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The gauge invariance of the rotational strength is examined. It is shown that the invariance of
the rotational strength derived in the quantized field formalism follows only when all terms (to order
?) are retained in the T-matrix from which the rotational strength is derived. The gauge invariance
of the semiclassical theory of natural circular dichroism is discussed. The origin invariance of the
Schrédinger equation is considered and the difficulties associated with making truncated expansions
of the retardation factors for the rotational strength are outlined.

The origin invariance of the rotational strength has been discussed for about forty
years.'"> The deliberations of these workers have centred around the two different
expressions for calculating the rotational strength, namely, the dipole velocity and the
dipole length forms. The choice of the appropriate expression is of considerable
importance for the numerical calculation of rotational strengths. Since exact eigen-
states are generally unavailable, it is highly desirable to employ that form for the
dipole operator which minimizes inaccuracies due to the use of inexact wavefunctions.
For inexact wavefunctions, the usual transformation between the matrix element of
the electronic momentum operator p; and the matrix element of the electronic
coordinate operator r;

YalpilWoy = (im/A)(Ea— Ep)¥alrsl¥s) ¢y
is no longer justified.

Since origin invariance in the present context may be related to the more general
requirement that a theory be gauge invariant, it is then the latter which will be exam-
ined in some detail. We will consider the rotational strength in its fully retarded
form, which has not been the case previously. Practical considerations of calculations
are set aside. The reasoning for this is due to the fact that the operators themselves
are not gauge invariant; it is only the various matrix elements and their products
which are invariant. This requires us to restrict the discussion to cases involving only
exact eigenstates. The purpose of this paper is twofold. First, we wish to establish
to order €2, that gauge invariance of the T-matrix is satisfied. Secondly, to emphasize
that some careful consideration of phase factors, is necessary, when expansion of the
retardation factors is carried out to obtain the conventional Rosenfeld expression for
the rotational strength.

GAUGE INVARIANCE OF THE T-MATRIX

In this section, it is shown that the 7-matrix ¢ (to order e?) which contains the
fully retarded rotational strength, is invariant under the transformation of the quan-
tized potentials
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226 CALCULATION OF ROTATIONAL STRENGTH

For convenience we assume the 7-matrix is initially described in the coulomb gauge.
It is then required to show that

T =Ty = 0) = 0. Q)

A method used to demonstrate the invariance of the second order corrections to the
energy  in calculations subject to the change given by eqn (2) is modified to prove
eqn (4). The problem is more involved than the energy calculation, since we need
to consider specifically the quantized nature of the radiation field.

The system under consideration is described by a Hamiltonian

where Hy is the Hamiltonian of the radiation field, Hy the molecular Hamiltonian
and V describes the interaction between the molecule and the radiation field. An
eigenfunction of Hy+ Hy will be described by the notation |k,a). The following
results may then be written

<ka, al[HR+HMa X:“b, kb> = (Eab+thab)<ka’ alXIb’ kb> (6)
<kas a”:HMs X]lby kb> = (2’")— 1<kaa alz(pX) °P+(p2X)|bs kb> (7)
<ka’ aI[HR, X]lb’ kb> = 0 (8)

and hence the result

<k,,, a

Introducing the substitutions |k, = |k, = |k, |a) = |b) and x—y? into eqn (9),
then the following result is obtained

<k, a a, k> = 0. (10)

Eqn (9) and (10) are the two principal results required to establish eqn (4).

The rotational strength is derived from the second order 7-matrix. To see how
gauge invariance of the rotational strength is maintained, it is necessary to carry all
terms of order €.

Now the T-matrix is given as

e? e <k, alA . p|n){n|d . p|b, k,>
Ay = 0) = —<k,, al4?|b, k Cidhd il - P1% %
T =0 2mc2< w al 47| b>+m2c2 ‘,,Z‘{ E,—E,+hck,

kg ald . p|n, kky){kyk, n|d.p|b, k) (1
E,—E,—hek, ‘ %)

e .
2—m—c[p . VX"'VX . p]lb, kb> = (le/hc)(Eab'l—thab)(kaa alx‘ba kb> (9)

WV . V+3Vy . Vy+3xV3y

For a nonzero X, the T-matrix is given by

e2

) =

53 <ka al(4 + V)b, kyy+

e2

mzcz‘ék;’w {(ka,a|%[Po(VX+A)+(A+Vx).p]]n,k1k2k3...>><
Covhskoky,n | 3[p . (Vi+A)+(Vy+4) . p]| b, ky ) x

[E,+hicky— (E, +hick, + hck, + . . . )]-1}. (11b)
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For a consideration of the rotational strength, |k,> = |k,» = |k) and |a) = |b).
For the case where ¥ = 0, eqn (11b) simplifies to give eqn (11a¢). From eqn (115)
with |a) = [b) and |k,> = |k,», we can see that there are only nonvanishing
matrix elements in the summation which involve the interaction A4 -p for single
photon processes. The only nonvanishing matrix elements involving the c-number ¥
are those for which no change occurs in the photon field. Then from eqn (11a) and
(11b) we have

T(Z)(X)_T(Z)(X = 0)
62
= 2m——ci<k, a|Vy.Vyla, B>+

2

e
WZ{<k,a|p.Vx+Vx.p|n,k>x
Ckon|p.Vy+Vy.pla, k>(Ea—E,,)‘1}. (11¢)

Employing eqn (9), we have
2
TOG) - TO(=0) = — Ck,a | ¥ - Vet Vo - V3V o k> (1)

=0.

on usingeqn (10). This completes the proof of eqn (4) when  is taken as a c-number. ®

A few comments can be made when y is allowed to be a g-number, although we
do not consider this case in detail. For x a g-number, eqn (6) and (7) will remain
unchanged, although eqn (8) will be altered. If, for example, x is chosen to be of the
form

X = Z{c (F) exp(—iw;t)a; +cX(r) exp(io;t)at},
J
then eqn (8) becomes

. 0
Ck, allHr, 7lb, k> = —iticky a 52f-|b, KoY.

Eqn (9) is then modified by the appearance of a term (e/c)(0x/0t) in the matrix
element on the left hand side. In addition, a result similar to eqn (10) may be derived
if [y, V1, [x, V?¢] and [y, 9x/7f] all equal zero. Eqn (11¢) will be modified by the
appearance of time derivatives of y in the appropriate matrix elements, and there is
no longer a direct simplification of eqn (11c) as was the case when y was a c-number.

Eqn (11c) can be treated by considering terms linear in x and those quadratic in
x separately. The quadratic terms can be shown to be zero with the use of the
modified eqn (10). The terms linear in x can be shown to be zero with the assumptions
[x, A] = 0 and [Vy, A] = 0. The unrealistic demands of requiring these five com-
utators to vanish makes the treatment of x as a g-number rather unsatisfactory.

The case of origin invariance for the rotational strength as conventionally em-
ployed has been discussed fully by Buckingham and Dunn.® These authors have
shown the need for adding an electric dipole-electric quadrupole term to the usual
electric dipole-magnetic dipole expression when anisotropic media are considered.

Higher asymmetry effects in optical rotation, which are still second-order optical
processes, are possible.’® ' Since the rotational strength can be derived in a quan-
tum electrodynamical formulation,'® which yields the rotational strength directly in
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terms of the F-matrix elements, this then appears to be a logical starting point for
discussions of gauge invariance which encompass all the higher asymmetry effects.

Since only physical observables are required to be gauge invariant, it is the total
sum of all contributions to the rotational strength which must be gauge invariant.
This sum wilt include higher asymmetry corrections; although numerically small, they
must nevertheless satisfy the requirements of gauge invariance. This seems to dictate
an examination of the general T-matrix elements.

SEMICLASSICAL ARGUMENT FOR CIRCULAR DICHROISM

Natural circular dichroism based on a semiclassical treatment of the radiation
field is determined directly from the matrix element 2
> (13)

<y ®lay = Z<

and A now denotes the vector potential of the field in unquantized form and the sum
is over all particles. In the presence of a gauge transformation, eqn (13) becomes

v O(play = z<n %; > (14)
Employing the following result

r cor
(E,—E)nlylay = (—ih/2m)ni2Vy; . pi+(p;. Vixpiay (15)
allows us to write eqn (14) as

Yy Dplay = Z<n

__A p]

e e
;‘;AJ P+ 2%[2‘71’%1' pi+(p; - V)] +2

—A;.p J+ (w,,,,+w)9 exp(iot) +

ie
(= )0} exp(—ian)

a> (16)
where we have introduced a gauge of the form
x; = 0; exp(iot)+ 0% exp(—iw?). (17)

With the standard assumption that circular dichroism is only appreciable at a reso-
nance, i.e., @ = m,, then the ellipticity per unit path length, which is proportional to
KalV<Vla)}?, is independent of x as can be seen from the form of {n|V*(y)lay. This
simple argument is limited to gauge transformations of the form given by eqn (17),
and is further restricted by the constraint that the non-resonant components be
vanishingly small.

To effect a displacement of the coordinate system we take x to be of the following
form

¥ = a(x+igy)exp(ik . r—iwt){exp(ik . R)—1} + complex conjugate (c.c.) (18)
where R is a constant vector displacement, o an amplitude factor, g = —1 or +1 for

left and right circularly polarized waves respectively and we assume for simplicity that
the wave is propagating in the z-direction. y satisfies

Viy—c"2 % = |
x—c 32 (19)
and is of the form given by eqn (17). The transformed vector potential

A = A+Vy (20)
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becomes
A = [Aqexplik . [r+ R]—iwt)+c.c}
+[ak(ix—gy){exp(ik . R)—1}exp(ik . r—iwt)+c.c] @y
where A has been taken to be of the form
A = a(i+igj) exp(ik . r—iwt)+c.c.
and 4, = a(i+igj) is an amplitude factor.

Introducing A’ into the matrix element for the ellipticity per unit path length leads
to a result which is independent of R based on the conclusion drawn from eqn (16).
However if we neglect the non-transverse component of 4’ and expand the retardation
factor exp{ik - (r+R)} we obtain the rotational strength of the form

R,a = Im(alr|ny . {nlr x pla) +<alr|n) . R x {n|p|a)). (22)
The assumption of neglecting the non-transverse component and the approximation
involved in expanding the factor exp(ik . R) leads to a result now dependent upon R
in contradiction to the previous conclusion. It therefore appears essential to retain
exp(ik . R) as a phase factor and to retain the non-transverse component. As a result
of eqn (16), we may deduce that R,, is gauge invariant, independent of any properties
of the matrix elements r,, and p,,.

ORIGIN INVARIANCE OF THE SCHRODINGER EQUATION

We now take up the question of how the origin invariance of the Schridinger
equation can be used to examine the truncated expansions of the retardation factors
in the formula for the rotational strength. The operator that generates finite dis-
placements is

O(R) = exp( —%R .y p,.> (23)
i
and hence the time dependent Schrédinger equation
ih 00/6t = H®
becomes
ih 8’ /0t = &(R)HO(R)* D’ (24)
and

O(RYHOR)™' = O(RYH\,OR) ' + XR)VOH(R)™*

2
- HM+(9(R){Z micA(r ). P+ 2:1—7/12(5., t)}@(R)' t

J

e e2
= HM+'§{—%A(”+R, ).pj+ zm-—czAz(rj+R, t)} (25)
where the expansion
2
e’ Fe #¢ = F+B[G, F] +-’;—[G, [G,F]]+ ... (26)

has been employed to obtain eqn (25). The above modification of A(r.?) leads to no
experimentally observable change, since the electric and magnetic fields remain
unchanged.
Evaluation of the appropriate matrix element for determining the rotational
strength, based on eqn (25), leads to the following result
— g> (27)

. e
{alVD|g> = exp(ik . R)<a'1§ ;1_12'40 . P +2mckon . F;Xp;
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where well known approximations have been employed.'? Thus [{a|V|g)|* is
invariant with respect to the origin displacement R. Alternatively, the matrix element

V., may be written as
alv gy = <a g> (28)
which appears to lead to an additional contribution to R,, of the form
R,, = Im(3 {gld, - pjla)<alkxA, . Rxpjlg)). (29)

However, eqn (28) is equivalent to writing

Calv®lg) = z{n%Ao <alp}lg>(1 +ik . R)+5—(ikxAo) - <alr,~xp,-lg>}- (30)

J

ie

J

e ie
Z{];l—cAo . p1+27€kxA0 . rlxpj+ kxAO . Rxpl}

2mc

Eqgn (30) then to the approximation considered may be written

e .
<alVPlg) = Z{%Ao .<alp;lg> exp(ik . R)+
Jj

—Z%Z(ikon) . {alr,xp;lg) exp(ik . R)}. 31)

The exponential dependence of the second term becomes clearer if eqn (30) is written
to higher powers of (k . [r+ R]), then eqn (30) would be

.2
(alV Vg = Z{%%A° . (alpj|g>[1+ik.R+l§-(k.R)2+ ]+
J

e . .
2—n;(1kon) .<alrxpjlg>[1 +ik . R+ ...]. (32)

Eqn (32) expresses the fact that the factor (k x 4o) . (R x p;) may be regrouped with
the term A, . p; and replaced by a phase factor exp(ik.R). The important point is that
the arbitrary phase factor dependence must be expanded to all orders, even though
the exp(ik . r) term is truncated after the second term. Thus the rotational strength
under origin displacement is correctly defined in terms of the matrix element of eqn (27)
and not eqn (28). This choice is dictated by the fact that since the Hamiltonian is
invariant under the operation O(R), the function O(R)® is also a solution, so that
@ = O(R)® must be of the form e!”® with y real. So we may expand @’ as "¢, +
Aei’¢, M+ ... which leads to matrix elements {e!7¢,@|r|e""$, ) etc., which yields
an invariant expression for the rotational strength independent of the form of the
operators employed. So if the action of O(R) on H and @ is to lead to consistent
results, eqn (27) must define the matrix element from which the rotational strength
is derived.

DISCUSSION

The term rotational strength is often loosely associated with just the first order
contribution to the rotational strength. The first-order contribution is clearly not
related to a physical observable and need not be rigorously gauge invariant. Only
the total sum of all order contributions represents a gauge invariant quantity. How-
ever it is most logical to define the rotational strength in terms of contributions which
are each gauge invariant, in an analogous manner in which higher order corrections
in energy calculations are gauge invariant. The advantage of the scheme is clearly
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that an infinite order perturbation calculation is no longer required to obtain a gauge
invariant quantity.

The question as to which form of the rotational strength, dipole velocity versus
dipole length, should be employed, when exact eigenfunctions are unavailable, cannot
be inferred from the requirements of gauge invariance as set forth in this paper. This
is due to the requirement that we have been employing exact eigenstates throughout.

The author thanks Dr. D. A. Hutchinson for some interesting discussions.

! E. Gorin, J. Walter and H. Eyring, J. Chem. Phys., 1938, 6, 824.
2 W. Moffitt, J. Chem. Phys., 1956, 25, 467.
3 A. Moscowitz, Modern Quantum Chemistry, ed. O. Sinanoglu (Academic Press, New York,
1965), vol. 3, chap. 4.
*D. J. Caldwell and H. Eyring, Theory of Optical Activity (Wiley-Interscience, New York, 1971),
chap. 4.
5 A. E. Hansen, Mol. Phys., 1967, 13, 425.
6 A lucid description of the T-matrix may be found in: P. Roman, Advanced Quantum Theory
(Addison-Wesley, Massachusetts, 1965), chap. 4.
7 J. S. Griffith, The Theory of Transition Metal Ions (University Press, Cambridge, 1961), p. 434.
8 J. M. Jauch and F. Rohrlich, The Theory of Photons and Electrons (Addison-Wesley, Massa-
chusetts, 1955), chap. 5.
® A. D. Buckingham and M. B. Dunn, J. Chem. Soc. A, 1971, 1988.
10y .-N. Chiu, J. Chem. Phys., 1969, 50, 5336.
'1Y.-N. Chiu, J. Chem. Phys., 1970, 52, 1042.
12 E. U. Condon, W. Altar and H. Eyring, J. Chem. Phys., 1937, 5, 753.

PRINTED IN GREAT BRITAIN AT
THE UNIVERSITY PRESS
ABERDEEN



