Chem 452 – Lecture 5 Catalytic Strategies 111021

Enzymes have evolved an array of different strategies or enhancing the power and specificity of the reactions they catalyze. For numerous enzymes the details have been worked out at the atomic level. In this lecture we will focus on four examples: chymotrypsin, carbonic anhydrase, the EcoRV restriction endonuclease, and myosin II ATPases.

Introduction

- Enzymes exhibit both catalytic power and specificity
- + We will consider closely, four examples.

Chem 452, Lecture 5 - Catalytic Strategies 2

Introduction

- + Chymotrypsin (<u>1gct</u>) 3.4.21.1
- + A Hydrolase, which cleaves peptide bonds in proteins
- + Carbonic anhydrase (1ca2) 4.2.1.1
- + A Lyase, which adds water to CO2.
- + EcoRV (1rvb) 3.1.21.4
- A Hydrolase, which cleave phosphodiester bonds in DNA
- Myosin motor domain ATPase (<u>1fmv</u> & <u>1fmw</u>)
 3.6.4.1
- An enzyme that couples the hydrolysis of ATP to the mechanical motion.
 Chem 452, Lecture 5 - Catalytic Strategies 3

Introduction

The Enzyme Commission "names" for enzymes

Class	Type of reaction	Example	Chapter
1. Oxidoreductases	Oxidation-reduction	Lactate dehydrogenase	16
2. Transferases	Group transfer	Nucleoside monophosphate kinase (NMP kinase)	9
3. Hydrolases	Hydrolysis reactions (transfer of functional groups to water)	Chymotrypsin	9
4. Lyases	Addition or removal of groups to form double bonds	Fumarase	17
5. Isomerases	lsomerization (intramolecular group transfer)	Triose phosphate isomerase	16
6. Ligases	Ligation of two substrates at the expense of ATP hydrolysis	Aminoacyl-tRNA synthetase	30

Chem 452, Lecture 5 - Catalytic Strategies

-	
4	

Introduction	
 These case studies will provide examples of 	
 Generating powerful nucleophiles at neutral pH values. 	
 Achieving high absolute reaction rates Specificity for substrate selection 	
 Specificity for products produced 	
Chem 452, Lecture 5 - Catalytic Strategies 5	

Introduction
+ Some Basic Catalytic Principles
 Covalent Catalysis General Acid/Base Catalysis
 Catalysis by Approximation (Juxtaposition, or the proximity effect)
Metal Ion Catalysis
 Transition state stabilization
Chem 452, Lecture 5 - Catalytic Strategies 6

Introduction	
+ Some Basic Catal	ytic Principles
+ Covlalent Catalysis	
+ General Acid/Base (Catalysis
+ Catalysis by Approxi	imation
+ Metal Ion Catalysis	
	Chem 452, Lecture 5 - Catalytic Strategies 7

Chymotrypsin

+ The hydrolysis of the peptide bond is thermodynamically favorable, but kinetically unfavorable.

Chymotrypsin

- Chymotrypsin overcomes this by producing a powerful alkoxide nucleophile, in situ.
 - * This is an example of **covalent catalysis**

Chem 452, Lecture 5 - Catalytic Strategies 9

Chem 452, Lecture 5 - Catalytic Strategies 10

Chymotrypsin + DIPF selectively reacts with Ser 195 in chymotrypsin. $H + F + H^{+}$ Ser 195 $H + F + H^{+}$

DIPF

Chymotryp	osin					
Chymotryp	sin cleaves pep	tide bonds				
polar aming	o acid residues.	ge non				
TABLE 8.6 Substrate prefer	ences of chymotrypsin					
Amino acid in ester	Amino acid side chain	$k_{cat}/K_{M} (s^{-1} M^{-1})$				
Glycine	—н	$1.3 imes 10^{-1}$				
Valine	—сн сн ₃	2.0		 	 	
Norvaline	-CH2CH2CH3	$3.6 imes10^2$				
Norleucine	-CH2CH2CH2CH3	$3.0 imes10^3$				
Phenylalanine	-сн ₂	$1.0 imes 10^5$				
Source: After A. Fersht, Structure Folding (W. H. Freeman and Com	and Mechanism in Protein Science: A Guide to En. pany, 1999), Table 7.3.	zyme Catalysis and Protein				
L	Chem 452, L	ecture 5 - Catalytic Strategie	s 11			

Chymotrypsin

+ Chymotrypsin cleaves peptide bonds to the carboxy side of large non polar amino acid residues.

Chymotrypsin

 The chymotrypsin reaction can be followed using a chromogenic substrate.

Chymotrypsin

 Stop-flow kinetics experiments suggest a covalently bound intermediate is involved.

ients	
l	
hase	
J→	
rure 5 - Catalytic Strategies 13	

Chymotrypsin

+ The reactive Ser 195 is part of a catalytic triad.

Chymotrypsin Catalytic Cycle	
+ Step 6: Transition state formation	
Oxyanion	
Tetrahedral Acyl-enzyme intermediate	
Chem 452, Lecture 5 - Catalytic Strategies 23	

Chymotrypsin Catalytic Cycle	
Putting it all together: Stan-by-Stan through the catalytic cycle	
T. T	
AN CONTRACT	
(Click to start animation)	
Chem 452, Lecture 5 – Catalytic Strategies 26	

Other Serine Proteases

+ Other Homologous Serine Proteases include **trypsin** and **elastase**

Chem 452, Lecture 5 - Catalytic Strategies 30

Other Serine Proteases

+ Investigating the catalytic triad by site-directed mutagenesis

Other Proteases + Other strategies are used to hydrolyze peptide bonds: METALLOPROTEASES	Other Proteases • Other strategies are used to hydrolyze peptide bonds: METALLOPROTEASES	Other Proteases • Other strategies are used to hydrolyze peptide bonds: METALLOPROTEASES METALLOPROTEASES Thermolysin
Other strategies are used to hydrolyze peptide bonds: METALLOPROTEASES	Other strategies are used to hydrolyze peptide bonds: METALLOPROTEASES	 Other strategies are used to hydrolyze peptide bonds: METALLOPROTEASES METALLOPROTEASES Thermolysin
METALLOPROTEASES	H20 His Zn2+ Glu	METALLOPROTEASES
	His Zn2+	His Cn2+ Giu Thermolysin

Introduction	
+ Some Basic Catalytic Principles	
 General Acid/Base Catalysis 	
 Catalysis by Approximation (Juxtaposition, or the proximity effect) 	
+ Metal Ion Catalysis	
 Transition state stabilization 	
Chem 452, Lecture 5 - Catalytic Strategies 38	

Next up	
 Catalytic Strategies, cond (Chapter 9) Carbonic Anhydrase EcoRV Myosin II ATPase 	
Chem 452, Lecture 5 - Catalytic Strategies 39	