Chem 452 – Lecture 9 Pumps and Channels 111121

With this lecture we begin a unit a that looks at proteins as complex machines. We will look first at the intrinsic membrane proteins that are responsible for moving material across membranes. Those that require a source of free energy to carry out the transport are called active transport systems. Some of these are directly coupled to the hydrolysis of ATP, while others are coupled to a second concentration gradient that flows across the cell in a favorable direction. We will also look at gated passive transport systems, which, while requiring no external source of free energy, are far from from being just simple channels.

Introduction
Martine Constitution
 Membrane proteins function as
• Pumps (Chapter 13)
• Channels (Chapter 13)
 Signal transducers (Chapter 14)
• Energy transducers (Chapter 18 & 19)
Chem 452, Lecture 9 - Pumps and Channels 2

Introduction	
 Membrane proteins function as 	
• Pumps (Chapter 13)	
• Channels (Chapter 13)	
• Signal transducers (Chapter 14)	
• Energy transducers (Chapter 18 & 19)	
Chem 452, Lecture 9 - Pumps and Channels 3	

 Membrane Lipids and Water Lipid membranes display a wide range of permeability's to small molecules. 	
Tryptophan Urea GlycerolNa*Cl ⁻ GlucoseGlycerolIndoleH_2O10^{-14}10^{-12}10^{-10}10^{-8}10^{-6}10^{-4}10^{-2}P (cm s ⁻¹) Increasing permeability \rightarrow	
Chem 452, Lecture 8 - Lipids and Cell Membranes 4	

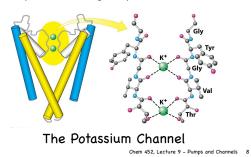
Introduction	
 Pumps and Channels move substances across membranes. 	
 Pumps move substances from regions of low concentration to high concentration. 	
 Requires a source of energy (active transport) 	
 Channels allow substances to move from regions of high concentration to low concentration. 	
 Does not require a source of energy (passive transport) 	
 If passive transport requires a channel it is 	
called facilitated diffusion .	
Chem 452, Lecture 9 - Pumps and Channels 5	

Introduction	
 Some pumps couple transport to the hydrolysis of ATP. 	
• P-Type ATPases	
• ATP-binding cassette (ABC) transporters	
+ Some pumps couple transport to a second	
concentration gradient (secondary transport)	
Chem 452, Lecture 9 - Pumps and Channels 6	

T I		
Intro	oduc.	tion

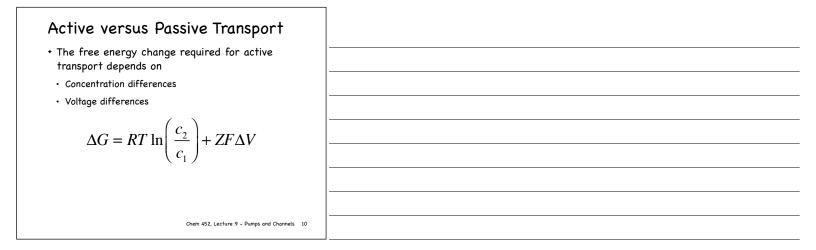
+ Transporters are used to regulate the metabolic activity of a cell.

e.g. Glucose Transporters


TABLE 16.4 Family of glucose transporters

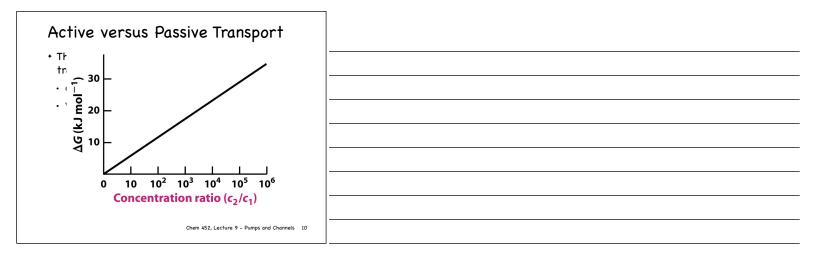
Name	Tissue location	ĸ	Comments
GLUT1	All mammalian tissues	1 mM	Basal glucose uptake
GLUT2	Liver and pancreatic β cells	15–20 mM	In the pancreas, plays a role in the regulation of insulin In the liver, removes excess glucose from the blood
GLUT3	All mammalian tissues	1 mM	Basal glucose uptake
GLUT4 brane	Muscle and fat cells	5 mM	Amount in muscle plasma mem-
			increases with endurance training
GLUT5	Small intestine	_	Primarily a fructose transporter

Chem 452, Lecture 9 - Pumps and Channels 7


Introduction

+ Gated channels, while requiring not energy for transport, can be highly specific.

Active versus Passive Transport



Active versus Passive Transport

- + The free energy change required for active transport depends on
- Concentration differences
- Voltage differences

$$\Delta G = RT \ln\left(\frac{c_2}{c_1}\right) + ZF\Delta V$$

Concentration

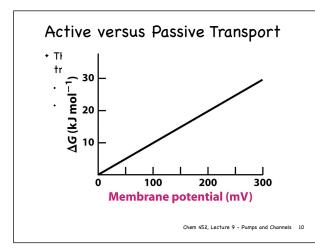
Active versus Passive Transport

- The free energy change required for active transport depends on
- Concentration differences
- Voltage differences

$$\Delta G = RT \ln\left(\frac{c_2}{c_1}\right) + ZF\Delta V$$

Concentration

Chem 452, Lecture 9 - Pumps and Channels 10


Active versus Passive Transport

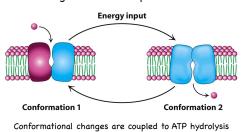
- + The free energy change required for active transport depends on
- Concentration differences
- Voltage differences

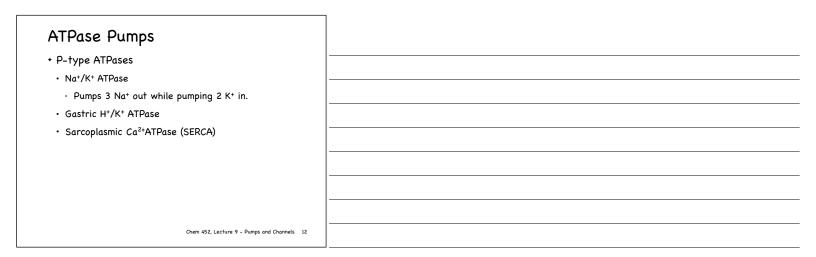
$$\Delta G = RT \ln\left(\frac{c_2}{c_1}\right) + ZF\Delta V$$

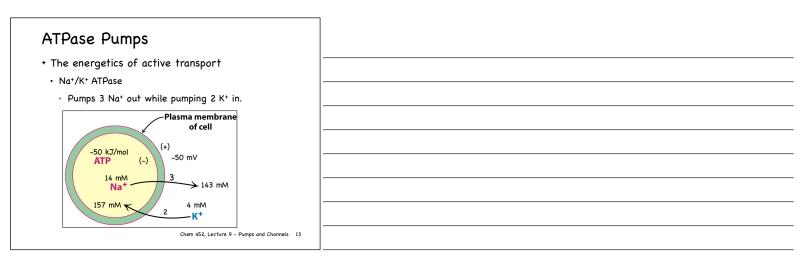
Concentration Voltage

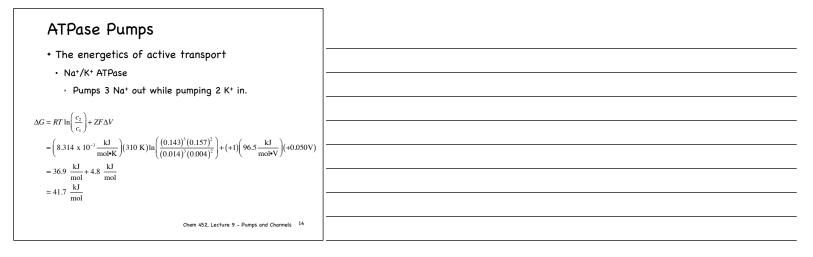
Chem 452, Lecture 9 - Pumps and Channels 10

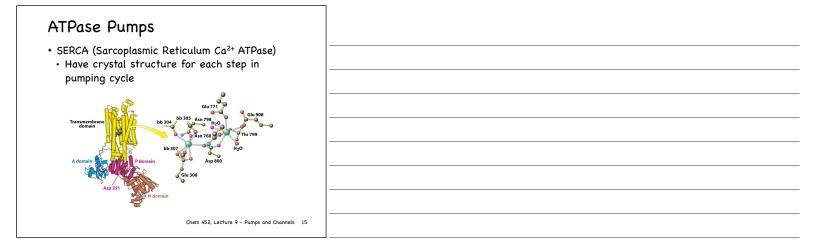
Active versus Passive Transport

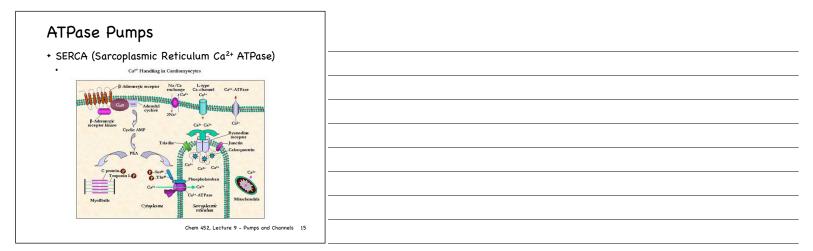

- + The free energy change required for active transport depends on
- Concentration differences
- Voltage differences

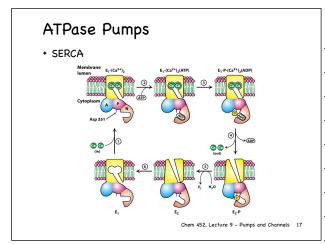

$$\Delta G = RT \ln\left(\frac{c_2}{c_1}\right) + ZF\Delta V$$


Concentration Voltage


ATPase Pumps (Active Transport)


- + P-type ATPases
- + ATP-Binding Cassette Transporters



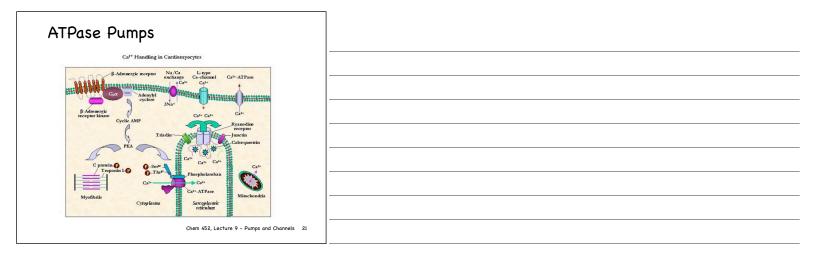


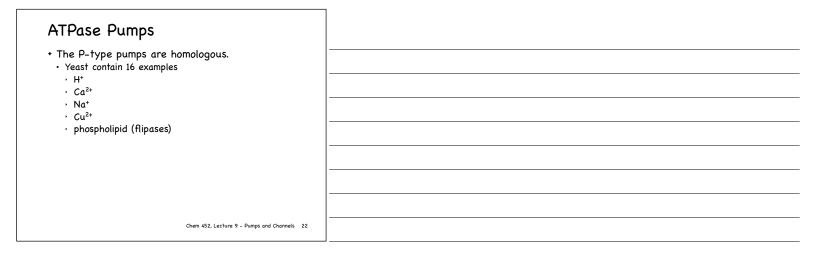
ATPase Pumps	
 The drug digitoxigenin (digitalis), which is used to treat congestive heart failure, inhibits the Na⁺/K⁺ ATPase. 	
CH ₃	
Digitoxigenin	
Chem 452, Lecture 9 - Pumps and Channels 18	

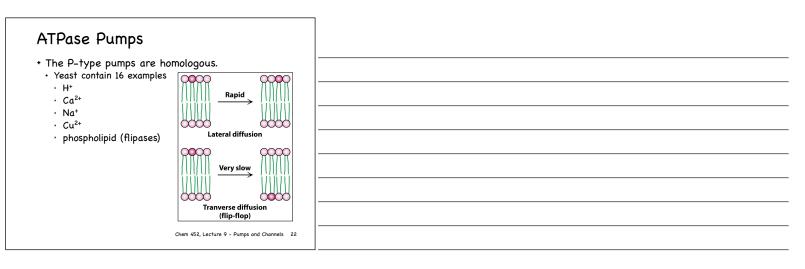
ATPase Pumps		
 The P-type pumps are homologo 	us.	
 The drug digitoxigenin (digitalis), to treat congestive heart failure 		
Na+/K+ ATPase.		
CH ₃ E ₂ -P + H	$_{2}O \rightarrow \mapsto E_{2} + P_{i}$ Inhibited by	
Са	rdiotonic steroids	
HO UTIONI HINTING AND AND AND AND AND AND AND AND AND AND		
	ecture 9 - Pumps and Channels 19	

ATPase Pumps

- + The P-type pumps are homologous.
- + The drug digitoxigenin (digitalis), which is used to treat congestive heart failure, inhibits the Na⁺/K⁺ ATPase.

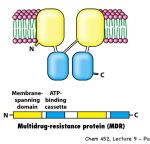

Foxglove (Digitalis purp (52) anti-. . .

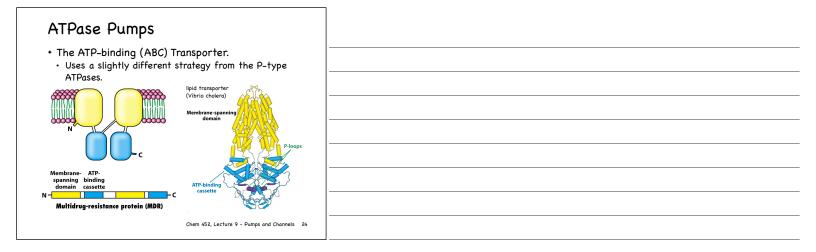

ourea)	Chem 452, Lecture 9 - Pumps and Channels	20

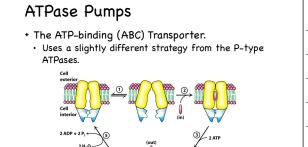

Å Digitoxigenin

ATPase	Pumps
--------	-------

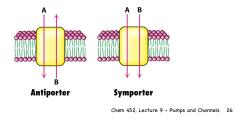
- + The P-type pumps are homologous.
- + The drug digitoxigenin (digitalis), which is used to treat congestive heart failure, inhibits the Na⁺/K⁺ ATPase.
- + With higher cellular $Na^{\scriptscriptstyle +}$ levels, the $Ca^{\scriptscriptstyle 2+}$ pump is slower to remove the Ca^{2+} from the cytoplasm, leading to a stronger contraction.

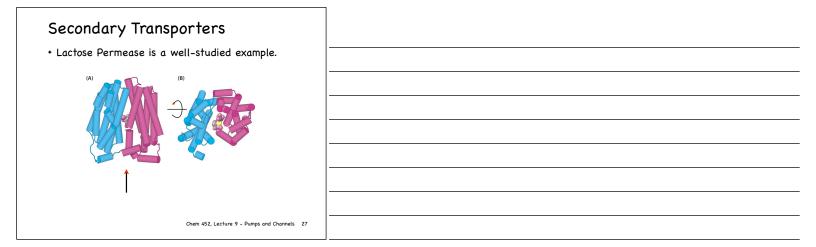


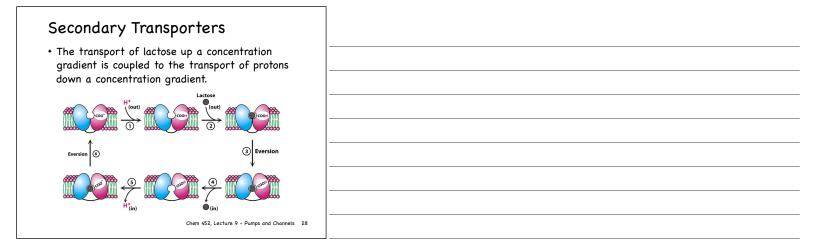



ATPase Pumps


- + The ATP-binding (ABC) Transporter.
- Uses a slightly different strategy from the P-type ATPases.






Secondary Transporters

- + Secondary transporters are active transport systems that do not derive their energy directly from the hydrolysis of ATP
- Instead, the active transport is coupled to the passive transport of a second metabolite

Secondary Transporters	
 The transport of lactose up a concentration gradient is coupled to the transport of protons down a concentration gradient. 	
Is lactose permase Eversion © a "symporter" or an "antiporter"? ③	
	
$\underset{H^{*}(in)}{\overset{max}}{\overset{max}{\overset{max}}{\overset{max}{\overset{max}}{\overset{max}{\overset{max}}}}}}}}}}}}}}}}}}}}}$	
Chem 452, Lecture 9 - Pumps and Channels 28	

Next	up
------	----

 Unit V, Lecture 9, cond – Membrane Channels and Pumps. (Chapter 13)
 K⁺ channel and the action potential