Chem 452 – Lecture 10 Signal Transduction 111128

Here we look at the movement of a signal from the outside of a cell to its inside, where it elicits changes within the cell. These changes are usually mediated by protein kinases, which phosphorylate enzymes to turn them on or off. We will focus on three examples; the β -adrenergic receptor, which is involved in the "flight or fight response, the insulin receptor, which is involved in regulating blood glucose levels, and the epidermal growth factor (EGF) receptor, which triggers cell growth in response to injury. Each example presents common themes such as secondary messengers, the amplification of a signal, and the activation of protein kinases. These signal pathways also provide examples of how multiple proteins can work together in complex ways to produce a concerted result.

Introduction
 Signal transduction involves the changing of a cell's metabolism or gene expression in response to an external stimulus.
 We will focus on three examples
• The hormone epinephrine (adrenalin)
• The hormone insulin
 Regulates blood glucose levels after a meal The hormone epidermal growth factor (EGF)
 Stimulates cell growth after injury
Chem 452, Lecture 10 - Signal Transduction 2

Introduction	ı		
 Signal transduc cell's metabolisr to an external 	tion involves th m or gene expre stimulus.	e changing of a ession in response	
Epinephrine +	Insulin E +	pidermal growth factor (EGF) +	
β-Adrenergic receptor	Insulin receptor	EGF receptor	
$\downarrow_{\downarrow\downarrow}$	\mathbf{y}_{1}	$\downarrow_{\downarrow\downarrow}$	
Energy-store mobilization	Increased glucose uptake	Expression of growth-promoting genes	
	J	- ,	
	Chem 45	52, Lecture 10 - Signal Transduction 2	

Introd	luction

- Signal transduction involves the changing of a cell's metabolism or gene expression in response to an external stimulus.
- + We will focus on three examples
- The hormone **epinephrine** (adrenalin)
- Regulates the "flight or fight response"
- The hormone **insulin**
- Regulates blood glucose levels after a meal
- The hormone epidermal growth factor (EGF)
 Stimulates cell growth after injury

Chem 452, Lecture 10 - Signal Transduction 2

Introduction

+ All three examples will present common themes

Introduction

+ All three examples will present common themes

+ All three examples will present common themes

Introduction

+ All three examples will present common themes

Introduction

+ All three examples will present common themes

Introduction

+ All three examples will present common themes

G-Protein Receptors	
 The receptors for epinephrine (β-adrenergic receptors) provide and example for a class of receptors called G-proteins. 	
HO H H H CH3	
HO Epinephrine	
Chem 452, Lecture 10 - Signal Transduction 6	

G-Protein Receptors

+ G-protein receptors involve a 7-transmembrane receptor (7TM) protein.

G-Protein Receptors

 The receptors for epinephrine (β-adrenergic receptors) provide and example for a class of receptors called G-proteins.

G-Protein Receptors
 The activated G-protein (G_{αs}) goes on to activate the membrane bound enzyme adenylate cyclase.
N Adenylate cyclase
Chem 452, Lecture 10 – Signal Transduction 13

Next up	
 Lecture 10, Signal Transduction (con'd). (Chapter 14) 	
	l
Chem 452, Lecture 10 - Signal Transduction 17	