Chem 452 - Lecture 4 Enzymes 111017

Enzymes are biological catalysts. Nearly every reaction that takes place in a living cell is catalyzed by an enzyme. Most enzymes are proteins. Beside their role in speeding up the rates of chemical reactions, enzymes also play an important role in controlling the flow of material through the myriad of metabolic pathways required to sustain a living cell.

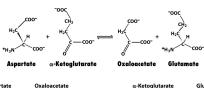
Enzyme Kinetics

- Most Reactions involve multiple substrates.
- There are three different ways that the binding substrates can occur.
 - Ordered sequential
 - + Random sequential
 - + Double displacement (Ping Pong)

Chem 452, Lecture 4 - Enzymes 2

Enzyme Kinetics

+ Ordered sequential

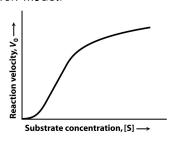

Chem 452, Lecture 4 - Enzymes 3

Enzyme Kinetics

+ Random sequential

Enzyme Kinetics

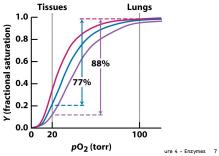
+ Double displacement (Ping Pong)


Aspartate Oxaloacetate or-Ketoglutarate Glutamate
Enzyme

E (E-NH₃) (E-NH₃) (E-NH₃) Enzyme
(aspartate) (oxaloacetate) ((c.ketoglutarate)) (glutamate)

Chem 452, Lecture 4 - Enzymes 5

Enzyme Kinetics


+ Not all enzyme obey the Michaelis-Menten model.

Chem 452, Lecture 4 - Enzymes 6

Enzyme Kinetics

+ Not a Ment — pH 7.4, no CO₂ — pH 7.2, no CO₂ eliS-— pH 7.2, 40 torr CO₂ issues Lungs

Enzyme Inhibition

- The inhibition of enzyme activitity can be physiological or not.
- · It can be reversible or irreversible.
- Many drugs, pesticides and herbicides operate by inhibiting enzyme activity

- Irreversible inhibition, while not usually physiological, can be used as a tool to study enzyme.
 - Catalytic groups at the active site are often more reactive than groups elsewhere on the enzyme.

Enzyme Inhi

Chem 452, Lecture 4 - Enzymes 9

 Irreversible inhibition, while not usually physiological, can be used as a tool to study enzyme.

- Irreversible inhibition, while not usually physiological, can be used as a tool to study enzyme.
- Catalytic groups at the active site are often more reactive than groups elsewhere on the enzyme.

Enzyme Inhi

Chem 452, Lecture 4 - Enzymes 9

- Irreversible inhibition, while not usually physiological, can be used as a tool to study enzyme.
 - · Catalytic groups at the active site are often

Bromoacetol phosphate is an affinity label which mimics the natural substrate for the enzyme triosephosphate isomerase

: Inhi

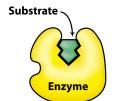
- Irreversible inhibition, while not usually physiological, can be used as a tool to study enzyme.
- Catalytic groups at the active site are often more reactive than groups elsewhere on the enzyme.

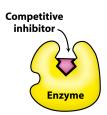
Enzyme Inhi

Chem 452, Lecture 4 - Enzymes 9

- Irreversible inhibition, while not usually physiological, can be used as a tool to study enzyme.
- Catalytic groups at the active site are often more reactive than groups elsewhere on the enzyme.

Enzyme Inhi

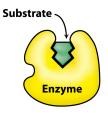

Enzyme Inhibition

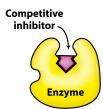

- Reversible inhibition comes in three different forms.
- · Competitive
- Noncompetitive
- Uncompetitive
- + Enzyme kinetics can be used to distinguish between these.

Chem 452, Lecture 4 - Enzymes 10

Enzyme Inhibition

+ Competitive Inhibition

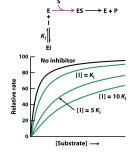




Chem 452, Lecture 4 - Enzymes 11

Enzyme Inhibition

+ Competitive Inhibition

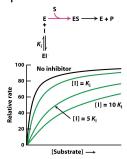


Chem 452, Lecture 4 - Enzymes 12

Enzyme Inhibition

+ Competitive Inhibition

$$K_{M}^{app} = K_{M} \left(1 + \frac{\text{[I]}}{K_{I}} \right)$$

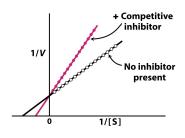

Enzyme Inhibition + Competitive Inhibition + Competitive inhibitor 1/V No inhibitor present

Chem 452, Lecture 4 - Enzymes 14

1/[S]

Enzyme Inhibition

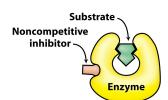
+ Competitive Inhibition



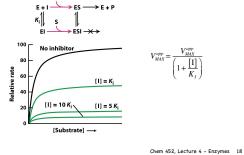
$$K_{M}^{app} = K_{M} \left(1 + \frac{[I]}{K_{I}} \right)$$

Chem 452, Lecture 4 - Enzymes 15

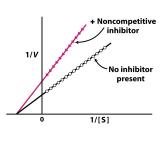
Enzyme Inhibition


+ Competitive Inhibition

Chem 452, Lecture 4 - Enzymes 16

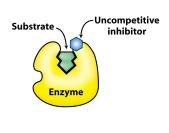

Enzyme Inhibition

+ Noncompetitive Inhibition


Enzyme Inhibition

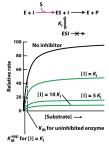
+ Noncompetitive Inhibition

Enzyme Inhibition

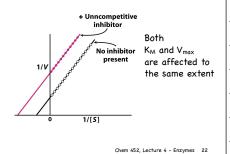

+ Noncompetitive Inhibition

Chem 452, Lecture 4 - Enzymes 19

Enzyme Inhibition


+ Uncompetitive Inhibition

Chem 452, Lecture 4 - Enzymes 20


Enzyme Inhibition

+ Uncompetitive Inhibition

Enzyme Inhibition

+ Uncompetitive Inhibition

Problem

C) Ibuprofen is an inhibitor of the enzyme prostaglandin endoperoxide synthase. By inhibiting the synthesis of prostaglandins, ibuprofen reduces both inflammation and pain. Using the data below, determine the type of inhibition that ibuprofen exerts on prostaglandin endoperoxide synthase

[S] {mM}	v₀ {mM/min}	v₀ (mM/min) /w Ibuprofen	
0.5	23.5	16.67	
1	32.2	25.25	
1.5	36.9	30.49	
2.5	41.8	37.04	
3.5	44	38.91	

Enzyme Inhibition

 Some inhibitors are transition state analogues instead of substrate analogues.

Pyrrole 2-carboxylic acid (transition-state analog)

Chem 452, Lecture 4 - Enzymes 24

Synthetic Enzymes

- + Antibody enzymes (Abzymes)
 - Antibodies raised to transitions state analogues exhibit enzymatic activity

Antibodies raised to this compound have $\frac{\text{ferrochelatase}}{\text{(\approx2,500 x the uncatalyzed reaction)}}$

Enzyme Classification

+ Enzymes are classified based on the types of reactions they catalyze

TABLE 8.8 Six major classes of enzymes

Class	Type of reaction	Example	Chapter
1. Oxidoreductases	Oxidation-reduction	Lactate dehydrogenase	16
2. Transferases	Group transfer	Nucleoside monophosphate kinase (NMP kinase)	9
3. Hydrolases	Hydrolysis reactions (transfer of functional groups to water)	Chymotrypsin	9
4. Lyases	Addition or removal of groups to form double bonds	Fumarase	17
5. Isomerases	Isomerization (intramolecular group transfer)	Triose phosphate isomerase	16
6. Ligases	Ligation of two substrates at the expense of ATP hydrolysis	Aminoacyl-tRNA synthetase	30

Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) $\,$

http://www.chem.qmul.ac.uk/iubmb/enzyme/

Chem 452, Lecture 4 - Enzymes 26

Next up

- + Catalytic Strategies (Chapter 9)
 - Protease reaction (Hydrolysis rxn)
 - · Carbonic anhydrase (Hydration rxn)
 - · Restriction endonuclease (Hydrolysis rxn)
 - · Myosin ATPase