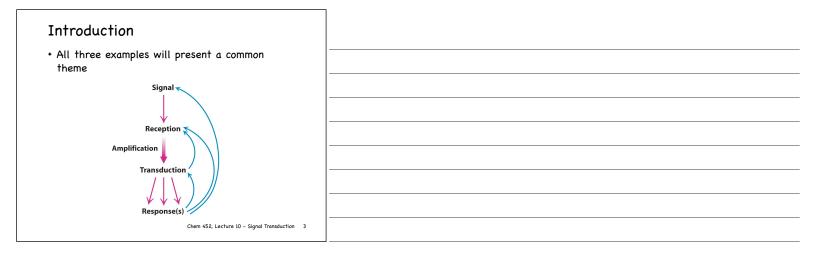
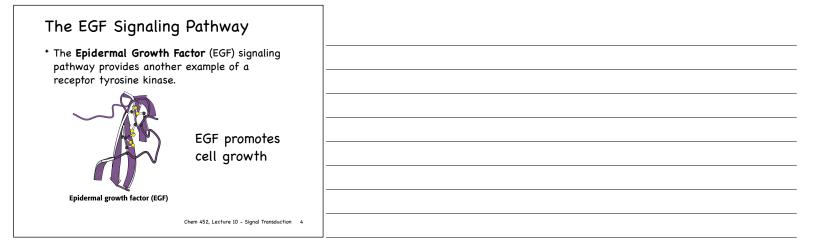
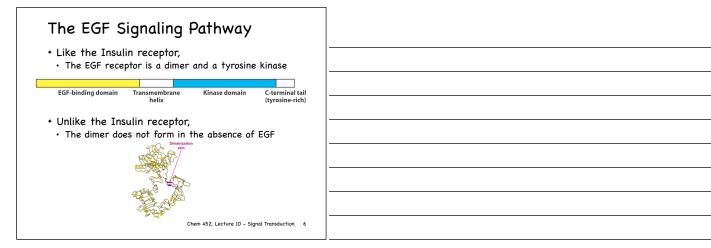
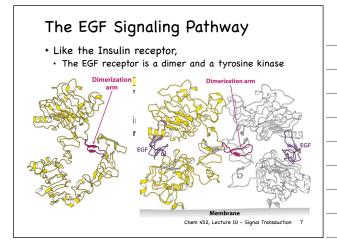
Chem 452 – Lecture 10 Signal Transduction 111202

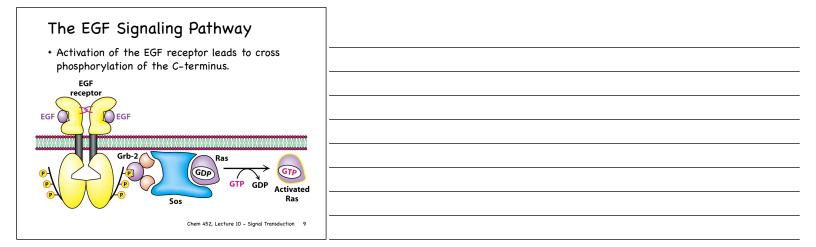

Here we look at the movement of a signal from the outside of a cell to its inside, where it elicits changes within the cell. These changes are usually mediated by protein kinases, which phosphorylate enzymes to turn them on or off. We will focus on three examples; the β -adrenergic receptor, which is involved in the "flight or fight response, the insulin receptor, which is involved in regulating blood glucose levels, and the epidermal growth factor (EGF) receptor, which triggers cell growth in response to injury. Each example presents common themes such as secondary messengers, the amplification of a signal, and the activation of protein kinases. These signal pathways also provide examples of how multiple proteins can work together in complex ways to produce a concerted result.

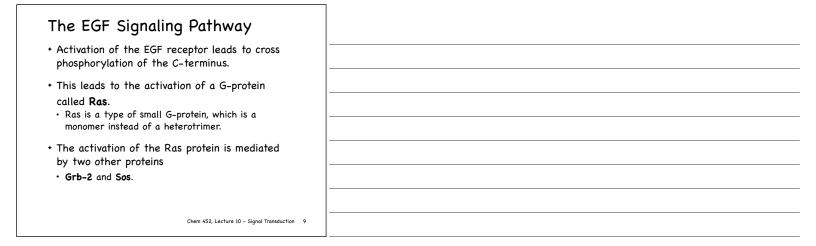

Introduction
 Signal transduction involves the changing of a cell's metabolism or gene expression in response to an external stimulus.
 We will focus on three examples
• The hormone epinephrine (adrenalin)
 Regulates the "flight or fight response" The hormone insulin
 Regulates blood glucose levels after a meal
• The hormone epidermal growth factor (EGF)
 Stimulates cell growth after injury
Chem 452, Lecture 10 - Signal Transduction 2


Introduction	า		
 Signal transduc cell's metabolisi to an external 	m or gene expre	e changing of a ession in response	
Epinephrine	Insulin E	Epidermal growth factor (EGF)	
+ β-Adrenergic receptor	+ Insulin receptor	+ EGF receptor	
	$\mathbf{x}_{\mathrm{s}} = \mathbf{x}_{\mathrm{s}}$	\downarrow_{\downarrow}	
Energy-store mobilization	Increased glucose uptake	Expression of growth-promoting genes	
	-	52, Lecture 10 - Signal Transduction 2	

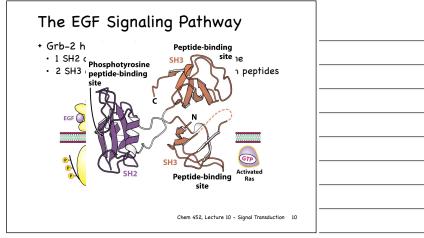

Introdu	uction


- Signal transduction involves the changing of a cell's metabolism or gene expression in response to an external stimulus.
- + We will focus on three examples
- The hormone **epinephrine** (adrenalin)
- Regulates the "flight or fight response"
- The hormone **insulin**
- Regulates blood glucose levels after a meal
 The hormone epidermal growth factor (EGF)
- Stimulates cell growth after injury

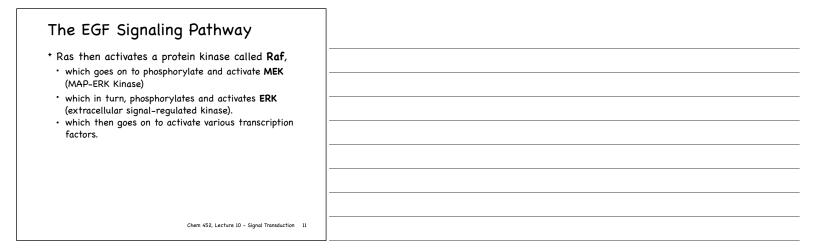


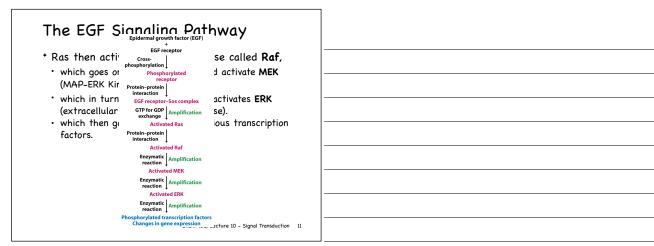


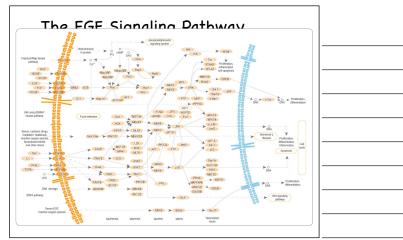
The EGF Signa	ling Pathway	
	ated receptor, called the ch does not require EGF	
Dimerization	The overproduction of Her-2 is associated with certain cancers	
EGF receptor	Chem 452, Lecture 10 - Signal Transduction 8	


The EGF Signaling Pathway

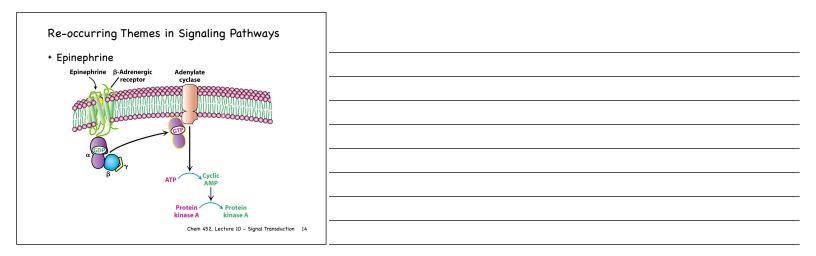
- Activation of the EGF receptor leads to cross phosphorylation of the C-terminus.
- This leads to the activation of a G-protein called **Ras**.
- Ras is a type of small G-protein, which is a monomer instead of a heterotrimer.
- The activation of the Ras protein is mediated by two other proteins
- Grb-2 and Sos.

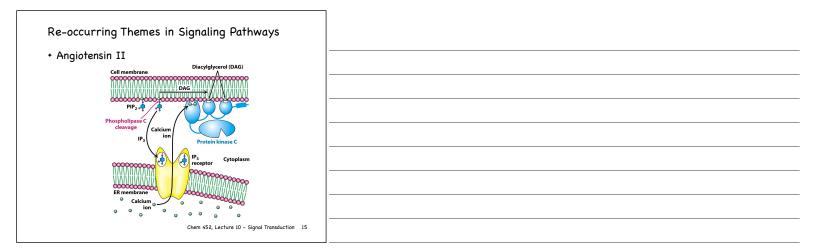


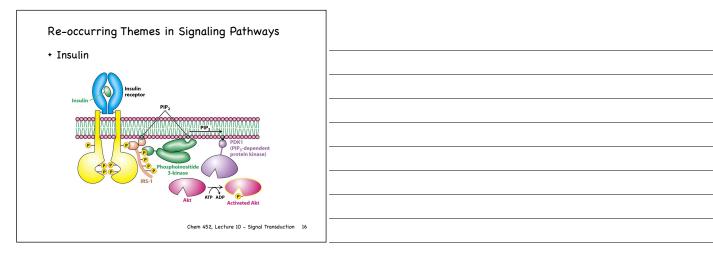


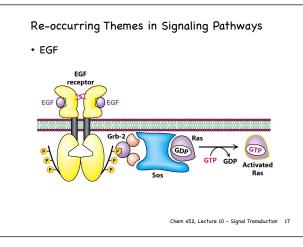

The EGF Signaling Pathway	
 Grb-2 has three domains 1 SH2 domain, which binds phosphotyrosine 	
 2 SH3 domines, which bind to proline-rich peptides 	
EGF receptor EGF	
GIP GIP GIP GIP	
e GIP GDP Activated Sos Ras	
Chem 452, Lecture 10 - Signal Transduction 10	

The EGF Signaling Pathway	
 Grb-2 has three domains 1 SH2 domain, which binds phosphotyrosine 	
 2 SH3 domines, which bind to proline-rich peptides EGF 	
EGF EGF	
Grb-2	
Sos GTP GDP Activated Ras	
Chem 452, Lecture 10 - Signal Transduction 10	

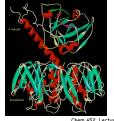

sation, diation	
Cell cycle	
]

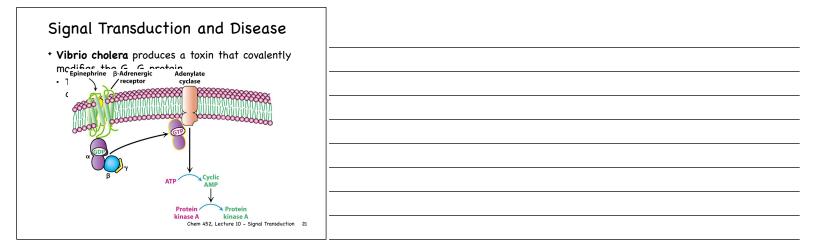

The EGF Signaling Pathway		
 Ras then activer cross-cross-proper cross-cross-properly and activates (MAP-ERK Kir) which goes or (MAP-ERK Kir) which in turn (extracellular) which then git activated Ras (extracellular) which then git activated Ras (activated Ras (activate	MEK	


The EGF Signaling Pathway	
 Ras then activates a protein kinase called Raf, which goes on to phosphorylate and activate MEK (MAP-ERK Kinase) which in turn, phosphorylates and activates ERK (extracellular signal-regulated kinase). which then goes on to activate various transcription factors. 	
Chem 452, Lecture 10 - Signal Transduction 11	


The E	GF Signaling Pathway	
	s GTPase activity, which allows it to te itself	
	nember of a superfamily of small G-proteins. Las superfamily of GTPases	
Subfamily	Function	
Ras Rho Arf	Regulates cell growth through serine-threonine protein kinases Reorganizes cytoskeleton through serine-threonine protein kinases Activates the ADP-ribosyltransferase of the cholera toxin A subunit; regu- lates vesicular trafficking pathways; activates phospholipose D	
Rab Ran	Plays a key role in secretory and endocytotic pathways Functions in the transport of RNA and protein into and out of the nucleus	
+ Mutant	Ras proteins, which have lost their GTPase	
	, are associated with various types of cancer.	
	Chem 452, Lecture 10 - Signal Transduction 12	

Re-occurring Themes in Signaling Pathways
+ Protein Kinases
 PKA, PKC, PDK, Akt Raf, MEK, ERK, etc.
 Second Messengers
• cAMP, IP_2 , DAG, Ca^{2+}
 Specialized binding domains Pleckstrin, SH2, SH3
Chem 452, Lecture 10 - Signal Transduction 13


+ Rous Sarcoma Virus		
• This virus codes for an oncog	ene v-Src	
• v-Src versus c-Src		
(A) SH3 SH2 Protein kinase Y		
(B) SH3	v-Src lacks the C- terminal tyrosine and is constitutively turned on	
SH2 Protein kinase		
Phosphotyrosine		
	em 452, Lecture 10 - Signal Transduction 18	


Signal Transduction and Cancer + Ras, which has lost its GTPase activity	
EGF EGF EGF	
Grb-2 GDP GDP GTP GDP Activated Ras	
Chem 452, Lecture 10 - Signal Transduction 19	

Signal Transduction and Cancer	
 Tumor-suppressor genes code for phosphatases that are used to shut down the signal transduction pathways. Loss in their activities can also lead to cancers. 	
Chem 452, Lecture 10 - Signal Transduction 20	

Signal Transduction and Disease

- * Vibrio cholera produces a toxin that covalently modifies the G_{α} G-protein.
- This inhibits its GTPase activity, leaving PKA constitutively turned on.

Signal Transduction and Disease	
 Vibrio cholera produces a toxin that covalently modifies the G_α G-protein. This inhibits its GTPase activity, leaving PKA constitutively turned on. 	
A LANGE	
Chem 452, Lecture 10 - Signal Transduction 21	

Signal Transduction and Disease

- * Vibrio cholera produces a toxin that covalently modifies the G_{α} G-protein.
 - This inhibits its GTPase activity, leaving PKA constitutively turned on.

- The PKA phosphorylates a chloride channel and a Na⁺/H⁺ exchanger, resulting in the loss of NaCl.
- This, in turn, leads to a large loss of water into the intestines.

Chem 452, Lecture 10 - Signal Transduction 22

Signal Transduction and Disease

Question:

Suppose that you were investigating a newly discovered growth factor signal transduction pathway. You found that, if you added GTPYS, nonhydrolyzable analog of GTP, duration of the hormonal response increased. What might you conclude?

Chem 352, Lecture 5 - Carbohydrates 23

Signal Transduction and Disease

- * Vibrio cholera produces a toxin that covalently modifies the G_{α} G-protein.
 - This inhibits its GTPase activity, leaving PKA constitutively turned on.

- The PKA phosphorylates a chloride channel and a Na⁺/H⁺ exchanger, resulting in the loss of NaCl.
- This, in turn, leads to a large loss of water into the intestines.

Next up	
+ Lecture 11, Molecular Motors. (Chapter 35)	
Chem 452, Lecture 10 - Signal Transduction 25	