Lecture 7 - The Calvin Cycle and the Pentose Phosphate Pathway

Chem 454: Regulatory Mechanisms in Biochemistry University of Wisconsin-Eau Claire

1

Introduction

The Calvin cycle

- The dark reactions of photosynthesis in green plants
- Reduces carbon from CO2 to hexose (C6H12O6)
- Requires ATP for free energy and NADPH as a reducing agent.

2

2

Introduction

NADH versus NADPH

3

Introduction

The Pentose Phosphate Pathway

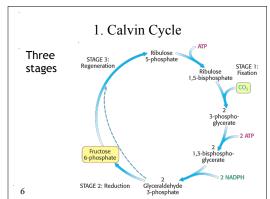
- Used in all organisms
- Glucose is oxidized and decarboxylated to produce reduced NADPH
- Used for the synthesis and degradation of pentoses
- Shares reactions with the Calvin cycle

4

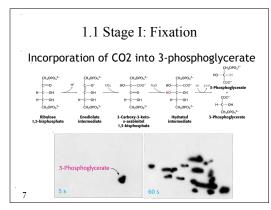
3

Δ

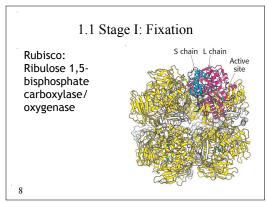
1. The Calvin Cycle

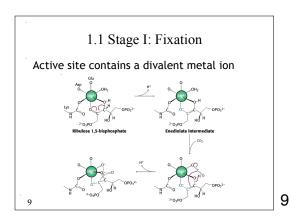

Source of carbon is CO2

Takes place in the stroma of the chloroplasts Comprises three stages


- Fixation of CO2 by ribulose 1,5-bisphosphate to form two 3-phosphoglycerate molecules
- Reduction of 3-phosphoglycerate to produce hexose sugars
- Regeneration of ribulose 1,5-bisphosphate

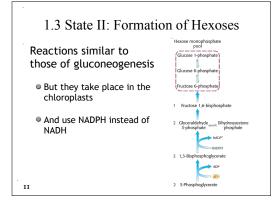
5


5



6

7



1.2 Rubisco Oxygenase Activity

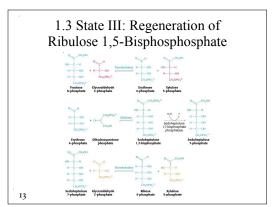
Rubisco also catalyzes a wasteful oxygenase reaction:

CH20PO3²⁻
CH2

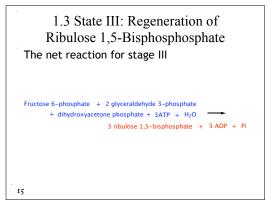
10

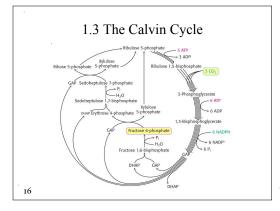
11

1.3 State III: Regeneration of Ribulose 1,5-Bisphosphosphate Involves a sequence of transketolase and aldolase reactions.


1.3 State III: Regeneration of Ribulose 1,5-Bisphosphosphate Involves a sequence of transketolase and aldolase reactions.

1.4 CHOPO,**


Addose (m carbons) Addose (m carbons) (m + 2 carbons)


Addose (m carbons) Addose (m + 2 carbons)

Addose (m carbons) Addose (m - 3 carbons)

1.3 State III: Regeneration of Ribulose 1,5-Bisphosphosphate The resulting ribose 5-phosphate and xylulose 5-phosphate are converted to ribulose 5-phosphate by an isomerase and an epimerase Office of the converted to ribulose 5-phosphate by an isomerase and an epimerase Office of the converted to ribulose 5-phosphate by an isomerase and an epimerase Office of the converted to ribulose 5-phosphate of

1.4 Balance Reaction for Calvin Cycle Net Balanced Reaction 6 CO₂ + 18 ATP + 12 NADPH + 12 H₂O ---

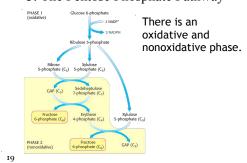
```
C_6H_{12}O_6 \ + \ 18\ ADP \ + \ 18\ Pi \ + \ 12\ NADP^+ \ + \ 6\ H^+
```

17

3. The Pentose Phosphate Pathway

Pathway is used to serve the NADPH needs of all organisms

```
Glucose + 2 NADP^+ + H<sub>2</sub>O \longrightarrow ribose 5-phosphate + 2 NADPH + 2 H^+ + CO<sub>2</sub>
```


It also provides a source of five carbon sugars

18

18

17

3. The Pentose Phosphate Pathway

19

3. Phase 1 of The Pentose Phosphate Pathway

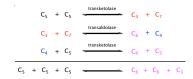
There oxidative phase

3.2 Phase 2

The Pentose Phosphate Pathway

The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase

• When the need for NADPH is greater than the need for ribose 5-phosphate, the ribose 5-phosphate is converted into the glycolytic intermediates glyceraldehyde 3-phosphate and fructose 6-phosphate

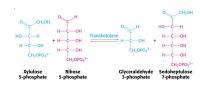

21

21

3.2 Phase 2

The Pentose Phosphate Pathway

The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase

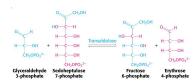

22

22

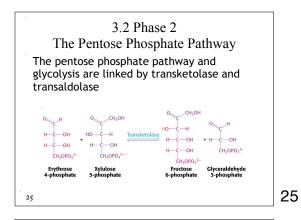
3.2 Phase 2

The Pentose Phosphate Pathway

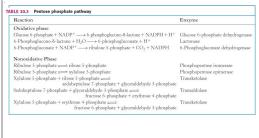
The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase

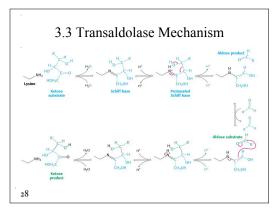

23

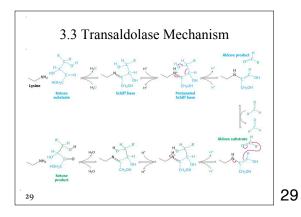
23


3.2 Phase 2

The Pentose Phosphate Pathway


The pentose phosphate pathway and glycolysis are linked by transketolase and transaldolase




24

3.2 The Pentose Phosphate Pathway

3.3 Transketoase and Transaldolase Mechanisms

Both mechanisms stabilize the carbanion intermediate

How hope the carbanion intermediate

How hope the carbanion intermediate

4. Coordination with Glycolysis

| Character | Charact

31