Chem 452 - Lecture 5
Catalytic Strategies
111026

Enzymes have evolved an array of different strategies or
enhancing the power and specificity of the reactions they
catalyze. For numerous enzymes the details have been worked
out at the atomic level. In this lecture we will focus on four
examples: chymotrypsin, carbonic anhydrase, the EcoRV
restriction endonuclease, and myosin II ATPases.

Introduction

+ Enzymes exhibit both catalytic power and
specificity

+ We will consider closely, four examples.
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Introduction
+Chymotrypsin (l1gct) 3.4.21.1

+ A Hydrolase, which cleaves peptide bonds in proteins
+Carbonic anhydrase (1ca2) 4.2.1.1

+ A Lyase, which adds water to CO..
+ECoRV (lrvb) 3.1.21.4

+ A Hydrolase, which cleave phosphodiester bonds in DNA

+Myosin motor domain ATPase (1fmv & 1fmw)
3.6.4.1

+ An enzyme that couples the hydrolysis of ATP to the
mechanical motion.

Chem 452, Lecture 5 - Catalytic Strategies 3

Introduction
+Chymotrypsin (1gct) 3.4.21.1

+ A Hydrolase, which cleaves peptide bonds in proteins
+Carbonic anhydrase (lca2) 4.2.1.1

+ A Lyase, which adds water to CO..
+EcoRV (Irvb) 3.1.21.4

+ A Hydrolase, which cleave phosphodiester bonds in DNA
+Myosin motor domain ATPase (1fmv & 1fmw)

3.6.4.1

+ An enzyme that couples the hydrolysis of ATP to the

mechanical motion.

Chem 452, Lecture 5 - Catalytic Strategies 4




Carbonic Anhydrase

+ COz is a major waste produce of the catabolic
(energy producing) metabolic pathways.
+ Transported out of the tissues as HCOs".

o [o] ‘|:"
§ 4o I ) Co + H*
5 C ~— W F
I 1 Ho” ow Ho” o
Carbonic Bicarbonate
acid ion
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Carbonic Anhydrase

+ While the uncatalyzed reaction is overall
kinetically favorable, speed is of the essence.
+ Carbonic anhydrase is able to increase the catalytic
rate constant to Keat = 10® s

o [o] ‘|:"
§ 4o I ) Co + H*
2! C ~ [en T
I 1 Ho” ow Ho” o
Carbonic Bicarbonate
acid ion
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Carbonic Anhydrase

+ The nucleophile in this reactions is OH-
+ A Zn%* ion is involved in generating the nucleophile
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Carbonic Anhydrase

+ The pH profile reveals a group that is involved
in the catalysis, which has a pKq of around 7
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+ Studies concluded that this was due to
ionization of a water molecule.
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Carbonic Anhydrase

+ The pH profile reveals a group that is involved
in the catalysis, which has a pKq of around 7

H\T/H H\T_
Zn%,. _ Zn3i. + HY pKp = 7
His/ N H's His/ N\ H
His His

+ Studies concluded that this was due to
ionization of a water molecule.
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Cabonic Anhydrase

+ The catalytic cycle for carbonic anhydrase

H{ H Ho-
o ” c|>
Zn?, Zn?,
Lo CHis T~ .~ His
His \His @ His \His
2
H,0
i
He /c/ “\T-vﬁ
/anlf.,,’:’H.- 3‘ /Zn’ﬁ..‘, :
. “His . “His
His \His His \His
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Carbonic Anhydrase

+ The catalytic cycle for carbonic anhydrase
+ Because H* ions diffuse very rapidly (k- = 10"
M5, Keat = Kokoy = 10% 57 (not 10% s, as observed)

H\T/H H\cl)_
k1
Zn3:, = Zn3t, + H*
.~ N\ His . N\ His
His \His ! His \His
K = kilk, = 107
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Carbonic Anhydrase

+ Buffers can be shown to speed up the carbonic
anhydrase reaction.

10°
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Carbonic Anhydrase

+ Buffers can be shown to speed up the carbonic

anhydrase reaction.
+ They help shift the reaction to the right.

H\O/H H\o_

Zn%.. ... + B —— Zn%..
His™~ \H:'s k' pig” N\ s
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Carbonic Anhydrase

+ Buffers provide a sink for the released
hydrogen ions (H*).

12—~
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Carbonic Anhydrase

+ Hisé4 also helps mediate the the flow of H*
away from the active site and to the buffer.

s
His” SH

o H K [ A
| A > ® Hoy >

2,
i His
His” N

a®m Hoo- .
N | H‘N/\N >
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Carbonic Anhydrase

+ Carbonic anhydrase also provides an example of
convergent evolution.

wase

a-carbonic anhydrase
(Animals)

. & Puarrs
Y-carbonic anhydrase S gzl

@

(Archean) 7.
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EcoRV

* ECoRV is a restriction endonuclease.
+ It is a good model for demonstrating high substrate
specificity.
+ The substrate is a specific sequence called the
cognate sequence.

+ EcoRV specifically cleaves DNA at the sequence
GATATC

- Like with many restriction endonucleases, the
sequence for the complementary strand of the
cognate sequence reads the same, but backwards.

Restrictions sites share this common property
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EcoRV '

5' GGATCC 3’
. v ccthses  BamHl
* ECoRV is a re ) :ase.
« Itisagoodr 1g high substrate
specificity.  5'GaaTTC3 o
+ The substrate ¥ CTT“‘TG 8 2 called the
cognate sequ ’
. 5'GGCC 3 Haelll
+ EcoRV specifit 3 ccha s aelll t the sequence
GATATC '
+ Like with mar 5: gege 3 leases, the
sequence for 3'caca s Hhal ond of the
cognate sequ¢ T but backwards.

|
- , .
Restrictions 5" €TCGAG3"  yp 1 on property
3 GAGCTCS'
t
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EcoRV

1
5 3
¥cethogs SamHl
* EcoRV is a re + :ase.
) GAATTC GAATTC te
CTTAAG CTTAAG
° Cleave with EcoRI
restriction enzyme
G AATTC G AATTC
+ 1 CTTAA G CTTAA G e
( Anneal DNA fragments and
. rejoin with DNA ligase
GAATTC GAATTC
CTTAAG CTTAAG
Restrictions 5 CTCSAG3" 4y 1 on property
3’ GAGCTCS'
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EcoRV

* EcoRV is a restriction endonuclease.
+ In conjunction with methylases, restriction
endonucleases protect bacteria from viruses.
+ They have also become a powerful tool for
molecular biologists.

Added methyl
group
Ho CHa
Cleaved Not cleaved N
Z
5/ s GATATCrvwwn 31 5" s GATATC e 3’ pu N | \>_,,l
3 s CTATAG o 57 3" s CTATAG W 57 N
L N
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EcoRV

+ Restriction sites have a 2-fold symmetry

(A) (B)

—

5w GATATCwwn 3
3'»w CTATAG w5

-

Symmetry axis
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EcoRV

+ Like chymotrypsin, the nuclease reaction is a

hydrolase reaction.
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EcoRV

+ But does it also involve a covalently bound

intermediate?
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EcoRV

+ But does it also involve a covalently bound
intermediate?

. 0-0
o__*/o Model 1: It does .,,_"P/
AP
P. + NuH — Ni 'OR; + ROH
RZO/ \OR1 g : !
0 o
o o

/

b S
enzyme—Nu/ \on2 + H,0 —— enzyme—NuH + /‘P\
R,0' OH
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EcoRV

+ But does it also involve a covalently bound
intermediate?

R Model 1: It does ° P
o 9
0-9 Model 2: It does not o '/0
p + Hy0 = R,OH + P
R0~ OR, Ho” “oR,

" %/
enzyme—Nu” OR, + H;0 enzyme—NuH + P
R0’ OH
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EcoRV

+ But does it also involve a covalently bound
intermediate?
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EcoRV

+ Model 2 will invert the geometry about the

phosphorous.

+ Model 1 will not.
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EcoRV

+ A phosophorothionate label was used to answer
this question.

Cleavage site

|
ElerEileloe)
m{gﬁ; ololel -

o
°\p,
o, L
/|’®1/ = ™o b
T A
[Fryming]
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EcoRV
+ A phosophorothionate label was used to answer

this question.

Cleavage site

H; o.
Inverted Not inverted
(not observed)
T A 3
[y
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EcoRV

+ And the answer is...
+ The symmetry is inverted
+ Therefore, Model 2 is the correct model.
> The water reacts directly with the phosphate

Inverted Not inverted
(not observed)
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EcoRV
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EcoRV

+ And the answer is...
+ The symmetry is inverted
+ Therefore, Model 2 is the correct model.
> The water reacts directly with the phosphate

0-0 Model 2: It does not o ‘/0

—— R,OH + P
! Ho”~ OR,

P + H,0
R,o/ “SoR,
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EcoRV

+ Like carbonic anhydrase, a metal ion
(Magnesium) is involved in generating the
nucleophile.

Adeni:\? =

{
e}
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EcoRV

+ The active site is generated by a kinking of the
DNA at the cognate site.

DNA helix
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EcoRV

+ The active site is generated by a kinking of the
DNA for cognate sites.

)

T Ctosine ~ Guanine

(©

& Thymine  Adenine
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EcoRV

+ The active site is generated by a kinking of the
DNA for cognate sites.
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EcoRV
+ The active site is generated by a kinking of the
DNA for cognate sites.

Enzyme + Enzyme +
nonspecific DNA cognate DNA
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£ 5% sE
Nonspecific — Cognate Catalytically
complex complex competent

DNA distortion
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EcoRV

+ The active site is generated by a kinking of the
DNA for cognate sites.
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EcoRV V08083 0w

\ 'b EcoRV
+ The active site is generated by a kinki %ﬁ
DNA for cognate sites. ¢

i’ EcoRV
binds
, loosely
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EcoRV

+ The E. coli bacteria is protected from the
EcoRV through a methylation tha blocks
formation of the active site.

EcoRV

Adenine

Thymine
Methylated DNA
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Next up

+ Myosin motor domain ATPase (1fmv & 1fmw)
3.6.4.1 (Chapter 9)
+ An enzyme that couples the hydrolysis of ATP to
the mechanical motion.

+ Regulatory Strategies (Chapter 10)
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