Chem 452 - Lecture 10 Signal Transduction 111130

Here we look at the movement of a signal from the outside of a cell to its inside, where it elicits changes within the cell. These changes are usually mediated by protein kinases, which phosphorylate enzymes to turn them on or off. We will focus on three examples; the β -adrenergic receptor, which is involved in the "flight or fight response, the insulin receptor, which is involved in regulating blood glucose levels, and the epidermal growth factor (EGF) receptor, which triggers cell growth in response to injury. Each example presents common themes such as secondary messengers, the amplification of a signal, and the activation of protein kinases. These signal pathways also provide examples of how multiple proteins can work together in complex ways to produce a concerted result.

Introduction
 Signal transduction involves the changing of a cell's metabolism or gene expression in response to an external stimulus.
 We will focus on three examples
• The hormone epinephrine (adrenalin)
 Regulates the "flight or fight response" The barrow insulin
 Regulates blood glucose levels after a meal
• The hormone epidermal growth factor (EGF)
 Stimulates cell growth after injury
Chem 452, Lecture 10 - Signal Transduction 2

Introduction	า		
 Signal transduction involves the changing of a cell's metabolism or gene expression in response to an external stimulus. 		e changing of a ession in response	
Epinephrine	Insulin E	Epidermal growth factor (EGF)	
+ β-Adrenergic receptor	+ Insulin receptor	+ EGF receptor	
	\mathbf{x}_{s}	\downarrow_{\downarrow}	
Energy-store mobilization	Increased glucose uptake	Expression of growth-promoting genes	
	- Chem 45	52, Lecture 10 - Signal Transduction 2	

Introduction	I

- + Signal transduction involves the changing of a cell's metabolism or gene expression in response to an external stimulus.
- + We will focus on three examples
- The hormone epinephrine (adrenalin) Regulates the "flight or fight response"
- The hormone insulin
- Regulates blood glucose levels after a meal • The hormone **epidermal growth factor** (EGF)
- · Stimulates cell growth after injury

Chem 452, Lecture 10 - Signal Transduction 2

G-Protein Receptors

- + PKA then phosphorylates and array of cellular proteins (at Ser & Thr), which are leads to
- Degradation of stored fuels
- Secretion of acid by gastric mucosa
- Dispersion of melanin granules
- · Opening of chloride channels

Chem 452, Lecture 10 - Signal Transduction 8

β-Adren

Binding

Activ

The phosphoinositide cascade also involved 7TM receptors that bind hormones.	
California de la construcción de	

The Phosphoinositide Cascade	
 The phosphoinositide cascade also involved 7TM receptors that bind hormones. 	
 For example, the hormone angiotensin II binds to a 7TM receptor that activates a G-protein that in 	
turn activates the enzyme phospholipase C Phospholipase C produces the second messengers 	
inositol 1,4,5-triphosphate (IP $_3$) and diacylglycerol (DAG)	
Chem 452, Lecture 10 - Signal Transduction 12	

The Phospholnositiae Cascade
 The phosphoinositide cascade also involved 7TM
receptors that bind hormones.
Phospholipase C
Phosphatidylinositol 4,5-bisphosphate (PIP ₂)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Diacylglycerol (DAG) Inositol 1,4,5-trisphosphate (IP ₃ )
Chem 452, Lecture 10 - Signal Transduction 12

- + The phosphoinositide cascade also involved 7TM receptors that bind hormones.
  - For example, the hormone angiotensin II binds to a 7TM receptor that activates a G-protein that in turn activates the enzyme phospholipase C
- Phospholipase C produces the second messengers inositol 1,4,5-triphosphate (IP₃) and diacylglycerol (DAG)





#### Ca²⁺ As a Secondary Messenger

- Ca²⁺ is widely used as a secondary messenger.
   It triggers muscle contraction
- Ca²⁺ can also activate Calmodulin-dependent protein kinases (CaM kinases) by way of the
  - regulatory protein **calmodulin**
- This signaling is involved in
- Fuel metabolism
- Ion permeability
- neurotransmitter synthesis and release.

Chem 452, Lecture 10 - Signal Transduction 14















Ca ²⁺ As a Secondary Messenger • Ca ²⁺ is widely used as a secondary messenger. • It triggers muscle contraction	
* Ca ²⁺ can also activate Calmodulin-dependent	
protein kinases (CaM kinases) by way of the	
regulatory protein <b>calmodulin</b> <ul> <li>This signaling is involved in</li> <li>Fuel metabolism</li> </ul>	
<ul> <li>Ion permeability</li> <li>neurotransmitter synthesis and release.</li> </ul>	
Chem 452, Lecture 10 - Signal Transduction 14	

The Insulin Signaling Pathway	
<ul> <li>The insulin signaling cascade involves a different type of receptor.</li> <li>The tyrosine kinase receptor</li> <li>The receptor itself is a protein kinase.</li> </ul>	
<ul> <li>Insulin is a protein hormone that simulates glucose uptake.</li> <li>We will focus on the signal transduction pathway</li> </ul>	
that leads to the mobilization of glucose transporters	
Chem 452, Lecture 10 - Signal Transduction 15	



The Insulin Signaling Pathway	
<ul> <li>The insulin signaling cascade involves a different type of receptor.</li> <li>The tyrosine kinase receptor</li> <li>The receptor itself is a protein kinase.</li> </ul>	
<ul> <li>Insulin is a protein hormone that simulates glucose uptake.</li> <li>We will focus on the signal transduction pathway that leads to the mobilization of glucose</li> </ul>	
transporters	
Chem 452, Lecture 10 - Signal Transduction 15	



The Insulin Signaling Pathway	
<ul> <li>The substrate for the kinase is the kinase itself.</li> <li>Which in turn, is activated to phosphorylate other</li> </ul>	
substrates	
Activation loop Activation	
Proghetyrosine	
Inactive Active Chem 452, Lecture 10 - Signal Transduction	1 17

## The Insulin Signaling Pathway

* These other substrates include the insulin receptor substrates (IRS).



YXXM sequence	
Chem 452, Lecture 10 - Signal Transduction 18	
Signaling Pathway	



The Insulin



The Insulin Signaling Pathway	
<ul> <li>These other substrates include the insulin receptor substrates (IRS).</li> </ul>	
Pleckstrin homology domain Phosphotyrosine- binding domain	
Chem 452, Lecture 10 - Signal Transduction 18	

The Insulin Signaling Pathway	
<ul> <li>The phosphorylated IRS activates a phosphoinositide 3-kinase, which converts</li> </ul>	
phosphotidyl inositol 4,5-bisphosphate (PIP2) to phosphotidyl inositol 3,4,5-trisphosphate (PIP3).	
0 ⁻ 0	
RO H ATP ADP RO H RO Photphatidylinositide RO	
Phosphatidylinositol 4,5-bisphosphate (PIP ₃ ) Phosphatidylinositol 3,4,5-trisphosphate (PIP ₃ )	
Chem 452, Lecture 10 - Signal Transduction 19	



# The Insulin Signaling Pathway

 The phosphorylated IRS activates a phosphoinositide 3-kinase, which converts phosphotidyl inositol 4,5-bisphosphate (PIP₂) to phosphotidyl inositol 3,4,5-trisphosphate (PIP₃).







The Insulin Signaling Pathway	
<ul> <li>The IRS has and example of the Src Homology</li> <li>2 (SH2) domain, which bind to phosphorylated</li> <li>tyrosines.</li> </ul>	
e prosphotyrosine	
Ag ^{ot} s	
SH2 domain Chem 452, Lecture 10 - Signal Transduction 21	



Next up	
<ul> <li>Lecture 10, Signal Transduction (cond). (Chapter 14)</li> </ul>	
Chem 452, Lecture 10 - Signal Transduction 23	