expression of Tobias ef al., Eq. (26), it
is possible to show that the optical activity van-
ishes somewhat faster than O(w™?) for w— .2 If
this result had been employed by Smith,® his deri-
vation would lead to a result in agreement with
Eq. (15) for m =1. The upper limit of m for which
Eqgs. (14) and (15) converge awaits further publica-
tions in this area.

The moment formulas obtained in this work can
serve as a useful constraint for testing experi-
mental data. Of course, it is possible with formu-
las of this kind that compensating errors at differ-
ent spectral frequencies may occur, yet the mo-
ment formulas are still satisfied. The moment
formulas therefore serve only as a necessary
criterion on the quality of experimental data. The
major limitation of the moment formulas is the
necessity for having experimental data available
over an infinite frequency range, and difficulties
are to be expected for data sets on limited spec-
tral ranges. To make use of the moment formulas
for testing data, one of the following two assump-
tions may be employed. The experimental data to
be tested are assumed to be band limited, that is,
outside some spectral range (w,,w,), ¢(w) and
6(w) are zero. The second approach is to assign
an appropriate expression for the asymptotic be-
havior of ¢(w) and 6(w) as w— = and w- 0.

The moment formulas involving complex fre-
quencies are purely formal results and, for prac-
tical purposes, would seem to be less useful in
testing experimental data. The last and perhaps
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most important comment is that the assumptions
employed in this work are rather general and
fundamental without regard to any specific materi-
al. Therefore, the convergent moment formulas
derived in this work are valid for any isotropic
nonconducting system.
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