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A systematic derivation of sum rules satisfied by the normal reflectivity and phase of conductors and
insulators is presented. The derivation of the dispersion relations for the generalized reflectivity is
investigated, and some special features of these relationships are noted. The reflectivity at complex
frequencies is examined, and this leads to a simple sum rule for testing theoretical models of reflectance

data.

l. INTRODUCTION

Recently, there has been increasing interest in the
derivation of rigorous sum rules for the optical proper-
ties of a general medium.!"!? The motivation for much
of this work has undoubtedly been the rapid growth in the
determination of the optical properties of an extensive
range of materials.!® In the past, optical data measure-
ments for most materials were subject to two major
limitations. The most important being the effect of
sample impurity on the measured optical constants.
Surface impurities and the formation of oxidation prod-
ucts on clean surfaces have resulted in conflicting opti~
cal data from different laboratories for many materials.
The second limitation is that the optical constant mea-
surements were frequently limited to a narrow spectral
range. The situation is now changing; for many mate-~
rials, there are accurate optical constant measurements
over wide spectral ranges on high purity samples.

The ideal role of theory is clearly the a priori calcu-
lation of the dispersion curve for any optical property.
Unfortunately, this is not possible at the present time.
However, theory can provide a useful guide as to the
quality of measured optical data. The quantities of in-
estimable value for quality analysis of optical data are
the finite moments of the optical property of interest.
Some relations of this kind are known, but for the most
part these results are not of great utility. The reason
for this is simply that all such finite moment results are
based on particular approximations for specific materi-
als, and hence they have no generality. Frequently, the
validity of the approximations are difficult to determine.
The most general moment formulae and sum rules will
involve the spectral range (0, ©).'? It is also important
to recognize that if general sum rules applicable to a
wide range of materials are to be obtained, then very
general assumptions on the nature of the medium must
be employed.® 1415

The optical constant that is the subject of this work is
the normal reflectance. This is one of the most impor-
tant optical properties, and it is also one that is easily
accessible over a wide spectral range. Determination
of the generalized (complex) reflectivity provides a route
to other important optical properties such as the refrac-
tive index, dielectric constant, energy loss function,
etc. Although a great deal of discussion of the disper-
sion relations for the reflectance has been published,“;‘42
there has been very little attention directed at obtaining
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sum rules for this important optical property.!® This
situation can be attributed to the following two facts:
The first is that the real and imaginary parts of the gen-
eralized reflectance depend upon both the phase 6(w) and
the reflectivity R{w). The generalized reflectivity #(w)
is defined as

Hw)=r(w) e’ | 1)
where
y{w)=R(w)? . 2)

The nonseparable behavior for #(w) contrasts the situ-
ation for most other generalized optical constants, for
which the real and imaginary parts may be identified
with the dispersive and dissipative modes, respectively.
The obvious procedure by which the real and imaginary
parts may be identified with R(w) and 6 (w) is to take the
logarithm of Eq. (1), Thus, the appropriate function to
consider is

In#(w) = Inr(w) + 6 (w) . (3)

Equation (3) provides the necessary separability, but
introduces a second complication. The problems that
arise using the function In¥(w) are difficulties associated
with the asymptotic behavior, and the more subtle ques-
tion concerning the existence of zeros of #(w) for com-
plex frequencies. The asymptotic behavior of the re-
flectivity coefficient assuming the medium responds like
a free electron gas is

Rw)=0(w?), w=e, {4)

and hence InR(w) displays a logarithm divergence as
This fact eliminates a number of simple and use-
ful sum rules that could be obtained by analogy with
other optical properties. The asymptotic problem also
prevents application of the superconvergence technique2
to the standard form of the dispersion relations for the
reflectance. The above comments apply for incident
light which is plane polarized. For the case of magneto-
reflection, the asymptotic constraints are not as severe,
and as a result, some useful sum rules have recently
been derived for this quantity,!®!!:43

W= o,

II. DISPERSION RELATIONS

The dispersion relations (also known widely as the
Kramers-Kronig relations) for the reflectance and phase
have been discussed at length in the literature. They
take the form!*1?
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0((.0’): — i’P f” lnfz(‘:))gg s (5)

1
7z—w2_w”2)dw.
(6)

In Eqs. (5) and (6), P denotes the principal value of the
integral. These relations are derived using the basic
assumptions of the causal nature of the medium and the
resulting analytical behavior of In¥(w) at complex fre-
quencies. Application of the Cauchy integral theorem
to the functions

1nR(w')-1nR(w")=%’3 f:we(w)( .

W —-w

In¥{w)
w-w
and
In7(w’) - In¥(w’’)
wl - wll
leads to Eqs. (5) and (6).

An important feature of the derivation of these two
dispersion relations seems to have passed unnoticed.
Equations (5) and (6) are obviously not conjugate rela-
tions in the sense of Hilbert transform theory.* The
dispersion relations for most other optical properties

are skew reciprocal when written as infegrals over the
domain (~ «,«), i,e., if

2 [

is one of the dispersion relations, then the replacement

glw)dw' @

W -w

Fflw)=glw), glw)— -f(w) generates the other
glo)=-L [TLwide ®)
e W =W

Here, f(w) and g(w) denote the real and imaginary parts
of an analytic function with appropriate asymptotic be-
havior, respectively. This is of course a well known
result for Hilbert transform pairs,*

Although Egs. (5) and (6) are both correct, they have
been derived from separate analytic functions.!? Smith?’
has recently given a clear and concise derivation of Eqs.
(5) and (6) from a single analytic function. It is possible
to provide a straightforward derivation of dispersion
relations for the reflectance and phase which exhibit the
skew reciprocal behavior of Eqs. (7) and (8). We choose
the following function:

In#{(w)

Flo)= w+iw’

©)
and consider two cases: (i) w’ is real and >0, and (ii)
w’ is imaginary (w'=iw’”’, w'’>0). For convenience,
we shall denote real and complex frequencies by w and
2, respectively. The function #(Q) is analytic in the
upper half complex frequency plane and has no.zeros
there.'” The function F(w) is bounded in [0, «) and the
pole at w' is located in the lower half plane for case (i)
and on the real frequency axis for case (ii). We now
consider the contour integral

F(Q)d
r R-wg

r
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where wy>0. For case (i), the contour I' includes the
real axis indented into the upper half-plane at the fre-
quency wg, and a semicircular arc in the upper half-
plane (whose radius is allowed to — «). Evaluation of
the contour integral leads to

W Inr(wp) = weblwy) P [winr(w) + w6 (w)]dw

»  (10)

wh+ w’? Tl (P 0w~ wy)
wy lnr(wo) +w'd (wQ _P (7 [w Inr(w) - wb(w)]dw
w§ + w' TJow (W + 0w wy)

(11)
Written in this form, it is apparent that these disper-
sion relations are skew reciprocal. The functions f(w)
and g(w) can be identified by comparison of Egs. (7) and
(8) with (10) and (11), and these are, of course, just the

real and imaginary parts of F(w), respectively. If the
crossing conditions for plane polarized light
(- w)=7r(w), (12)
9(—- w)_—_-e(w) (13)

are employed, Eqgs. (10) and (11) simplify to

w ln'r(wo) woﬂ(wo) 2P [~ [ Iny(w) + o' wb (w)]dw

wh+ w' T J W+ -wj)
(14)
wy lm’(wo)+ w B(wo) -2wP (~ [ Inr(w) - w (w)]dw
W+ w'? m 0 (W + ) (0 - w§) ’

(15)

respectively. The most interesting feature of the skew
reciprocal dispersion relations is that the real and
imaginary parts of In#(w) are nonseparable.

For case (ii), the contour I' is the same for case @),
except that the singularity at o'’ is bypassed with a
semicircular arc whose radius —0. Evaluation of the
contour integral for case (ii) gives

P~ Inr(w){w® + w' 'wy) dw

G(wo)-—e(w")zz(w"_wo); (wz_wu?)(wz_.(}oy ’
(186)

)= o) =20 -7 £ [ bl
@

Equations (16) and (17) represent subtracted dispersion
relations for the phase and reflectivity. The advantage
of this form is the faster convergence of the integrals.
However, this is offset by the requirement that the func-
tion to be evaluated must be known a priori at one par-
ticular frequency in advance. The convergence proper-
ties can be further improved, but this is at the expense
of knowing the function a priori at a number of different
frequencies (equal to the number of subtractions). For
this reason, the subtracted dispersion relations are
usually less useful than the unsubtracted dispersion rela-
tions. The unsubtracted dispersion relation for the
phase [Eq. (1)] can be obtained either by solving Egs.
(14) and (15) for 6(w,), or by examining the limit w’ ~0
in Eq. (14) or '’ =0 in Eq. (16).

To derive the skew symmetric dispersion relations,
we have employed a very simple modification of the
function In¥(w) [see Eq. (9)]. This form is taken so that
the logarithmic divergence as w—~ « is avoided. Also,
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the domain for which F() is analytic, the entire upper
half-plane, is unchanged with respect to In¥(R2), except
for an additional pole on the real axis when w’ is com-
plex [case (ii)]. The skew symmetric dispersion rela-
tions are mainly of academic interest, since neither

Eq. (14) or (15) provides a means to determine the
phase from the reflectivity, or vice versa. There is,
however, one important point that emerges from the
above derivation. An unsubtracted dispersion relation
for the reflectivity in terms of the phase does not exist,
i.e., the reflectivity is not determined from a knowledge
of the phase alone. To obtain an unsubtracted disper-
sion relation for the reflectivity, the logarithm of the
generalized reflectance must be multiplied by a weight
function which satisfies the following two conditions:

(i) the integral of the weight function multiplied by

In#(w) must converge for the integration domain (- =,
«); (ii) the weight function must not introduce any poles
on the real axis or in the enfire complex frequency
plane. It is not difficult to see that conditions (i) and

(ii) are mutually exclusive. This may be best under-
stood by the following mathematically nonrigorous argu-
ment. Weight functions can be divided into two basic
groups. In the first class, the weight function contains
a denominator factor which might be constructed froma
polynomial in the frequency (more complex functions

can of course be present in the denominator of the weight
function, but this does not alter the argument). Such
denominator factors can always be constructed such that
the integral of In#(w) times the weight function is con-
vergent. However, condition (ii) cannot be satisfied, for
the polynomial in the denominator must have roots that
lie somewhere in the enfire complex plane. Any zero in
the denominator of the weight function (at either real or
imaginary frequency) leads directly to a subtracted dis-
persion relation for the reflectance at real frequencies.
It is possible, however, to construct, with appropriately
chosen weight functions, unsubtracted dispersion rela-
tions for the reflectivity evaluated at imaginary frequen-
cies. The second class of possible weight functions are
those that have no poles in the entire complex plane;
thus, condition (ii) is satisfied. It is a simple matter

to construct a suitable weight function satisfying condi-
tion (ii) and also satisfy condition (i) on a restricted do~
main of the complex frequency plane. For example, a
Gaussian function of frequency would be appropriate on
the real frequency axis, but not in all parts of the com-
plex plane. The contour integral must be convergent for
all w in the upper half-plane. It is therefore suggested
that all weight functions which have no poles do not satis-
fy the convergence condition, and that all weight func-
tions that satisfy the convergence constraint have poles
somewhere in the entire complex plane,

i1, DIRECT TREATMENT OF THE GENERALIZED
REFLECTANCE

The majority of sum rules now known to be satisfied
by various optical properties involve not a single optical
constant, but a combination of the dispersive and dissi-
pative modes of any given generalized optical property.
The sum rules that are most useful for practical data
analysis are those that depend on only one optical proper
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ty. However, those sum rules that depend on both the
dispersive and dissipative modes still have utility for
providing additional checks on experimental data. For
those optical constants for which no single mode sum
rules can be derived, the latter category provide the
only means to check experimental data.

There are two basic ways by which to overcome the
divergent asymptotic behavior of In#{w). The first ap-
proach involves discussion of #(w) directly, instead of
In#{(w), and that is the subject of this section. The next
method entails the introduction of a weighting factor,
which removes the asymptotic divergence of InR{w) as
W=,

Direct treatment of the complex reflectance #(w) does
not yield dispersion relations for the practical computa-
tion of the phase from the measured reflectivity., It can
however lead to some simple sum rules involving both
6(w) and 7(w). If we consider the integral

7(R2)dQ

S (18)
r

I((&)O) =
where the contour I' includes the real axis, indented
into the upper half-plane at the real positive frequency
wyp, and completed by a semicircular arc whose radius
is allowed to become infinite. Evaluation of the integral
yields the following dispersion relations:

2P [~ wriw)sind(w)dw

- T _ T
¥(wy) cosd (wy) = pr (19)
. -2wP [~ 7{w)cosb(w)dw
¥{wy) sind (wy) = 1:’ fo o (20)
From Eq. (20), we have
fw y(wQ)SiHG(WQ)dQJO =2 J‘ dwon ¥(w) cosé (w)dw
0 Wy I @
:ifwdwr(w)cose(w)Pf —-{129—7
T Jo w* = wj
1)
On noting the relation
w© dw' - ,”2
== 2
PJ; Tt 5(w), (22)
Eq. (21) simplifies to
f ______________r(w)sme(w)dw 7 r(w)cosﬂ(w) b(w)dw
0 Wo T2
= %nr(O) cos6(0). (23)

The integral on the right hand side of Eq. (23) converges
for both conductors as well as insulators, since, for
conductors, w '7(w)sind(w)- w !’ as w—0. Recalling
the fact that

6(0)=0

for both conductors and insulators leads to the following
result:

(24)

i " IR ()2 8in6 (w) dw= 2R (O)V% . (25)
Q

For insulators, the quantity R(0) must be determined
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experimentally, whereas for metals, R(0)=1. From

Eq. (19), we have in a similar manner

J- r(w)cose(w)dw—— f J

2 (" . *  dw
:;J; uw(w)sn'ne(co)duqu0 o

wr(w) sind(w) dw
w—w

w'r(w )s1n6(w’)dw

4729

— J'w 7(w) sinf (w)wd(w)dw ,
0

and hence

J’mR(w)”2 cosf(w)dw=0. {26)
0

If we now consider the square of Eq. (19), and then
multiply both sides by o?, we obtain

* W 'r{w ') sme (w’ Ydw'’

f: w¥r{w) cosb (W) Pdw= = f W def G

:%f w'r(w’)sine(w')dw’f w”r(w")sina(w")dw"Pf 5
™ Jo 0 o (-

Noting the relation

PJ‘” wdw
e (0= 0D -w

allows Eq. (27) to be simplified to

= it 8w’ - w' )+ 6(w + w'")]

jm [wr(w) cos (W) P dw= JM w'7(w”)sing(w')dw’ f: W' 'r(w' ") sind (' N[6(w’ + w' ")+ 6w’ - w')]de"’
0 0

= J—m {wr(w)sind(w)Pdw ,
0

and hence

J’o‘ w'R(w) c0s26 (w)dw=0. (30)
From Eq. (20), we obtain in a similar manner

j’om r(w)? sin%0 (w)dw= jom 7{w)? cos?d (w)dw, (31)
which can be written more compactly as

J’:R(w) cos26 (w)dw=0. (32)

Equation (31) also follows directly from Eqs. (19) and
(20), using a well known theorem in Hilbert transform
theory.* The same procedure just discussed may be
applied to the product of Eqs. (19) and (20); the final
result is
J’ WR () §in26 (w) dw=0. (33)
0

Many important sum rule constraints have been derived
by examining the asymptotic expansion of the kernel of
the dispersion relations.?® %% The basic requirement
is that the numerator of Eq. (7) approach zero as
w— faster than w™!, We can exploit the asymptotic
expansion technique for the direct treatment of the com-
plex reflectance. The functions »(w) and ¢ (w) satisfy
the following asymptotic conditions:

1w}
rwl=3 3

() =~ 00

) (34)

6lw)=7, w=c (35)

where w, is the plasma frequency. Using Egs. (34) and
(35), the left hand side of Eq. (19) satisfies

—
wrdw
wr’[)(wz_wu{) . (27)
{28)
(29)
{
. 1 w}
1im 7(wy) cos6 (wy) ~ — i (36)
wo® Wy
and the right side yields
. 2P [~ wrlw)sing(w)dw
lim —
wg= T 0 W= Wy
*L%_J’ wr(w) sing (w)dw + O(w;?*) , 37
TWy sy

where o« >0. Comparison of Eqs. (36) and (37) leads to
the sum rule

j wR () 5in6 (w) dw= 37w} . (38)
o

The asymptotic expansion method may also be applied
to Eq. (20). From the definition of the generalized re-
flectivity in terms of the complex refractive index N(w),
ie.,

- Nw)-1
Flo)= N(w)+1

_ nlw)+iklw) -1

T nlw) +ik(w)+ 1’ (39)
we have that
lim7{w) sing{w) = 2 limx{w) 40)
w=w W=
and hence
7w} sind (wy) =o0(wg?) , wy=oo . 41)
The right hand side of Eq. (20) yields
. =2wyP j” ¥(w) cos8 (w) dw
lim 4 7
wp~ = W - wo
~—— | 7(w)cosb(w)dw+ Ow?) . 42)
Twy 7o
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Comparison of the asymptotic expansions given by Egs.
(41) and (42) yields
[ R cost @) dw=o0, (43)
0
which is in agreement with the result obtained by direct
integration of Eq. (20). Although a number of additional
sum rules involving R(w) and 6(w) can be obtained by the
direct treatment of the reflectivity, the simplest results
have been derived in this section.

IV. WEIGHTING FACTOR APPROACH

To the author’s knowledge, the general mathematical
problem of identifying weight functions for which the
Hilbert transform is bounded has not yet been solved,
although recent progress on this problem has been
made.*® A general solution to this problem would be of
considerable interest, as it would provide a route to sum
rule equalities and inequalitites that are likely to be
very useful, especially for damping the high frequency
spectral region. An example of this approach has been
given by the author for the refractive index.®

The generalized reflectivity possesses an asymptotic
behavior that is sufficiently suitable that no weighting
factors are required in the contour integral in Eq. (18),
other than the standard factor (w- wy)"!. There is, how-
ever, one advantage in introducing weight factors, even
though they may not be essential {for reasons of con-
vergence) for the function of interest, e.g., #(w). The
convergence properties of sum rules may be greatly en-
hanced by the appropriate choice of weight factors. The
drawback to this procedure is that the dispersion rela-
tions become increasingly complicated as convergence
properties are improved. The simplest example of this
procedure can be illustrated by a slight modification of
Eq. (18). If we take #(w)(w+iw’)! (where w’ >0) in
place of 7{w), and employ the same contour T, the re-
sulting dispersion relations are

7 (wo)[ wy cos8 (wg) + W' sind (wy)]

r(w){wsing (w) - w’ cosé (w)]dw
(@’ + 0 ) (W ~ wh)

(44)
|

= 2wy (Wi + " PI

Two(wg + wy) Inw{wy) + (wawy = w8 (wp)] = 2wy (wh + W) (W} + WP f (G

7w} = w,w,) Inr(wy) + wy (W, + wy)8 {wg)] = 2(wh + W) (wh + wg)Pfo

If we restrict to the case w,= w,, then the methods of
Sec. III applied to Eq. (50) yields

= (w* = w?) InR (w)dw * wo{w)dw
JD e %) Ty R 61)
and from Eq. (49) for w,= w, ,
2
jo g “”“R(“g(’;(‘i;;" )6 w)]dew —i G WRO. ()

Frederick W. King: Dispersion relations and sum rules

7{wp)[w’ cosh (wy) = wysind (wy)]
- P 7(w)wcosh (W) + »’ sind (w)]w dw
=2wf+ o f (0 + W) (W = W) (45)

On following the procedure set out at the start of Sec.
IlI, we obtain from Eq. (45)

J‘ R(w)'?[w’ cosb (w) - wsing (w)]dw —0 (46)
(W + w') ’
and from Eq. (44)
ij(w)uZ[cose(wH (w'/w)sind (w)]dw 1 T RO!”
(0 +w™) T2 '

417)
Equations (46) and (47) have enhanced convergence prop-
erties relative to the simple sum rules (26) and (25),
and the computational advantage becomes evident when
the experimental results at high energies are either of
poor quality or nonexistent. Equation (25) can be de-
rived from Eqs. (46) and (47) by elimination of the co-
sine contribution.

When the particular function under consideration does
not display a suitable asymptotic behavior as w -~ <, the
weighting factor approach is the only method to obtain
sum rules and dispersion relations, This is the situa-
tion for the function In#(w). The methods discussed in
Sec. III cannot be applied to the simplest dispersion re-
lations for InR (w) and 6 {w) [Eqs. (5) and (6), respec-
tively] because of the unfavorable asymptotic properties
of these functions as w- =, The introduction of a sim-
ple weight factor as has been done to obtain the disper-
sion relations Eqs. (14) and (15) is also insufficient.
Sum rules cannot be obtained by direct integration of
Eqs. (14) and (15) because the resulting integrals are
divergent. In order to obtain sum rules for Iny(w) and
6(w), more involved weighting factors are necessary.
The introduction of simple weighting factors couples the
two functions Inv{(w) and 8{w), so the resulting sum rules
will depend upon both of these quantities. If we multiply
In7(w) by the simple weight factor (w+iw,)(w+ iw,)™,
with w,>0 w,>0, and consider the integral

In¥ () dS?

= f R+ iw )R+ iw, ) — wp) ’ (48)
we obtain the dispersion relations
W’ = wnw,L) Inr{w) + (w + w,)wh (w)jdw 49)
(0 + WD) (W + Wi w? - wf)
7 wl(w? - w wb)e (W) = wlw, + wj)lm' w)]dw _ (50)

(@ + W2 (w? + wi) (W = wd)

r

It should be apparent from this section that deriving
sum rules for the function In7(w) in place of #(w) leads
to additional complexity. The original motivation for
examining In7{w) was to obtain dispersion relations that
were separable functions of In»(w) and 6{(w). To obtain
sum rules using the function In¥(w), weight factors must
be introduced, and such factors lead to nonseparable
dispersion relations. For the purposes of deriving
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sum rules, it is therefore simpler to examine #(w) di-
rectly rather than In#(w).

V. REFLECTIVITY AT COMPLEX FREQUENCIES
The crossing relation for complex frequencies is
(@ =7(-Q*). (53)

From this relation, it follows that the phase is zero at
imaginary frequencies, i.e., for w real,

6Gw)=0. (54)

The simplest approach to obtain sum rules is to consid-
er the function #(w) directly, and choose an appropriate
contour. We now consider the contour integral

I= f #Q)de (55)
r

where the contour I' includes the real axis [0,y], the
imaginary axis [0,y], and a circular arc, radius v,
which is allowed to - =, Since there are no poles in the
first quadrant, we obtain very simply

f R(@)" cos6(w)dw=0, (56)
0
j R(w)!? 500 (w) dw= f RGwdw. (57)
0 9
If we employ 7(w)? in place of #{(w), then we obtain
j R(w)cos20{w)dw=0, (58)
0
j R(w)sin26 (w) dw = f RGw)dw. (59)
0 0

To obtain Egs. (56)-(59), we have made use of Eq. (54).

Equations (56) and (58) have been derived in a slightly
more complicated manner in Sec. III.

If we consider the following contour integral:

In¥ () dQ

Hw,y) = = e i
0 r 2+ wh

(60)
where wy>0, and the contour I' includes the real axis
and a semicircular arc in the upper half plane whose
radius ~ . Since only a single pole is enclosed, we
obtain the following connection for the reflectivity at
complex frequencies with that at real frequencies:

2wy {7 InR(w)dw

InR Gwy)= - D) (61)

If In7(Q) is replaced by #(R)?, then the alternative form

. 2w, [~ R(w)cos20(w)dw
R(iwD)Z—ﬂ—Q J‘

Ry (62)

is obtained. Since reflectivities cannot be measured at
complex frequencies, Eqs. (61) and (62) cannot be em-
ployed directly to test experimental data. However,
these relations can serve a useful purpose, particularly
Eq. (61), which depends on a stngle optical constant,
Equations (61) and (62) can be employed directly to test
theoretical models. If experimental reflectivity is as-
sumed to fit some model functional form, whose fre-
quency dependence is explicitly known, then the model
must satisfy Eq. (61),

The standard dispersion relation for the reflectivity
at complex frequency takes the form

- wh (w)dw
W+ o)W ~wd) "
(63)
This is the simplest dispersion relation involving In¥(w)
at complex frequencies. Cardona!’ has proposed the
following result:

o P
In (wg) = InrGiw’) = 2(wd + w’?) =

wl (w) dw

. (64)
W" ~ Wy

Inr (w,) - lnr(i):gfj
T Jy
Equation (64) is clearly incorrect; because of the asymp-
totic condition on §{w) [Eq. (35)], the integral in Eq.
(64) has a logarithmic divergence as w— =, There is
also a sign error in Cardona’s expression.

Vi. FOURIER ALLIED INTEGRAL REPRESENTATION

There are two alternative ways to express the connec-
tion between the real and imaginary parts of an analytic
function satisfying certain conditions. Both of these ap-
proaches are mathematically equivalent to the Hilbert
transforms. The first alternative is the Fourier allied
integral representation, which can be written in the
formit-50

f:(w):%j dtsinwtf f(w)cosw'tdw’ (65)
0 0

f,(w)::—z-J dtcoswtf filw)sinw'tdw’, (66)
m Ay 0

where f, and f; denote the real and imaginary parts of

an analytic function f, respectively. The second alter-
native involves the Fourier series expansion of the func-
tions f,(w) and f;(w) over a suitable interval. If the
expansion coefficients of one of the Fourier series are
known, then analytic function theory provides a means .
to determine the Fourier series of the conjugate func-
tion,50=52

Since Egs. (65) and (66) offer certain computational
advantages, these relations should be of some interest
for analysis of reflectance data. One condition that
must be satisfied in order to write down Eqs. (65) and
(66) is that f,(w) and f,(w) must have some suitable
asymptotic behavior as w—«< and w-0. Clearly, the
identification of f;(w) with 8(w) and £, (w) with Iny{w)
leads to divergent integrals. If the function f is chosen
to be

In#(w) - In7(w'’)

flwl=———p—, (67)

W —-w

then the allied integral formulas are

InR (w) - lnR(w’)z-;}; (= w'?) J. dtcoswit
a

® o [6w) = 6(w)]sinw’ "t
XL dw WPt ’ (68)
2_ .2 o
e(w)-e(w'):(———————“’ = )f dtsinwt
L 0
o« 1} ! 1
XJ; dwn[lnR(w )w'l,I;R_(:I;]cosw t ©9)
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Since #(w) is square integrable, the allied integral for-
mulas can be written directly for this function; they are
2 (~ * ’
r(w)sine(w):; f dtsinwtf r(w’)cos8(w’) cosw'tdw’,

0 0
{70)

r(w)cosG(w):%J dtcoswtj 7(w’) sinf (w’) sinw’tdw’ .
0 0

(71)
The disadvantage of the latter two dispersion relations
is that »(w) and 8{w) are nonseparable. Equations (70)
and (71) can serve as a starting point for the derivation
of sum rules. For example, direct integration of Eq.

(71) yields
J dwf dtcoswt

xj r{w') sind (w') sinw’ tdw’
o

o

j y(w) cosb (w)dw=
0

:%f dt[f dw'r(w') sind (w ')smwt]é(t)

i
(=)

(72)

Vil. SUMMARY

The main goal of this work has been to derive a num-
ber of simple sum rules for a general medium that the
normal reflectivity R(w) and phase 6 (w) must obey. The
most useful and interesting results are

fo " R (W) sind (w) dw= 51RO , (13)
LQR(w)”zcose(w)dwz 0, (74)
jom w’R () cos28 (w)dw=0, (75)
jo " R(w) c0s26 (w)dw=0, (76)
I " R () 5in20 () dw=0, ()
jﬂ " R (@) 5ind (w) do= 47}, (78)
f (Rl cf,zsi(:)zz_ wsind W ;o (o'>0), (19)
f (w? = “’f)ui',‘};,(“’ = 4w j (i(“jr)“’d“’ (w'>0), (80)
[l L2 nrGw), (81)
joma(w)“z sind(w)dw= jo "RG0 dw, (82)
J-OQR(w) $in20 () dw= fo "RGwdo. (83)

All the above relationships, except Eq. (81), -involve
both R (w) and 8(w) coupled together. In order to test
experimental data, it is necessary to determine 6(w)
from experimental reflectivity data using Eq. (5), and

then employ the above sum rules. Equation (81) is the
only result which depends on the reflectivity alone.
Since the reflectivity at complex frequencies is not an
experimental quantity, Eq. (81) cannot be employed di-
rectly to test experimental data, However, if reflec-
tivity data are fitted to various theoretical models, then
the validity of these theoretical models can be directly
tested using Eq. (81).
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