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The role of non-markovian effects in the stochastic treatment of vibrational—
translational energy transfer in collinear atom—diatom collisions is examined.
A comparison of transition probabilities using both markovian and non-
markovian types of master equations, as well as exact time dependent quantum
mechanics, is made for various values of the system parameters m and a.. We find
that for certain ranges of the system parameters, the deviations between
markovian and non-markovian theories are substantial. Only in the perturbation
theory limit and in the limit of low m/a? values and high enough initial transla-
tional energies such that an impulsive approximation for translational motion
is accurate are the markovian and non-markovian results similar. An analysis
of the collision dynamics indicates that the markovian and non-markovian
probabilities agree with each other and with the exact probabilities when
action-angle correlations are weak while none of these theories agree (except by
accident) when such effects are strong.

1. INTRODUCTION

In a recent series of papers [1-6], stochastic models have been developed to
deal with problems of interest in molecular collision theory. The various treat-
ments adopted in these papers are based upon quite different starting points.
Augustin and Rabitz [1, 2, 5] used phase interference arguments to develop a
Pauli-type master equation while Schatz [3] applied a generalized cumulant
expansion to obtain an analogous equation but with different time dependent
rate coefficients. Both of these master equations inherently assume that the system
obeys a markov process, although the details of how this assumption enters and
the consequences of it are not always transparent in the equations obtained. In
this respect, a more general starting point for developing master equations in
collision problems was adopted by Schatz, McLafferty and Ross [4] through the
use of the projection operator approach of Zwanzig [7]. In this application a non-
markovian master equation similar in form to master equations obtained earlier
in a number of investigations in other fields [7-10] was obtained. While the
Zwanzig approach enables a more versatile treatment of memory effects in the
collision dynamics, the additional difficulty associated with solving anon-markovian
master equation makes it desirable to use the corresponding markovian equation
whenever that equation represents a satisfactory approximation to the problem.
Thus it is important to assess under what conditions it is appropriate to approxi-
mate the non-markovian master equation by its markovian counterpart. Here, we
examine this point for the restricted problem of vibrational energy transfer associ-
ated with the collinear collision of an atom with a diatomic molecule. For this
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model, we are able to obtain a fairly simple expression determining the first-order
non-markovian correction to the markovian transition probabilities, and we are
also able to solve numerically the non-markovian master equation exactly. By
comparisons of these results with the results of exact solutions to the Schrodinger
equation, we are able to infer when the stochastic models that have been developed
within the framework of either the Pauli or Zwanzig formalism present accurate
descriptions of the dynamics of this problem.

2. MASTER EQUATIONS
In the following treatment of vibrational energy transfer we adopt the well
established model in which the diatomic molecule BC is treated as a harmonic
oscillator, and an exponential interaction potential between atom A and the mole-
cule is assumed. The problem is described by the hamiltonian [6]

2
H=§,;+%(P2+QZ)+80 exp (—ag)(1+2Q), 1

where the condition aQ <1 has been assumed, and energies have been expressed
in units of Aw, with ® denoting the oscillator frequency. P and Q are scaled
vibrational momentum and coordinate variables; p, ¢ are scaled translational
momentum and coordinate variables, and the parameters m, a and ¢, are defined
as
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vy 1s the initial translational velocity of atom A with respect to atom B, L is the
steepness parameter of the interaction potential, ugc is the reduced mass of the
molecule BC, y =m¢/(mg +mc), where m; denotes masses of the appropriate atoms,
and ¢, is the initial translational energy in units of iw. Refinements as to the correct .
choice of energy factor ¢, and mass factor m are discussed elsewhere [6, 11, 12].

In the following development, we adopt the usual impulsive approximation
for translational motion in which the hamiltonian is partitioned as

H=H,©® + H© + HO), 5)
where
HyO'=%P*+0?, (6)
Hy @ =p*2m +¢, exp (~og), (7)
H®M =¢gy00Q exp (—og) (8)

and the classical equations of motion generated from H®) are solved to provide
a time dependent perturbation H*)(¢) (with g(t) substituted) on the oscillator
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whose hamiltonian is Hy(®). This is equivalent to neglecting translational-vibra-
tional correlations, as discussed in detail elsewhere [4].

To develop a master equation to approximate the time dependent Schrodinger
equation for vibration which results from the impulsive treatment of translation,
we first consider the equation of motion of the reduced density matrix for vibration
pv(2). This is given by [13] (on the neglect of translational-vibrational correlations)

i % =L(t)py(1), 9
where L(t) is the liouvillian appropriate for the vibrational degree of freedom [4]
L(t) =Ly 9+ LY. (10)

Ly® and L%)(¢) are defined by
Ly©@py(t) =[Hy'”, py(1)], (11
LY0py)=[ D, py(1)], (12)

where

ZV =CHD)p=eoaQ{exp (—ag))r. (13)

The angular bracket (> denotes a quantum ensemble average, which is replaced
by a classical average as in reference [4].

We are now interested in the diagonal elements of py(2). If we denote by D
the operator that projects out the diagonal part of py(#), which we denote with a
subscript d, then it is easily shown [9] that py, exactly satisfies

. 0pvy ()
i X = DLOpv, (1)
t
t t
—iDL(t) | dt'T exp [—i j (1 —=D)L(s)dsl(1 —D)L(t")py,(t"), (14)
to t’
where T is the time ordering operator, and the limit ¢,— — oo is to be taken.
In the number representation of the harmonic oscillator

{n|py(D)|n) =P, (1) (15)
and equation (14) simplifies according to the procedure of Zwanzig [7] to yield
P,(t :
0 a"t( ) —2Y | dt' cos[w,, (t—t)] X, @) X, D){B(t)-P,(t)}, (16)
where
X () =(n| D@0, (17)
@,y =(E,—E, )1 (18)

and E, is the energy of the nth oscillator state. Equation (16) is the generalized
non-markovian master equation from which the various vibrational transition
probabilities may be determined. Note that although it is non-markovian, it
does not provide an exact description of the dynamics. This is because a Born
series expansion of the memory kernel in (14) has been truncated in lowest order
in obtaining it [7].
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Master equations are classified as non-markovian or markovian according to
whether or not a time integration over the appropriate variable is, or is not involved.
Although thisis the usual interpretation, it may in fact be an improper classification,
as Oppenheim and Shuler [14] have pointed out. Nevertheless, we shall retain
common usage and refer to equation (16) as non-markovian.

The major step in simplifying equation (16) is to assume markovian behaviour,
i.e., the kernel of equation (16) is simplified by writing

[P,(¢') =P, ()] ~[P,(t) — P,(D)]. (19)

The resulting markovian master equation forms the basis of the stochastic method
for energy transfer calculations that was employed by Schatz et al. [4].

3. NON-MARKOVIAN SOLUTION

In this section we consider the direct solution of the non-markovian master
equation (16). A partially analytical expression for the transition probabilities
P, () (i.e., the solution to (16) satisfying P,(— o)=4,, ) can be obtained by
substituting the expression

P, ()= T exp (—x)L, (x)L (x)h(x, t)dx 20)
0

nno

(where L, denotes a Laguerre polynomial) into (16). After evaluating the matrix
elements in (17) and using the recursion relations for Laguerre polynomials, we
obtain the following integrodifferential equation for A(x, t):

ah(gt’ D s jw dt’ cos (t — 1 VF(O)F(t Yh(x, t'), 1)
where

F(t) =ag, exp ( —ag(t)) =ae, sech? l:oct \/G—;)] 22)
and the boundary condition on £ is A(x, t = — 00) =1. Note that the time variable

tin (21, 22)isreally adimensionless (scaled) quantity and is related to the physically
meaningful time by #(physical) =#(dimensionless)/w.

Although we have been unable to solve equation (21) analytically, it can be
solved numerically by re-expressing it as a set of three coupled ordinary differential
equations (see Shugard et al. [15]). The resulting transition probabilities will be
labelled as the total non-markovian (TNM) results.

An approximate but nearly analytical solution to (21) can be obtained if we
assume that deviations from markovian behaviour are not too large. We amplify
on this statement later and indicate how the following treatment is altered when
this assumption does not hold. The approximation involves expanding P,(¢) in
(16) in a Taylor series
P(tY=P,(t)+(t'—1) aPT"t(t»)-i— s (23)
and truncating at the second term. Substituting equation (20) into (23) gives an
approximation to equation (21) of the form
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oh oh
—=—xD —xB(t) —
3 xD(t)h(x, t) —xB(t) P (24)
where
t
D)= | cos(t—t)F(t)F(t"dt, (25)
t
B(t)= [ cos (t—t')(t—t")F()F(t')dt'. (26)
The solution to (24) is simply
B L D(t)dt'
h(x, t) =exp < X _“;0 m) (27)
Expanding the term [1 —xB(¢')] ! in a power series and taking the limit t— oo in
h(x, t), we obtain from equation (20) P, ,(00), which we abbreviate to P, ,, in the
form
P, .= g L, (%)L, (x) exp [ —x(1+n)] exp (—{x?)dx, (28)
where
t
n(@)= [ D(t'dt, (29)
1/2
n=n(0) =(2n*m?[a?) csch? F <ﬂ> ] (30)
o \2¢,
and
(= _f D(t)B(t)dt. (31)

In approximating equations (20) and (27) by equation (28), we have assumed that
the series expansion of [1 —xB(¢')] ! can be truncated at the second term, which
is valid when { > Ifw D(t)B?(t)dt (and B(t) <1), and this will be satisfied when
deviations from markovian behaviour are small. It is also to be noted that the
assumption of small deviation from markovian behaviour implies that { <1. The
parameter 1 represents the approximate average energy transfer (in units of hw).
Unfortunately, a simple analytic solution of the integral appearing in equation
(31) is not possible. However, equation (28) can be evaluated to yield

B n (=R x4 exp [—x(1 4 1) — (x2]dx

P, .,=ny!n! Z Z

k=0 1=0 (&1 (ng — k) (n—1)! )

(1+'7)2 no n (_1)k+l(2C)—(k+l+1)/2
8¢ ]k;”:zo (RN (ng — k) (n—1D)!

=nqy!n! exp I:

1
F(k+l+1)D—(k+z+1)|:\‘/‘%2%], (32)
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where D,(x) are the parabolic cylinder functions. For the present study, the first
form of equation (32) was evaluated numerically. The limit {—0 in equation (32)
yields the markov result

nglnlytro min{; no) n-2*

"‘)":(1+11)"+"0+1 k;o (ng—k)(n—k)![R1]* " (33)

The corresponding result of exact semi-classical theory (obtained by exactly
solving the time dependent Schrodinger equation) is given by [16].

min(n, no) (_1)k'1—k 2

P = ™ _ notn
on =0 !n! exp (—n)n k;) (no—k)(n—k) k!

(34)

4. RESULTS

In this section, we compare transition probabilities obtained from the exact
expression (34), the first-order non-markovian (FONM) expression (32), the
markovian expression (33) and the total non-markovian (TNM) expression
(equation (20) coupled with the solution to equation (21)). Potential and mass
parameters used in determining transition probabilities were chosen to simulate
the systems: H+1,, H4+H,, and He + HBr. The oscillator frequencies employed
were those given by Herzberg [17]. The steepness parameter L was kept constant
for all systems; the frequently employed value L =0-2 A [18] was chosen. The
m and a values for the systems are: H+1,, m=3-92x1073, 0 =0-124; H+H,,
m=%, 0=0:310, He+HBr, m=3-76, «=0-561. In solving for the TNM prob-
abilities using equation (21), convergence of the result was ascertained both by
verifying the result proved in reference [4] that the first moment of the final state
distribution should equal the exact first moment, and by showing equivalence
of TNM and exact transition probabilities in certain limits as described later.

We first consider the H + 1, system for which the mass factor m is very small.
In table 1, we compare the transition probabilities Py, and Py, at low ¢, (in units
of hw) for the TNM, FONM, markovian, and exact theories. Although all transi-
tion probabilities are close to unity, agreement of the master equation transition
probabilities with the exact ones and with each other is found to be excellent. At
higher ¢,, the TNM results are found to be marginally better than the FONM
and markovian results. The analogous comparisons for systems with larger mass
factors is quite different as will now be described.

First let us consider the translational energy dependence of the energy transfer
parameter # and the FONM correction parameter {. These are plotted in figure 1
for H+H,. We see that although 1 > 10{ for much of the energy range illustrated,
{ is a more rapidly increasing function of ¢, for ¢, >3. As remarked previously,
the approximation leading to the FONM results in equation (28) breaks down
when { becomes large compared to unity, so we do not expect the FONM result
to be useful for g, greater than about 3 for H+H,. For larger mass parameter
systems such as He +HBr, the correction parameter { becomes appreciable at
even lower g, (at £, =2, { =0-5), so the range of validity of the FONM result is
even more restricted.

A comparison of the TNM, FONM, markovian and exact transition prob-
abilities P, is given in figure 2 for H+H, and figure 3 for He + HBr. Here we
find (i) that the results of all four approaches agree only at very low translational
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energy; (i1) that the FONM results generally differ substantially from the TNM,
especially for the higher mass parameter He + HBr system, and even when { <1;
and (iii) that the TNM and markovian probabilities differ substantially with each
other for ¢, > 1. The markovian results are actually in better agreement with the
exact semiclassical results at intermediate &, (1 <&y <3) than are the TNM ones.
We will analyse the reasons underlying these results in the following paragraphs.
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Figure 3. Probability P, as in figure 2 but for He + HBr.

Some of the basic features exhibited in figures 2 and 3 can be understood in a
qualitative way by examining the perturbation theory limit of equations (32),
(33), and (34) for small values of &,. In this limit (small # and {) P;; (FONM)
can be determined approximately by expanding the gaussian part of the integrand
of equation (32), a valid procedure since exp (—x) dominates the convergence of
the integral for small {. For the transition of interest, i.e., no =1, n=1, we have

P, (exact) ~1—3n+1n?, (35)
P,,(markov) ~1—3n+7n?, (36)
P, ,(FONM) ~1—3n—14{+78(n. (37)

(Unfortunately, an analogous simple TNM expression cannot be developed.) The
first important result from these equations is that {P;(exact) —P;(markov)}~
O(n?) as n—0, and this result has no explicit dependence on the choice of para-
meters m and a. Reference to figures 2 and 3 illustrates this trend, the markov
exact semiclassical results are in close agreement for £, —0 for both H+H, and
He+HBr. A rather different behaviour arises for the FONM probability:
{P,,(exact) — P;;(FONM) } and {P,,(markov)—P;;(FONM)} both behave like
O({) as ¢,—0. This first-order dependence on { leads to a stronger dependence
on the mass parameter m. For H + H, the values of 7 and { determined from figure 1
result in an accidental cancellation of the third and fourth terms in equation (37)
at low &y, and this results in essentially markovian behaviour for the FONM
result. For He + HBr, however, at low ¢, we find that the third term in equation
(37) is quite large (a direct result of the larger mass factor for this system), so the
differences {P,,(exact) — P;;(FONM) } and {P,,(markov) — P;;(FONM) } become
substantial even at small values of &, as is clearly demonstrated in figure 3.

The rather large difference between FONM and TNM results even for ranges
of gy for which { < 1 seems to indicate that the truncation of the expansion in (23)
is a more severe approximation than that which leads us from equation (27) to
(28). Indeed, a numerical evaluation of equation (20) using (27) for h(x, t) leads
to a probability P;; =0-9178 for H+H), at ¢,=1 compared to a corresponding
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value of 0-8980 obtained from equation (28), indicating the validity of the approxi-
mate treatment of equation (27). Since the integrand of equation (16) exhibits
significant oscillatory behaviour at times during the collision, it is perhaps not
surprising that first-order truncation of the Taylor series expansion may not be
appropriate under all conditions.

(When second-order terms in equation (23) are included, the probability is
given by equation (20) where A(x, ) is the solution of the differential equation

02h(x, t) Oh(x, t)

xC(t) 52 1 —xB(®)] o

+xD(t)h(x, t) =0
and C(?) is the second-order correction
t
Ct)= [ (t'—t)* cos (t—t")F(t)F(¢)dt .

This differential equation is not well behaved numerically and could not be solved
by the numerical techniques available to us.)

The better agreement of the markovian rather than TNM probabilities with
the exact ones at intermediate ¢, may seem surprising at first, but can be rational-
ized by examining the time dependence of the energy transfer parameter #(t),
since this provides a crude measure of the importance of correlations between the
vibrational action—angle variables during the collision. From equations (29) and
(22), we find

t t’

n(t) =a’ey? j dt’ j cos (t'—t") exp [ —ag(t)] exp [ —ag(t”)]dt" (38)
- -

and by differentiating this expression and substituting equation (22), it is not
difficult to develop a set of coupled ordinary differential equations for accurately
determining 7(t). Plots of #(¢) for the three systems H+1,, H+H,, and He + HBr
at g =1 are given in figure 4. There we see that #(t) increases monotonically
during the collision for H +1,, but shows oscillatory behaviour for H+H, and
He +HBr. Note in particular that 7(0) is much larger than #(o0) for He + HBr
(0-19 versus 0-000 759) and somewhat larger for H+H, (0-076 versus 0-025).
To understand the rather different behaviour of #(¢) for these systems it is instruc-
tive to compare the relative collision durations and vibrational periods. The
collision duration 7, can be estimated as the period of time for which exp [ —ag()]
is large (roughly 4/a divided by the initial velocity (2eq/m)'/?, or T, =+/(8m/e,0?)).
According to this definition, when g, =1, 7,=1-43 for H+1,, 5-:27 for H+H,,
and 9-78 for He + HBr, compared to the (scaled) vibrational period of 2n =6:28
for all three systems. This comparison of collisional and vibrational periods indi-
cates that for H+1,, the collision is impulsive at this energy, with essentially no
time for the oscillator to respond to the collisional perturbation. For the He + HBr,
and to a lesser extent for H 4+ H,, the oscillator executes one or more vibrations
while the collisional interaction is strong, which is long enough to allow for the
transfer of energy first into vibration, then back to translation, one or more times
during the collision. By inspection of equation (38) (using equation (22) for
exp [ —ag(?)]) it is apparent that n(0) > #(o0) only if significant destructive inter-
ference occurs in the integral by virtue of oscillations in cos (¢’ —t"). This can-
cellation effect indicates the importance of correlated motions in the collisions,
and this is further substantiated by examination of classical trajectories for He +
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HBr and H+H, where one observes a considerable variation in the amount of
energy transfer as a function of initial vibrational phase. Since it is correlation
effects which are approximated by the stochastic approaches [4], it is not hard to
understand why the TNM result is much less accurate for He + HBr and H+H,
than for H+1,. One might also imagine that the markovian result should also be
inaccurate for He + HBr, and indeed it is at higher gy(go>2-5). However, for
intermediate gy(1 <&y <2-5), because the combination of approximations leading
to equation (33) (namely equation (19) coupled with the approximation inherent
in equation (6)) leads to markovian probabilities that are only functions of #, the
markovian result appears to account for correlation more accurately than the
non-markovian one. Thus in the present situation, although both the markovian
and non-markovian inelastic probabilities first increase then decrease during the
collision for He + HBr, only the markovian ones follow the exact results quantita-
tively at intermediate energies since the necessary destructive interference pro-
perly occurs only in the markovian master equation. One would not however
expect that accurate markovian results would be obtained for other types of
collision problems where correlations are important, since the time integral of
the rate coefficients appearing in the master equation is not usually equal to the
average energy transfer, as it is here. It should also be noted that the collision
systems for which we find correlations to be important (i.e., He — HBr) are also
those for which the impulsive treatment of translational motion is also inaccurate

[19].

02 He +HBr i
Nt
H+I,(x10)
Ol
O 1

Figure 4. Energy transfer parameter 7n(t) versus time ¢ (in scaled units) for He+HBr,
H+H,, and H +1, at a translational energy g, =1.

In table 2 we give a comparison of the four theories for the calculation of P,
and P,, for He + HBr. Basically, the same comparisons observed above for Py,
also apply to Py, and Py,.

Figure 5 illustrates the trends for the multiple transition probabilities. For
H +H, there is fairly close agreement between the markovian, FONM, and exact
results; however the TNM results are not in very good agreement with the other
theories. For He + HBr, the FONM and TNM theories again deviate significantly
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from one another. For even higher multiple transition probabilities than are shown
in figure 5, there is a complete lack of agreement between the TNM and exact
results, largely because the TNM theory transition probabilities decrease more
slowly with increasing energy gap than the exact ones. For example, at ¢,=3
for H+H,, Pys(TNM) ~10~2 compared to the exact probabilities of 10 ~*. The
markovian and FONM probabilities also decrease in size more slowly than the
exact ones (although more rapidly than the TNM). To obtain an overview of the
situation for multiple transition probabilities, figure 6 shows the second moments
calculated via the four different theories for H+H,. The slow fall-off of the
multiple transition probabilities for the TINM theory and to a lesser extent the
markov and FONM theories shows up as positive errors in the second moment
in that figure. Note here, however, that the first moments are identical for the
TNM, markovian, and exact theories [4]. This indicates that the comparison of
moments can be a misleading criterion for judging the stochastic models, as the
correctness of moments can easily obscure compensatory errors in individual
transition probabilities. A point worthy of note is that some of the TNM multiple
transition probabilities were found to be negative. Some small negative probabilities
were also found using the FONM theory. This is to be contrasted with the
markovian and exact semiclassical theories (equations (33) and (34)) for which
positive probabilities are guaranteed.
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Figure 5. Exact semiclassical (——), stochastic markov (- —-), FONM (——), and TNM
(- -) probability distributions P,, versus n for H+H,(¢,=2) and He+HBr
(g9 =1-6).
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Figure 6. Comparison of second moments as a function of ¢, for H+H,.

5. DiscussioN

In this paper we have examined transition probabilities for vibrationally
inelastic atom—diatom scattering as obtained from both Markovian and non-
markovian master equation approximations to the time dependent Schrodinger
equation. Except in certain limits, the agreement between these two theories was
generally found to be quite poor, which means that the markovian approximation
(equation (19)) is in fact not usually very accurate. Exceptions to this in which
good agreement between markovian and non-markovian transition probabilities
was obtained occurred in the low translational energy perturbation limit where
h(x, t)~1 throughout the collision, and for systems like H+1, which have a
collision duration which is short compared to the relevant vibrational period. In
the impulsive situation, cos (¢t —¢') in (21) remains close to unity during the colli-
sion, and the expansion in (23) can be accurately truncated at the first term. For
systems where the collision duration is comparable to or larger than the vibra-
tional period, motional correlations are much more important (as evidenced by
the observed oscillatory exchange of energy between vibration and translation in
figure 4), and the markovian approximation becomes inaccurate. Since the collision
duration is approximately 7, = (8m/eoa?)/?, it is apparent that for a given &, the
shortest 7, occurs for systems with the smallest ratio mjo?, and we observe the
markovian approximation to be most accurate in this limit. It might also be expected
that for any given system (with m/a? fixed), one can make the markovian approxi-
mation accurate simply by increasing g, enough. Although this may be true, 7
also increases with increasing &,, and when # becomes close to or greater than unity,
the lowest order Born approximation inherent in the memory kernel evaluation
in (16) becomes inaccurate and makes both the markovian and non-markovian
theories inaccurate. Thus we might summarize by saying that both master equation
approaches tend to be most accurate for systems with small values of m/a?, and
for a given system, for energies ¢, as large as possible consistent with n<1.

A surprising result of the comparison between markovian, non-markovian and
exact transition probabilities was that the markovian results were significantly
more accurate than TNM at intermediate &,. We regard this as an accident which
is somewhat special to the model problem treated. The reason is that the combina-
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tion of approximations which leads to the markovian master equation also leads
to transition probabilities which depend only on the energy transfer parameter #;
(this is not generally true). The exact probabilities also depend only on 5 and are
identical in their lowest order # dependence to the markovian probabilities. Thus
as long as 7 is small, the markovian and exact transition probabilities will be close.
The non-markovian theory (for which the transition probabilities are no longer
explicitly functions of #) fails to be more accurate in treating systems with long
collision durations at intermediate &, since in such situations, the necessary
interference cancellation which is responsible for making #7(0) > #(c0) is not
properly described. Presumably this can be overcome by evaluating higher order
terms in the Born series expansion of this memory term. Some indication that this
is so is provided by the result (derived in reference [20]) that for each addition
term in the Born series expansion included, an additional moment of the final
state probability distribution becomes exactly predicted by both markovian and
non-markovian master equations. This means that in a high order truncation of
the Born series in (14), a large number of moments of both probability distribu-
tions would be identical. We stress however that caution must be exercised in
equating the agreement of moments to the agreement of transition probabilities.

Finally we consider how the results of this work can be used as a guide to
future applications of master equation methods to problems in collisional energy
transfer for which exact solutions are not available. A conservative statement
would be that whenever the markovian and non-markovian results are in good
agreement memory effects are presumably weak and the approximations to cor-
relations which are inherent in the stochastic treatment should be accurate.
When the two approaches disagree significantly, then memory effects must be
more important and neither approach can be trusted to be accurate except in
special cases.
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