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A comparison is made between the calculation of the elastic photon scattering differential cross
section for the H- ion in the asymptotic approximation, employing both the dipqle length apd
dipole velocity formulations. The divergence of the cross section using the dipole velocity

formulation is discussed.

On fait une comparaison du calcul de la section efficace différentielle élastique de.diffusion des
photons par I'ion H- dans I'approximation asymptotique en employant les formulations en terme
de longueur dipolaire et de vitesse dipolaire. La divergence dans la section efficace par I'emploi

de la vitesse dipolaire est discutée.

Can.J. Phys., 53, 2502 (1975)

Introduction

There has been renewed interest in the H™ ion,
particularly with regard to the application of the
asymptotic approximation. Adelman (1972, 1973)
has recently calculated the static and dynamic
polarizabilities of the H™ ion, for which he found
fairly close agreement with the results of extended
basis set calculations. A problem which has re-
ceived wide attention, is the discrepancy between
calculations of transition matrix elements within
the dipole length and dipole velocity formulations,
when approximate eigenstates are employed
(Crossley 1969). For extended basis set calcula-
tions, the dipole velocity results for H™ appear to
be in better agreement with experiment (Brans-
comb 1962).

[Traduit par le journal]

In this paper, we show within the framework
of the asymptotic approximation, that the dipole
velocity formulation leads to a differential elastic
photon scattering cross section which is divergent.
This contrasts with the situation for the dipole
length formulation, for which finite results are
obtained. The difference between these formal-
isms and a clear exposition of the mathematical
origin of the divergence is shown. This is carried
out by converting the appropriate sum over inter-
mediate states to the corresponding differential
equation. For the H™ ion, this differential equa-
tion is soluble in the asymptotic approximation,
for both the dipole length and the dipole velocity
formulations.

Theory
The differential elastic photon scattering cross section in the dipole velocity formulation is given by
(1] doy(k)/dQ = ro®|1 + Py(k) + Py(—k)|*(e - &')?

where r is the classical radius of the electron, € and €’ are polarization vectors for the incident and
scattered photon, k is the photon energy in a.u., and

(2]

Pyk) = %Zﬂ: {bo(rys )Py + P2|¢n("11:::21>'E<"¢-:('}(1, Py + Paldo(rys r2))

where E| is the energy of the ground state, E, the energies of the intermediate states, ¢o(7,, r,) desig-
nates the ground state of H™, and ¢,(r;, r,) the excited states. Alternatively, the differential elastic
cross section in the dipole length formalism can be written as

3] doy (k)/dQ = ro’k*|PL(k) + PL(—k)|*(e - &)

where

\
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' _ 1o <do(ry, r)lry + 12l du(ri, 72)) K u(ris T2)Iry + 12| Po(ry, 72))
Consider the dipole velocity formulation first. Equation 2 may be rewritten as
[5] Py(k) = (1/3)<do(r1, r)I(p1 + p2) - ¥y(ry, 12))
where

_ v 10u(rs, 1)1 s TPy + P2l Go(ry, 12))
[6] ¥y(ry, r2) = Z": E,—E, + k
W, (r,, r,) is the solution of the differential equation
(7] [Eo — H + k]¥y(ri, r2) = (p1 + P)Ido(ry, r2)D
and

__lya_lyg. 111
[8] H = 2V1 2V2 .'T " + -~

From [7] the following result is obtained
91 JWi(r)lEo — H + K]¥y(ry, 1) dtp, = [ ¥ (r)(p1 + P2)o(ry, 72) dTa
where the asymptotic approximation is introduced as

N e_'Y"l
ry

[10, 11] lim ¢o(ry, 1) = x(r)¥i(ra); x(ry) =

ri—o

and N is a normalization constant, y = (2E)!/?, and E is the binding energy. Equation 9 may be
reexpressed as

[12] 0y(r))[Ey — Ey s + k] + (1/2)V,%0(ry) = pyx(ry)

where E|; is the ground state energy of the hydrogen atom and

[13] 0y(ry) = [ W1(r)¥y(ry, 15) dry

Expressing 0y(r) in the form

[14] 0y(r) = Fx(r)gv(r)r”

leads to the differential equation

[15] &v'(r) + 2&v'(D[(n/r) = ¥] + gu()[2k — @ny[r) + (n* — n = 2)[r*] = 2r "y (r) ™" ¥ px(r)
The choice n = —1 simplifies [15] to

[16] rgy''(r) — 2[1 + yrlgy'(r) + [2kr + 2y]gv(r) = 2ri(1 + yr)

® -5

which can be solved by taking the Laplace transform, Gy(s) = | €™ *"gy(r) dr. The resulting differen-
tial equation is solved to give

[17] [s? — 2ys 4+ 2k]*Gy(s) = — [2i(RQys™> + s™2)(s* — 2ys + 2k)ds + 2i)
where A is an arbitrary integration constant. Now

[18] Gy(s) = 2is™2[s? — 2sy + 2k]72[—s® + As? + (2k — 4y*)s + 2ky]
from which gv(r) can be determined to be

(19] gv(r) = flr;,m) + flr; 1 > mym > 1)

where
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[20] f(r;l,m) = (I — m)~3e"{a(®r — Imr — I — m) + b(Ir — mr — 2) + cl~2(Pr — Imr — 31
+ m) + dI73(r — Imr — 2m — 4D} + (1/2)17*m™%c + dI7*m™3( + m — (1/2)rim)
and f(r; | » m, m — I) signifies the interchange of / and m, which are the roots of the equation s* —

2ys + 2k = 0, and the constants a, b, ¢, and d are respectively —2i, 2iA, 4ik — 8iy2, and 4iky.
The factor Py(k) is then determined from the expression

_ N2 @©
8§IN j; e~ 2" (yr~ ! + rH)gy(r) dr

[21] Py(k) =

From the functional form of gy(r) it is apparent that Py(k) is divergent. Furthermore there is no choice
for the arbitrary constant A which removes this divergence.

To contrast the situation for the dipole velocity formulation with the dipole length situation, we
outline the calculation of Py (k) which proceeds along similar lines. Defining

e [04(r, r))DA(r, TPy + raldo(ry, T2))

[22] Y (ry, ry) = Zn: E,—E, + k
allows P; (k) to be written as
[23] Py(k) = (1/3){do(ry, r)I(ry + r2) - ¥ilry, r2))
Now ¥, (r,, r,) satisfies the differential equation
[24] [Eo — H + k]¥i(ry, 1) = (ry + r2)bo(ry, 72)
From [24] we obtain the result
[25] 0.(r)[Eo — Eys + k] + (1/2)V,?0.(ry) = ryx(ry)
where
[26] 0.(ry) = [ ¥ (r)¥u(ry, 7)) dr
and
[27] Ey — Eqg + k =k — (1/2)y*
On writing
[28] 0.(r) = Fx(r)gLlr)r”
converts [25] into the following differential equation

" n ’ 2 2 - -2 -n
[29] a® + 22— 1)) + (2 -2+ P = 20
which for the choice n = —1 can be solved by taking the Laplace transform. The solution of the
resulting equation is
[30] Gy(s) = [3s2 — ys + K172 [ S s™4(—=3s* + ys — k) ds + ']

where the arbitrary constant A’ can be selected such that the singularity at s =y + (y* — 2k)*% is
removed. Py (k) is then obtainable directly from the Laplace transform, G(s), as

[31] Py (k) = (8nN?/3)GL(2y)
which is well behaved for all k.

Discussion

The inequivalence of the dipole length and dipole velocity results arises from the use of an ap-
proximate eigenstate, the asymptotic wavefunction, of the correct Hamiltonian. The asymptotic
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approximation for ¢,(r;, r,) is an eigenstate of the Hamiltonian only for the lim r, — co. When this
approximate eigenstate is employed in evaluating matrix elements for all r, the dipole length formu-
lation deemphasizes the small r region, since the r ~1 behavior at the origin (arising from ¢o(ry, r2)) is
cancelled by the r2 from the volume element. The dipole velocity formalism emphasizes the region of
small r, to the extent that the differential elastic cross section becomes singular. The divergence of
the differential scattering cross section would be strongest for the case of the dipole acceleration
formulation. This is due to the fact that the dipole acceleration operator places greater emphasis on
the small r region, compared with the dipole velocity and dipole length operators.

Although divergences of the type obtained for the differential elastic scattering cross section in
the dipole velocity formulation may be generally appreciated, when asymptotic wave functions are
employed, it does not appear to have been explicitly demonstrated. The appearence of a divergent
result is not at all obvious from an examination of the appropriate transition matrix element. Taking
a representation of the p wave radial wavefunction for the H™ ion continuum states of the form
(Geltman 1956) '

'p2 @~ tr 414,
B2 n( = Is\ilnr(xer +l§‘>7)1(2 £k, =t
ey — ©08 (xr +8), r=>R,

where N’ is a matching constant, & the phase shift, t = (2R,~* — 2E,)!/?, and R, the radius of the
well, leads to the following transition matrix element,

I
0

ri{e”"r Fy(2 — t71;4;21r)} éa;{r‘1 e "} dr

+ fwrz{w — cos (kr + 5)}-'1;567&'1 e "} dr

Ro Xr

which is not divergent. It is necessary to examine the total sum over states directly. It is of course
very easy to choose an approximation for the continuum wave functions which would create a
singular transition matrix element; however, this is to a certain extent a moot point, since the deriva-
tion employed in this paper does not specify the functional form of the intermediate continuum states.
However a simple approximate argument is available for exhibiting the divergent character of Py(k)
in the asymptotic approximation.! By invoking an average energy approximation for the denomi
nator of [2], E, — E, ~ AE, then [2] can be expressed in the form

[33] Py(k) ~ (AE + k)~ do(ry, r)l(py + P2)2|¢o("1s r)>
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which is very easily shown to be divergent, when
the asymptotic approximation is employed.
The outcome of this paper is thus to provide a
clear choice between the dipole length, dipole
velocity, and dipole acceleration formulations,

when asymptotic type wave functions are em-  ApeLman, S. A. 1972. Phys. Rev. A, 5, 508.

ployed for the calculation of the differential
elastic scattering cross section and related pro-
perties. The dipole length formulation is the ap-
propriate choice, since it weights the small r region
least heavily of the three possibilities.
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