Chem 452 - Lecture 8 Lipids and Cell Membranes 111116

Like carbohydrates, lipids are one of the four major classes of biomolecules, which also include the proteins, carbohydrates and nucleic acids. Lipids are grouped not according to a chemical structure, as is the case for the other four classes, but rather they are grouped according to a physical property. Lipids comprise the molecules in a cell that can be extracted into non-polar solvents, which means they are non-polar, hydrophobic molecules. We will see that this does not mean that they do not contain hydrophilic functional groups, but all lipids molecules do contain large, hydrophobic regions. With cells being made up of largely water, this produces some very interesting and important cellular structure, not the least of which are the cell membranes.

- + Form vs. Function
 - The membrane lipids give form to the cell membranes
 - The membrane proteins provide the function

- + Membrane proteins function as
 - Pumps (Chapter 13)
 - Channels (Chapter 13)
 - Signal transducers (Chapter 14)
 - Energy transducers (Chapter 18 & 19)

- + Different membranes contain different proteins.
 - They can visualized using SDS-Polyacrylamide electrophoresis.

(Chapter 3, pp.71-75)

+ Different membranes contain different proteins

+ Different membranes contain different proteins

 Proteins can associate with membranes in different ways.

- Proteins can associate with membranes in different ways.
- + We will look a three different examples
 - Bacteriorhodopsin (pump)
 - Porin (channel)
 - Prostaglandin H₂ synthase-1 (enzyme)

- + Three examples of integral membrane proteins
 - Archaeal Bacteriorhodopsin (Pump)
 - Uses light energy to transport ions across the membrane.

- Three examples of integral membrane proteins
 - Bacteriorhodopsin (7 α -helical bundle)
 - There are 7 non-polar stretches of amino-acids.

- + Three examples of integral membrane proteins
 - Bacteriorhodopsin (7 α -helical bundle)
 - There are 7 non-polar stretches of amino-acids.

- Three examples of integral membrane proteins
 - Bacteriorhodopsin (7 α -helical bundle)
 - There are 7 non-polar stretches of amino-acids.

+ Hydropathy plots are used to look for membrane spanning α -helicies

TABLE 12.2 Polarity scale for identifying transmembrane helices		Single α helix	
Amino	Transfer free	in alycophorin	
acid	energy in kJ mol ⁻¹	+ 168 - Highycophonin Ar	
residue	(kcal mol ⁻¹)		
Phe	15.5 (3.7)	Criterion level	
Met	14.3 (3.4)		
lle	13.0 (3.1)		
Leu	11.8 (2.8)		
Val	10.9 (2.6)	► 2 2 3 0 5 1 / / \	
Cys	8.4 (2.0)	1522 M 1/ 1 1	
Trp	8.0 (1.9)		
Ala	6.7 (1.6)	<u>କ୍</u> ରିଥ - 84 🛏 ሣ 🛛 🖌 🖌 🖌 🖌 🖌	
Thr	5.0 (1.2)		
Gly	4.2 (1.0)		
Ser	2.5 (0.6)		
Pro	-0.8 (-0.2)		
Tyr	-2.9 (-0.7)		
His	-12.6 (-3.0)		
Gln	-17.2 (-4.1)		
Asn	-20.2 (-4.8)	0 20 40 60 80 100	
Glu	-34.4 (-8.2)		
Lys	-37.0 (-8.8)	First amino acid residue	
Asp	-38.6 (-9.2)	in window	
Arg	-51.7 (-12.3)	III WIIIdow	
Source: After D. M. Engelman, T. A. Steitz, and A. Goldman. <i>Annu. Rev. Biophys. Biophys. Chem</i> . 15(1986):321–353.		Glycophorin	
Note: The free energies are for the transfer of an amino acid residue in an $lpha$ helix			

Note: The free energies are for the transfer of an amino acid residue in an α helix from the membrane interior (assumed to have a dielectric constant of 2) to water.

 Hydropathy plots are used to look for membrane spanning α-helicies

+ Hydropathy plots are used to look for membrane spanning α -helicies

TABLE 12.2 Polarity scale for identifying transmembrane helices		Single α helix	
Amino	Transfer free	in alycophorin	
acid	energy in kJ mol ⁻¹	+ 168 - Highycophonin Ar	
residue	(kcal mol ⁻¹)		
Phe	15.5 (3.7)	Criterion level	
Met	14.3 (3.4)		
lle	13.0 (3.1)		
Leu	11.8 (2.8)		
Val	10.9 (2.6)	► 2 2 3 0 5 1 / / \	
Cys	8.4 (2.0)	1522 M 1/ 1 1	
Trp	8.0 (1.9)		
Ala	6.7 (1.6)	<u>କ୍</u> ରିଥ - 84 🛏 ሣ 🛛 🖌 🖌 🖌 🖌 🖌	
Thr	5.0 (1.2)		
Gly	4.2 (1.0)		
Ser	2.5 (0.6)		
Pro	-0.8 (-0.2)		
Tyr	-2.9 (-0.7)		
His	-12.6 (-3.0)		
Gln	-17.2 (-4.1)		
Asn	-20.2 (-4.8)	0 20 40 60 80 100	
Glu	-34.4 (-8.2)		
Lys	-37.0 (-8.8)	First amino acid residue	
Asp	-38.6 (-9.2)	in window	
Arg	-51.7 (-12.3)	III WIIIdow	
Source: After D. M. Engelman, T. A. Steitz, and A. Goldman. <i>Annu. Rev. Biophys. Biophys. Chem</i> . 15(1986):321–353.		Glycophorin	
Note: The free energies are for the transfer of an amino acid residue in an $lpha$ helix			

Note: The free energies are for the transfer of an amino acid residue in an α helix from the membrane interior (assumed to have a dielectric constant of 2) to water.

 Hydropathy plots are used to look for membrane spanning α-helicies

Glycophorin

- + Three examples of integral membrane proteins
 - Porin (Channel)

+ Three examples of integral membrane proteins

+ Three examples of integral membrane proteins

+ Three examples of integral membrane proteins

- + Three examples of integral membrane proteins
 - Porin (Channel)

- + Three examples of integral membrane proteins
 - Porin (Channel)
 - Sequence alternates between polar and non-polar amino acid residues

- + Three examples of integral membrane proteins
 - Porin (Channel)
 - Sequence alternates between polar and non-polar amino acid residues

- + Three examples of integral membrane proteins
 - Porin (Channel)
 - Sequence alternates between polar and non-polar amino acid residues

- + Three examples of integral membrane proteins
 - Porin (Channel)
 - Sequence alternates between polar and non-polar amino acid residues

- + Three examples of integral membrane proteins
 - Prostaglandin H₂ synthase-1 catalase (Enzyme)

- + Three examples of integral membrane proteins
 - Prostaglandin H₂ synthase-1 catalase (Enzyme)

Promotes inflammation and modulates gastric acid secretion

- + Three examples of integral membrane proteins
 - Prostaglandin H₂ synthase-1 (Enzyme)

Chem 452, Lecture 8 – Lipids and Cell Membranes 17

- + Three examples of integral membrane proteins
 - Prostaglandin H₂ synthase-1 catalase (Enzyme)

- Three examples of integral membrane proteins
 - Prostaglandin H₂ synthase-1 (Enzyme)
 - Inhibited by COX inhibitors (NSAID)

 Peripheral proteins are often have hydrophobic lipids attached to them.

 Lateral Diffusion in membranes can have a wide range of values.

 Lateral Diffusion in membranes can have a wide range of values.

 Lateral Diffusion in membranes can have a wide range of values.

+ Transverse diffusion is very slow.

+ Fluid Mosaic Model of Singer and Nicolson (1972).

+ Transverse diffusion is very slow.

+ Transverse diffusion is very slow.

+ Transverse diffusion is very slow.

- + Membrane fluidity is modulated by
 - Fatty acid composition
 - Cholesterol (animals)

- + Membrane fluidity is modulated by
 - Fatty acid composition
 - Cholesterol (animals)

- + Membrane fluidity is modulated by
 - Fatty acid composition
 - Cholesterol (animals)

- + Membrane fluidity is modulated by
 - Fatty acid composition
 - Cholesterol (animals)

- + Membrane fluidity is modulated by
 - Fatty acid composition
 - Cholesterol (animals)

- + Membrane fluidity is modulated by
 - Fatty acid composition
 - Cholesterol (animals)

- + Membrane fluidity is modulated by
 - Fatty acid composition
 - Cholesterol (animals)

- + Membrane fluidity is modulated by
 - Fatty acid composition
 - Cholesterol (animals)

Membranes are asymmetric

+ Bacterial cells

+ Eukaryotic cells

+ Eukaryotic cells

+ Eukaryotic cells

Next up

 + Unit V, Lecture 9 – Membrane Channels and Pumps. (Chapter 13)