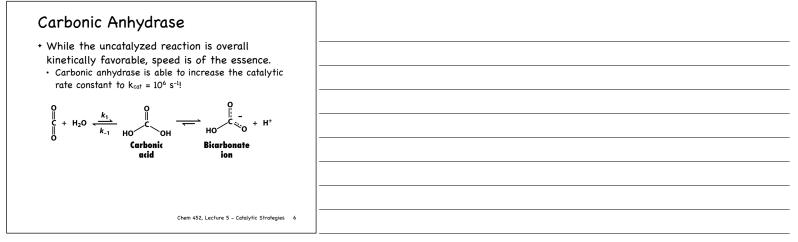
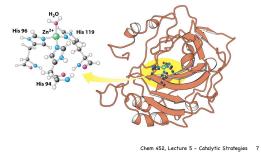
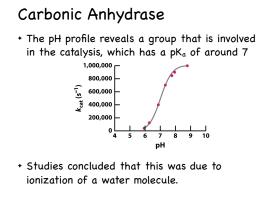

Chem 452 – Lecture 5 Catalytic Strategies 111026


Enzymes have evolved an array of different strategies or enhancing the power and specificity of the reactions they catalyze. For numerous enzymes the details have been worked out at the atomic level. In this lecture we will focus on four examples: chymotrypsin, carbonic anhydrase, the EcoRV restriction endonuclease, and myosin II ATPases.

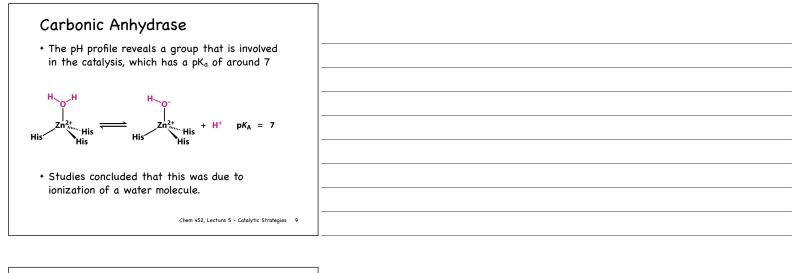
Introduction
1111044611011
 Enzymes exhibit both catalytic power and specificity
+ We will consider closely, four examples.
Chem 452, Lecture 5 - Catalytic Strategies 2

Introduction
+Chymotrypsin (<u>1gct</u>) 3.4.21.1
+ A Hydrolase, which cleaves peptide bonds in proteins
+Carbonic anhydrase (<u>1ca2</u>) 4.2.1.1
+ A Lyase, which adds water to CO ₂ .
 EcoRV (<u>1rvb</u>) 3.1.21.4 A Hydrolase, which cleave phosphodiester bonds in DNA
 A Hydrolase, which cleave phospholaester bonds in DNA Myosin motor domain ATPase (<u>1fmv</u> & <u>1fmw</u>)
3.6.4.1
 An enzyme that couples the hydrolysis of ATP to the mechanical motion.
Chem 452, Lecture 5 - Catalytic Strategies 3
Chem 452, Lecture 5 - Catalytic Strategies 3

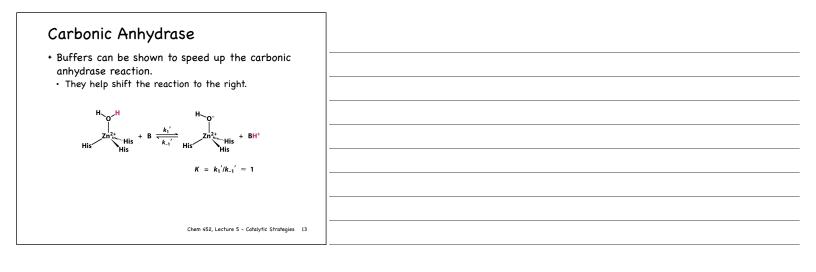

Introduction	
+Chymotrypsin (<u>1gct</u>) 3.4.21.1	
+ A Hydrolase, which cleaves peptide bonds in proteins	
Carbonic anhydrase (<u>1ca2</u>) 4.2.1.1	
✦ A Lyase, which adds water to CO₂.	
◆EcoRV (<u>1rvb</u>) 3.1.21.4	
+ A Hydrolase, which cleave phosphodiester bonds in DNA	
 Myosin motor domain ATPase (<u>1fmv</u> & <u>1fmw</u>) 	
3.6.4.1	
 An enzyme that couples the hydrolysis of ATP to the mechanical motion. 	
Chem 452, Lecture 5 - Catalytic Strategies 4	

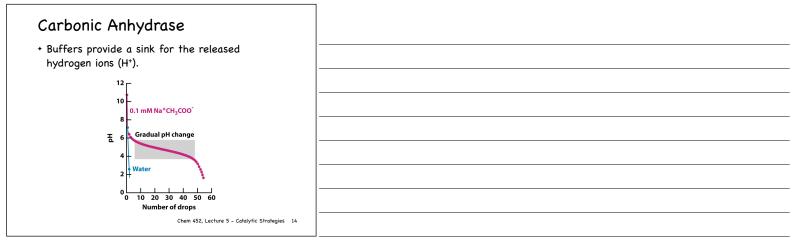


Carbonic Anhydrase

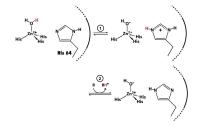

- + The nucleophile in this reactions is OH⁻
- A Zn^{2+} ion is involved in generating the nucleophile

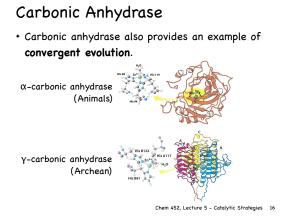
1	
1	
1	
1	





Carbonic Anhydrase


Carbonic Anhydrase Suffers can be shown to speed up the carbonic anhydrase reaction.



Carbonic Anhydrase

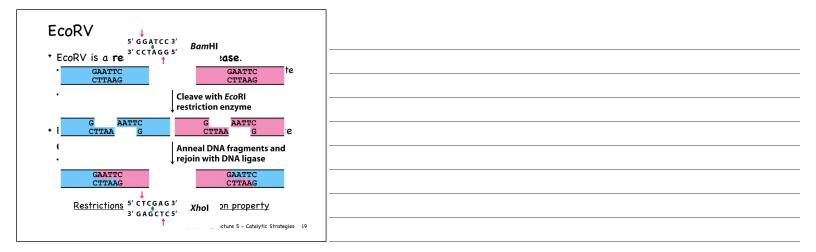
 His64 also helps mediate the the flow of H⁺ away from the active site and to the buffer.

Chem 452, Lecture 5 - Catalytic Strategies 15

Introduction	
+Chymotrypsin (<u>1gct</u>) 3.4.21.1	
 A Hydrolase, which cleaves peptide bonds in proteins 	
Carbonic anhydrase (<u>1ca2</u>) 4.2.1.1	
↑ A Lyase, which adds water to CO ₂ .	
+EcoRV (<u>1rvb</u>) 3.1.21.4	
+ A Hydrolase, which cleave phosphodiester bonds in DNA	
Myosin motor domain ATPase (<u>1fmv</u> & <u>1fmw</u>)	
3.6.4.1	
 An enzyme that couples the hydrolysis of ATP to the mechanical motion. 	
Chem 452, Lecture 5 - Catalytic Strategies 17	

- +Chymotrypsin (<u>1gct</u>) 3.4.21.1
- + A Hydrolase, which cleaves peptide bonds in proteins
- +Carbonic anhydrase (<u>1ca2</u>) 4.2.1.1
- + A Lyase, which adds water to CO2.
- ★EcoRV (<u>1rvb</u>) 3.1.21.4
- + A Hydrolase, which cleave phosphodiester bonds in DNA
- + Myosin motor domain ATPase (<u>1fmv</u> & <u>1fmw</u>)
 - 3.6.4.1
 - An enzyme that couples the hydrolysis of ATP to the mechanical motion.

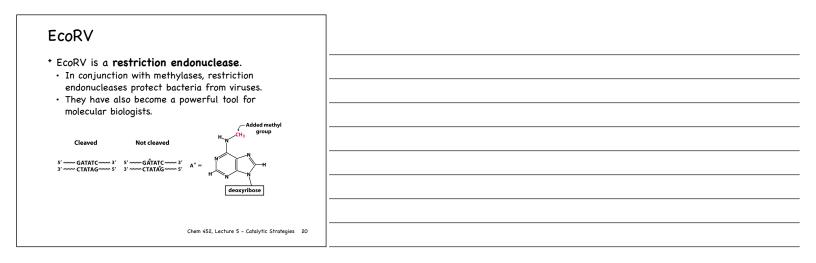
Chem 452, Lecture 5 - Catalytic Strategies 18

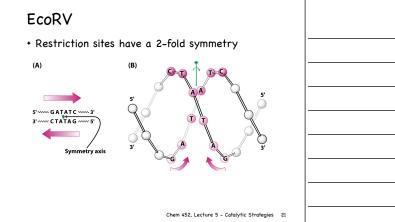

EcoRV

- * EcoRV is a **restriction endonuclease**.
- It is a good model for demonstrating high substrate specificity.
- The substrate is a specific sequence called the **cognate** sequence.
- + EcoRV specifically cleaves DNA at the sequence **GATATC**
 - Like with many restriction endonucleases, the sequence for the complementary strand of the cognate sequence reads the same, but backwards.

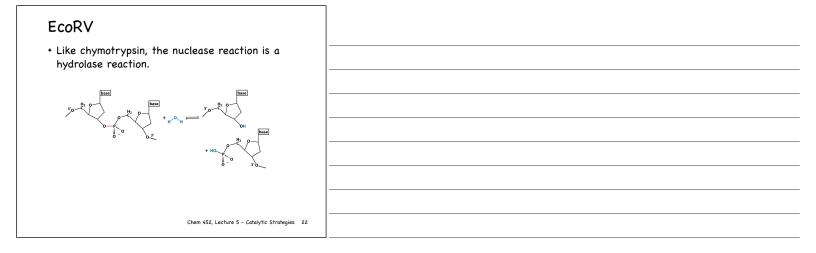
<u>Restrictions sites share this common property</u>

Chem 452, Lecture 5 - Catalytic Strategies 19

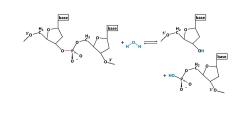

EcoRV * EcoRV is a re • It is a good r specificity. 5' GAATTC 3' • The substrate 3' CTTAAG 5' cognate seque	BamHI 2 ase . 1g high substrate EcoRI 2 called the	
El CCCC Pl	Haelli h the converse	
GATATC ¹	HaellI t the sequence	
 Like with mar 5' GCGC 3' sequence for 3' CGCG 5' 	Hhal leases, the rand of the	
cognate seque	but backwards.	
Restrictions 5' CTCGAG3' 3' GAGCTC5'	Xhol on property	
↑ the tree		

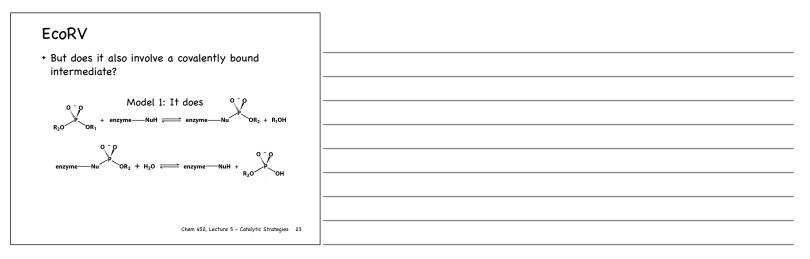


- * EcoRV is a **restriction endonuclease**.
- It is a good model for demonstrating high substrate specificity.
- The substrate is a specific sequence called the **cognate** sequence.
- EcoRV specifically cleaves DNA at the sequence **GATATC**
 - Like with many restriction endonucleases, the sequence for the complementary strand of the cognate sequence reads the same, but backwards.

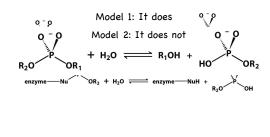

Restrictions sites share this common property

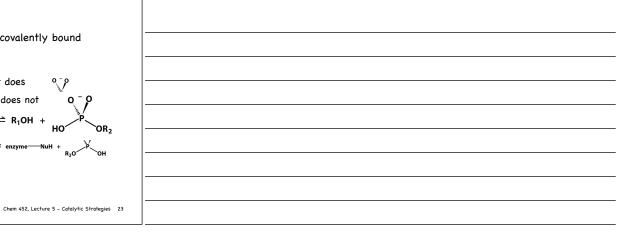
Chem 452, Lecture 5 - Catalytic Strategies 19

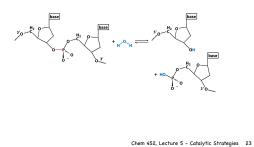




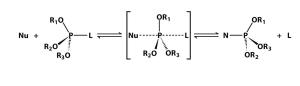
+ But does it also involve a covalently bound intermediate?





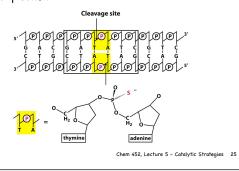

EcoRV

+ But does it also involve a covalently bound intermediate?

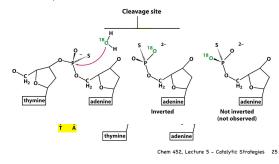

+ But does it also involve a covalently bound intermediate?

EcoRV

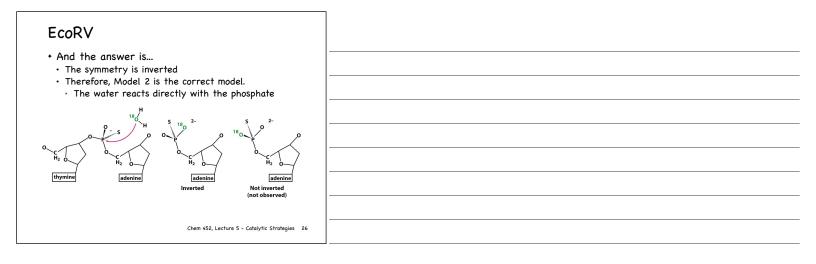
- Model 2 will invert the geometry about the phosphorous.
- + Model 1 will not.



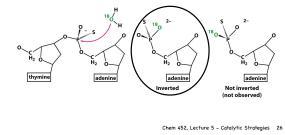
Chem 452, Lecture 5 - Catalytic Strategies 24

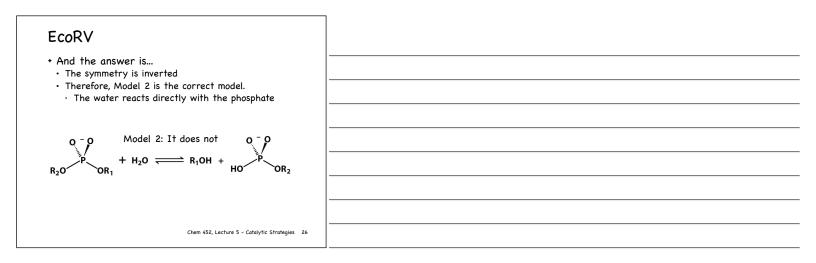

EcoRV

+ A phosophorothionate label was used to answer this question.

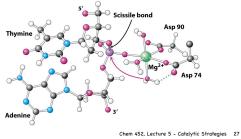


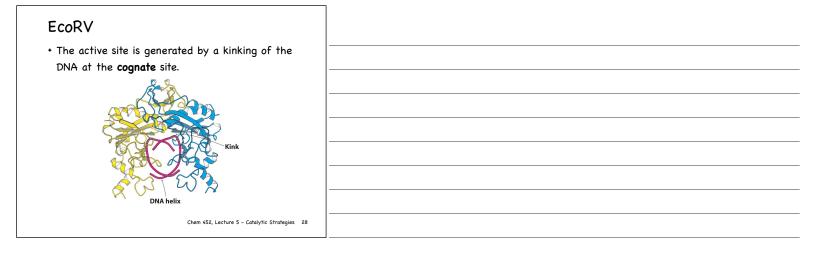
EcoRV


+ A phosophorothionate label was used to answer this question.

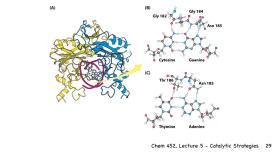


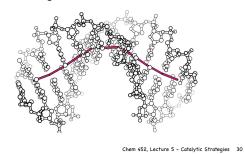
- + And the answer is...
- The symmetry is inverted
- Therefore, Model 2 is the correct model. • The water reacts directly with the phosphate

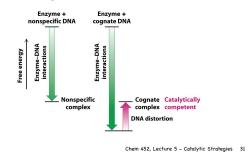




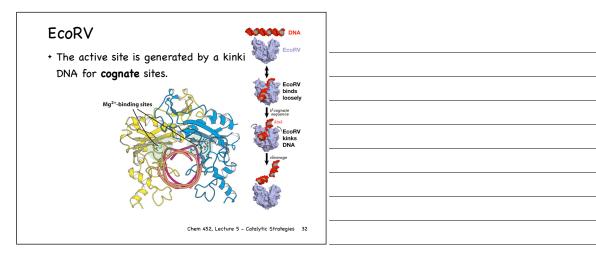
EcoRV


 Like carbonic anhydrase, a metal ion (Magnesium) is involved in generating the nucleophile.


• The active site is generated by a kinking of the DNA for **cognate** sites.


EcoRV

• The active site is generated by a kinking of the DNA for **cognate** sites.


EcoRV

• The active site is generated by a kinking of the DNA for **cognate** sites.

EcoRV	
 The active site is generated by a kinking of the DNA for cognate sites. 	
Mg ² -binding sites	
Chem 452, Lecture 5 - Catalytic Strategies 32	

2001(1	
 The E. coli bacteria is protected from the 	
EcoRV through a methylation tha blocks	
formation of the active site.	
EcoRV	
Asn 185	
Methyl group	
Thymine Adenine	
Methylated DNA	
Chem 452, Lecture 5 - Catalytic Strategies 33	

Next up	
 Myosin motor domain ATPase (1fmv & 1fmw) 3.6.4.1 (Chapter 9) An enzyme that couples the hydrolysis of ATP to 	
the mechanical motion.	
+ Regulatory Strategies (Chapter 10)	
Chem 452, Lecture 5 - Catalytic Strategies 34	
chein 452, Lecture 5 - Catalyne Strategies 54	