Chem 452 – Lecture 6 Regulatory Strategies 111104

Living cells contain thousands of metabolites linked to one another by a dizzying array of chemical reactions. These reactions link one metabolite to another and collectively are arranged into metabolic pathways, which crisscross and intersect to form a large interconnected network. Each reaction is catalyzed by one or more enzymes and many of these enzymes play a large role in controlling the flow of material through the network. In this lecture we will focus on some of the strategies used to regulate enzyme activity, and consequently, metabolic processes.

Introduction	
 Metabolism comprises a vast network of interconnecting metabolic pathways. 	
Chem 452, Lecture 6 - Regulatory Strategies 2	

Introduction

- One of the primary strategies for regulating metabolism is to regulate the activity of some of the key enzymes in this network.
- + There are several mechanisms used to do this:
- Allosteric Control
- Multiple Forms of Enzymes (Isozymes)
- Reversible Covalent Modifications
- Proteolytic Activation
- Controlling the level of Enzyme Present

Introduction	
 One of the primary strategies for regulating metabolism is to regulate the activity of some of the key enzymes in this network. 	
 There are several mechanisms used to do this: Allosteric Control Multiple Forms of Enzymes (Isozymes) 	
 Reversible Covalent Modifications Proteolytic Activation 	
 Controlling the level of Enzyme Present 	
Chem 452, Lecture 6 - Regulatory Strategies 4	

Regulation by Covalent Modification

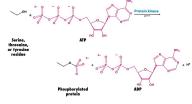
+ Some enzymes are regulated by reversible, covalent modifications

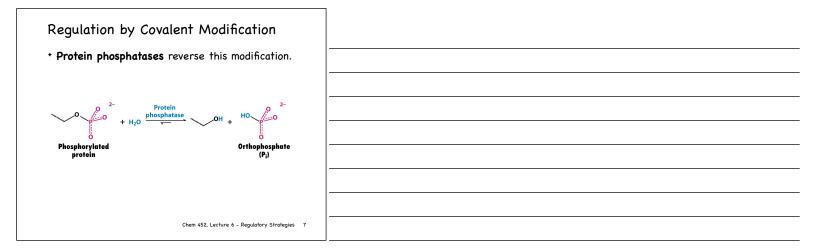
Modification	Donor molecule	Example of modified protein	Protein function
Phosphorylation	ATP	Glycogen phosphorylase	Glucose homeostasis; energy transduction
Acetylation	Acetyl CoA	Histones	DNA packing; transcription
Myristoylation	Myristoyl CoA	Src	Signal transduction
ADP ribosylation	NAD ⁺	RNA polymerase	Transcription
Farnesylation	Farnesyl pyrophosphate	Ras	Signal transduction
γ-Carboxylation	HCO ₃	Thrombin	Blood clotting
Sulfation	3'-Phosphoadenosine-5'- phosphosulfate	Fibrinogen	Blood-clot formation
Ubiquitination	Ubiquitin	Cyclin	Control of cell cycle

Chem 452, Lecture 6 - Regulatory Strategies 5

Regulation by Covalent Modification

+ Some enzymes are regulated by reversible, covalent modifications

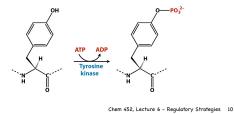

TABLE 10.1 Common covalent modifications of protein activity


Modification	Donor molecule	Example of modified protein	Protein function
Phosphorylation	АТР	Glycogen phosphorylase	Glucose homeostasis; energy transduction
Acetylation	Acetyl CoA	Histones	DNA packing; transcription
Myristoylation	Myristoyl CoA	Src	Signal transduction
ADP ribosylation	NAD ⁺	RNA polymerase	Transcription
Farnesylation	Farnesyl pyrophosphate	Ras	Signal transduction
γ-Carboxylation	HCO,	Thrombin	Blood clotting
Sulfation	3'-Phosphoadenosine-5'- phosphosulfate	Fibrinogen	Blood-clot formation
Ubiguitination	Ubiquitin	Cyclin	Control of cell cycle

Chem 452, Lecture 6 - Regulatory Strategies 5

Regulation by Covalent Modification

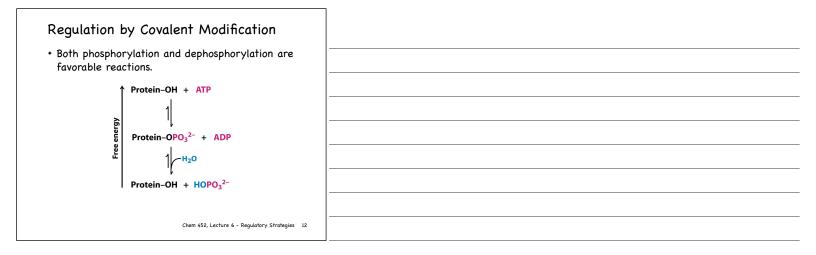
- + Phosphorylation/Dephosphorylation is the most common form of covalent modification.
- The hydroxyl groups of Serines and Tyrosines are phosphorylated by protein kinases to produce phosphate esters.



Regulation by Covalent Modification	
 Both phosphorylation and dephosphorylation are favorable reactions. 	
Protein-OH + ATP 1 Protein-OPO ₃ ²⁻ + ADP 1 H ₂ O	
Protein-OH + HOPO ₃ ²⁻ - 	

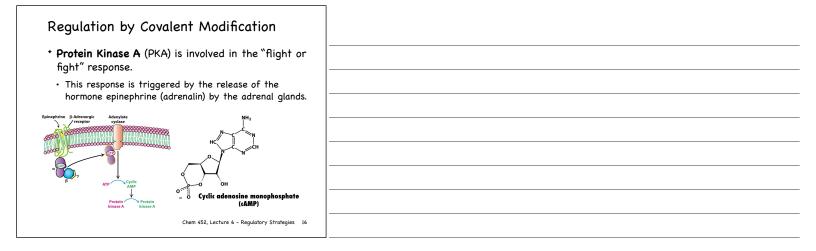
The Protein kina	Covalent Modification ses respond to different signals.	
Signal	Enzyme	
Cyclic nucleotides Ca ²⁺ and calmodulin AMP	Cyclic AMP-dependent protein kinase Cyclic GMP-dependent protein kinase Ca ^{3*} -calmodulin protein kinase Phosphorylase kinase or glycogen synthase kinase 2 AMP-activated kinase	
Diacylglycerol Metabolic Intermediates and other "local" effectors	Protein kinase C Many target-specific enzymes, such as pyruvate dehydrogenase kinase and branched-chain ketoacid dehydrogenase kinase	
	e Control of Metabolism (Portland Press, 1997), Table 7.2.	
	Chem 452, Lecture 6 - Regulatory Strategies	9

Regulation by Covalent Modification

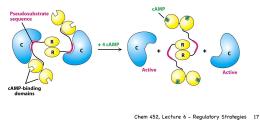

- + Tyrosines can also be phosphorylated
- Only observed in muticellular eukaryotes
- Tyrosine kinases are involved in growth regulation.
- Some cancers are associated with malfunctioning tyrosine kinases

Regulation by Covalent Modification

- + Phosphate groups are well suited to altering an enzyme's activity.
- Phosphorylation adds two negative charges to a protein.
- Phosphates are effective at forming hydrogen bonds.
- Phosphorylation provides a source of free energy for conformational changes in a proteins ($\Delta G^{*'}\text{=-}50$ kJ/mol)
- Using enzymes to regulate enzymes can be used to produced a large amplification of a regulatory signal.
- By using ATP as a source of phosphate groups, phosphorylation is sensitive to the cell's energy supply.

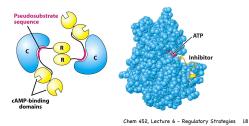

n l

Regulation by Covalent Modification	
 The 500 or so protein kinases vary in specificity. Some are specific and some are multifuncitonal The consensus sequence for multifunctional kinases is 	
-Arg-Arg-X- Ser- Z-	
or	
-Arg-Arg-X- Thr -Z-	
 Where X is a small amino acid, viz. Gly or Ala and Z is a large hydrophobic amino acid, viz. Met or Ile 	
5 7 1 .	
Chem 452, Lecture 6 - Regulatory Strategies 13	

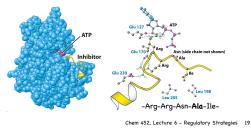

Regulation by Covalent Modification	
 As the protein kinases modify the activity of key enzymes, they, must be regulated in response to their corresponding signal. 	
* Protein Kinase A (PKA) provides a good example.	
Chem 452, Lecture 6 - Regulatory Strategies 14	

Regulation by Covalent Modification
 Protein Kinase A (PKA) is involved in the "flight or fight" response.
 This response is triggered by the release of the hormone epinephrine (adrenalin) by the adrenal glands.
Epinophrine G-Adrenergic Adenylate
Protein kinase A kinase A
Chem 452, Lecture 6 - Regulatory Strategies 15

Regulation by Covalent Modification


- Cyclic-AMP (cAMP) is produced as a "second messenger" in response to epinephrine.
 - Cyclic-AMP (cAMP) binds to, and alters, the quaternary structure of PKA.

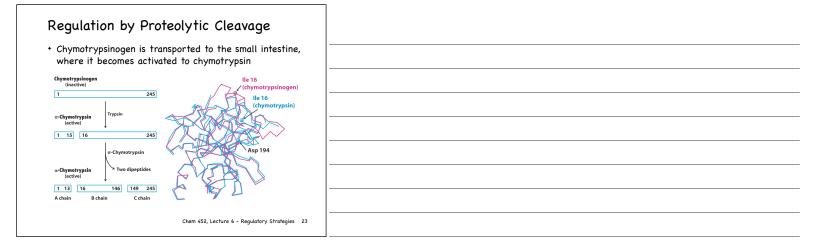
Regulation by Covalent Modification


- Cyclic-AMP (cAMP) is produced as a "second messenger" in response to epinephrine.
 - Cyclic-AMP (cAMP) binds to, and alters, the quaternary structure of PKA.

Regulation by Covalent Modification

- Cyclic-AMP (cAMP) is produced as a "second messenger" in response to epinephrine.
- Cyclic-AMP (cAMP) binds to, and alters, the quaternary structure of PKA.

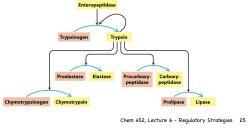
Regulation by Proteolytic Cleavage	
* Proteolytic Cleavage is used to regulate enzymes that need to be synthesized in an inactive form in one location, then transported to a different time or location, where they become active.	
 Digestive enzymes 	
 Blood clotting proteins 	
 Protein Hormones (not an enzyme) 	
Chem 452, Lecture 6 - Regulatory Strategies 20	l
Chell 452, Lecture 6 - Regulatory Strategies 20	
	1
Regulation by Protoclutic Cleavage	


Regulation by Proteolytic Cleavage	
 Proteolytic Cleavage is used to regulate enzymes that need to be synthesized in an inactive form in one location, then transported to 	
or location, where they become a 🖉 🐂 🙀	
Digestive enzymes	
Blood clotting proteins	
 Protein Hormones (not an enzyme) 	
connecting apolde removed, leving complete two chain	
↓ insuln motecute <u>Ş</u> ——Ş	
insuin S S	
Chem 452, Lecture 6 - Regulatory Strategies 20	

Regulation by Proteolytic Cleavage

• Digestive enzymes are synthesized in an inactive form called a **zymogen**.

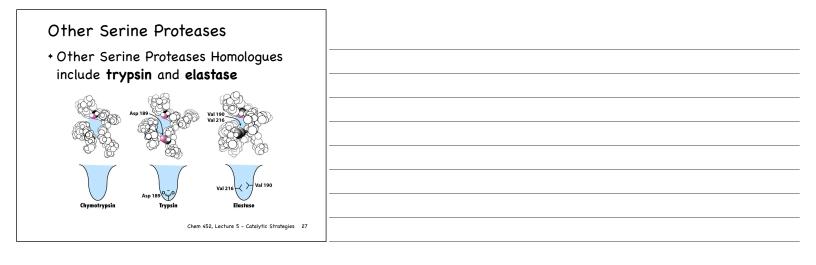
Site of synthesis	Zymogen	Active enzyme
Stomach	Pepsinogen	Pepsin
Pancreas	Chymotrypsinogen	Chymotrypsin
Pancreas	Trypsinogen	Trypsin
Pancreas	Procarboxypeptidase	Carboxypeptidase
Pancreas	Proelastase	Elastase


Regulation by Proteolytic Cleavage	
+ Chymotrypsin provides a good example.	
 Chymotrypsin is synthesized by the pancreas in an inactive form, chymotrypsinogen. 	
Chymotrypsinogen (inactive) 1 245	
=-Chymotrypsin (active)	
1 15 [16 245] 	
a:-Chymotrypsin (active)	
1 13] 16 146 149 245 A chain B chain C chain	
Chem 452, Lecture 6 - Regulatory Strategies 22	

Regulation by Proteoly	tic Cleavage
Protein Structure - Chyn	notrypsin
H D D D D D D D D D D D D D D D D D D D	Autom But entered Control <
Che	em 452, Lecture 6 - Regulatory Strategie

Regulation by Proteolytic Cleavage

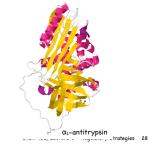
- + Digestive enzymes
- Other examples, including other pancreatic zymogens trypsinogen, proelastase, procarboxypeptidase and prolipase, are activated by proteolytics cleavage



Regulation by Proteolytic Cleavage

- The proteolytic activation is irreversible, therefore other means must be used to inhibit the digestive enzyme.
- Protease Inhibitors

Regulation by Proteolytic Cleavage


- The proteolytic activation is irreversible, therefore other means must be used to inhibit the digestive enzyme.
- Protease Inhibitors

Regulation by Proteolytic Cleavage

- The proteolytic activation is irreversible, therefore other means must be used to inhibit the digestive enzyme.
- Protease Inhibitors

Next up	
+ Unit IV, Lecture 7 – Carbohydrates (Chapter 11)	
Chem 452, Lecture 6 - Regulatory Strategies 29	