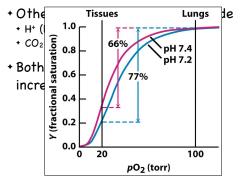
Chem 452 - Lecture 3 Hemoglobin & Myoglobin 111007


Hemoglobin (Hb) and Myoglobin (Mb) function as oxygen transport and storage molecules in higher organisms. There functions have been long studied and, together, provide a wealth of examples of how the structure and function of proteins are related.

Allosteric Regulation

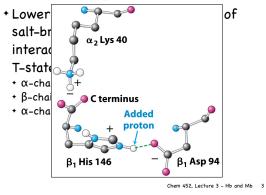
- +Other allosteric regulators include
- + H+ (lower pH) The Bohr Effect
- + CO₂
- + Both of these metabolites signal increased metabolic activity

Chem 452, Lecture 3 - Hb and Mb 2

Allosteric Regulation

Chem 452, Lecture 3 - Hb and Mb 2

Allosteric Regulation

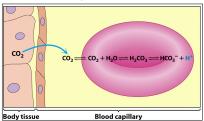

- + Other allosteric regulators include
- + H+ (lower pH) The Bohr Effect
- + CO₂
- + Both of these metabolites signal increased metabolic activity

Allosteric Regulation

- + Lower pH leads to the formation of salt-bridges (charge/charge interactions), that stabilize the T-state.
 - + α -chain α -amino group
 - + B-chain H146
 - + α-chain H122

Chem 452, Lecture 3 - Hb and Mb 3

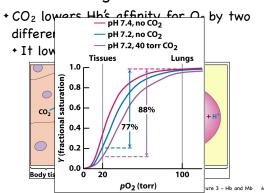
Allosteric Regulation


Allosteric Regulation

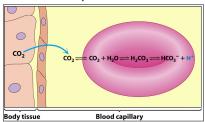
- + Lower pH leads to the formation of salt-bridges (charge/charge interactions), that stabilize the T-state.
 - + α -chain α -amino group
 - + β-chain H146
 - + α-chain H122

Chem 452, Lecture 3 - Hb and Mb 3

Allosteric Regulation


- + CO2 lowers Hb's affinity for O different mechanisms.
 - + It lowers the pH

Chem 452, L

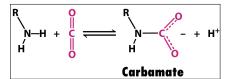

	1
2 by two	
₃ -+H+	
ecture 3 - Hb and Mb 4	

Allosteric Regulation

Allosteric Regulation

- * CO₂ lowers Hb's affinity for O₂ by two different mechanisms.
- + It lowers the pH

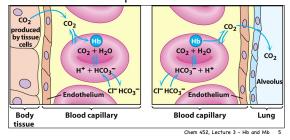
Chem 452, Lecture 3 - Hb and Mb 4


Allosteric Regulation

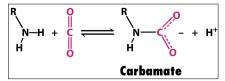
- + CO₂ lowers Hb's affinity for O₂ by two mechanisms.
- + It lowers the pH
- + It reacts with terminal α -amino groups

Chem 452, Lecture 3 - Hb and Mb 5

Allosteric Regulation


- + CO₂ lowers Hb's affinity for O₂ by two mechanisms.
 - + It lowers the pH
 - + It reacts with terminal α -amino groups

Chem 452, Lecture 3 - Hb and Mb 5


Allosteric Regulation

- + CO₂ lowers Hb's affinity for O₂ by two mechanisms.
 - + It lowers the pH

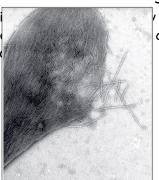
Allosteric Regulation

- + CO₂ lowers Hb's affinity for O₂ by two mechanisms.
- + It lowers the pH
- + It reacts with terminal α -amino groups

Chem 452, Lecture 3 - Hb and Mb

Genetic Diseases Involving Hb

- + Concept of diseases caused by molecular defect was proposed in 1949 by Linus Pauling
 - + Sickle-cell Hb (Hb-S)


Chem 452, Lecture 3 - Hb and Mb 6

Genetic Diseases Involving Hb

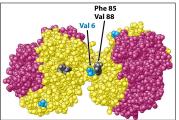
 Sickling of RBC's is caused by the aggregation (polymerization) of Hb molecules.

Genetic Diseases Involving Hb

+ Sickli aggr moled

the of Hb

Chem 452, Lecture 3 - Hb and Mb 7


Genetic Diseases Involving Hb

* Sickling of RBC's is caused by the aggregation (polymerization) of Hb molecules.

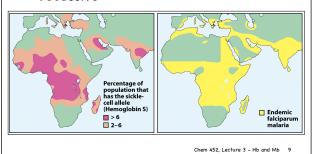
Chem 452, Lecture 3 - Hb and Mb 7

Genetic Diseases Involving Hb

+ Disease is caused by a substitution of a Val for a Glu at position 6 in the β -chain (E6V)

Chem 452, Lecture 3 - Hb and Mb 8

Genetic Diseases Involving Hb


- + Sickle-cell disease is homozygous recessive.
- Heterozygous individuals do not express the disease
 - However, they are more resistant to the malaria parasite (Plasmodium falciparum)

Chem 452, Lecture 3 - Hb and Mb 9

Genetic Diseases Involving Hb

+ Sickle-cell disease is homozygous recessive.

Next up

+ Enzymes (Chapter 8)

Chem 452, Lecture 3 - Hb and Mb 10