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Phase

These still days after frost have let down
the maple leaves in a straight compression
to the grass, a slight wobble from circular to

the east, as if sometime, probably at night, the
wind’s moved that way— surely, nothing else
could have done it, really eliminating the as

if, although the as if can nearly stay since
the wind may have been a big, slow
one, imperceptible, but still angling

off the perpendicular the leaves’ fall:
anyway, there was the green-ribbed, yellow,

flat-open reduction: I just now bagged it up.

A. R. Ammons!

1“Phase,” from The Selected Poems, Expanded Edition by A. R. Ammons. Copyright © 1987,
1977, 1975, 1974, 1972, 1971, 1970, 1966, 1965, 1964, 1955 by A. R. Ammons. Reprinted by
permission of W. W, Norton & Company, lnc.

Model and Molecule

Proteins perform many functions in living organisms. For example, some pro-
teins regulate the expression of genes. One class of gene-regulating proteins
contains structures known as zinc fingers, which bind directly to DNA. Plate 1
shows a complex composed of a double-stranded DNA molecule and three
zine fingers from the mouse protein Zit268.

The protein backbone is shown as a yellow ribbon. The two DNA strands
are red and blue. Zinc atoms, which are complexed to side chains in the pro-
tein, are green. The green dotted lines near the top center indicate two hydro-
gen bonds in which nitrogen atoms of arginine-18 (in the protein) share
hydrogen atoms with nitrogen and oxygen atoms of guanine-10 (in the DNA),
an interaction that holds the sharing atoms about 2.8 A apart. Studying this
complex with modern graphics software, you could zoom in and measure the
hydrogen-bond lengths, and find them to be 2.79 and 2.67 A. You would also
learn that all of the protein—DNA interactions are between protein side chains
and DNA bases; the protein backbone does not come in contact with the DNA.
You could go on to discover all the specific interactions between side chains
of Zif268 and base pairs of DNA. You could enumerate the additional hydro-
gen bonds and other contacts that stabilize this complex and cause Zif268 to
recognize a specific sequence of bases in DNA. You might gain some testable
insights into how the protein finds the correct DNA sequence amid the vast
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amount of DNA in the nucleus of a cell. The structure might also lead you to
speculate on how alterations in the sequence of amino acids in the protein
might result in affinity for different DNA sequences, and thus start you think-
ing about how to design other DNA-binding proteins.

Now look again at the preceding paragraph and examine its language rather
than its content. The language is typical of that in common use to describe
molecular structure and interactions as revealed by various experimental
methods, including single-crystal X-ray crystallography, the primary subject
of this book. In fact, this language is shorthand for more precise but cumber-
some statements of what we learn from structural studies. First, Plate 1 of
course shows not molecules, but models of molecules, in which structures and
interactions are depicted, not shown. Second, in this specific case, the models
are of molecules not in solution, but in the crystalline state, because the mod-
els are derived from analysis of X-ray diffraction by crystals of the
Zif268/DNA complex. As such, these models depict the average structure of
somewhere between 10'3 and 1015 complexes throughout the crystals that
were studied. In addition, the structures are averaged over the time of the
X-ray experiment, which may be as much as several days.

To draw the conclusions found in the first paragraph requires bringing addi-
tional knowledge to bear upon the graphics image, including knowledge of
just what we learn from X-ray analysis. (The same could be said for structural
models derived from spectroscopic data or any other method.) In short, the
graphics image itself is incomplete. It does not reveal things we may know
about the complex from other types of experiments, and it does not even re-
veal all that we learn from X-ray crystallography.

For example, how accurately are the relative positions of atoms known? Are
the hydrogen bonds precisely 2.79 and 2.67 A long, or is there some tolerance
in those figures? Is the tolerance large enough to jeopardize the conclusion
that a hydrogen bond joins these atoms? Further, do we know anything about
how rigid this complex is? Do parts of these molecules vibrate, or do they
move with respect to each other? Still further, in the aqueous medium of the
cell, does this complex have the same structure as in the crystal, whichis a
solid? As we examine this model, are we really gaining insight into cellular
processes? A final question may surprise you: Does the model fully account
for the chemical composition of the crystal? In other words, are any of the
known contents of the crystal missing from the model?

The answers to these questions are not revealed in the graphics image,
which is more akin to a cartoon than to a molecule. Actually, the answers vary
from one model to the next, but they are usually available to the user of crys-
tallographic models. Some of the answers come from X-ray crystallography
itself, so the crystallographer does not miss or overlook them. They are sim-
ply less accessible to the noncrystallographer than is the graphics image.
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Molecular models obtained from crystallography are in wide use as tools
for revealing molecular details of life processes. Scientists use models to learn
how molecules “work™: how enzymes catalyze metabolic reactions, how
transport proteins load and unload their molecular cargo, how antibodies bind
and destroy foreign substances, and how proteins bind to DNA, perhaps turn-
ing genes on and off. It is easy for the user of crystallographic models, being
anxious to turn otherwise puzzling information into a mechanism of action, to
treat models as everyday objects seen as we see clouds, birds, and trees. But
the informed user of models sees more than the graphics image, recognizing it
as a static depiction of dynamic objects, as the average of many similar struc-
tures, as perhaps lacking parts that are present in the crystal but not revealed
by the X-ray analysis, and finally as a fallible interpretation of data. The in-
formed user knows that the crystallographic model is richer than the cartoon.

In the following chapters, I offer you the opportunity to become an informed
user of crystallographic models. Knowing the richness and limitations of mod-
els requires an understanding of the relationship between data and structure. In
Chapter 2. I give an overview of this relationship. In Chapters 3 through 7,
Isimply expand Chapter 2 in enough detail to produce an intact chain of logic
stretching from diffraction data to final model. Topics come in roughly the same
order as the tasks that face a crystallographer pursuing an important structure.

As a practical matter, informed use of a model requires reading the crystal-
lographic papers and data files that report the new structure and extracting
from them criteria of model quality. In Chapter 8, I discuss these criteria and
provide a guided exercise in extracting them. The exercise takes the form
of annotated excerpts from a published structure determination and its sup-
porting data. Equipped with the background of previous chapters and experi-
enced with the real-world exercise of a guided tour through a recent
publication, you should be able to read new structure publications in the
scientific literature and understand how the structures were obtained and
be aware of just what is known—and what is still unknown—about the
molecules under study.

Chapter 9, “Other Diffraction Methods,” builds upon your understanding of
X-ray crystallography to help you understand other methods in which diffrac-
tion provides insights into the structure of large molecules. These methods in-
clude fiber diffraction, neutron diffraction, electron diffraction, and various
forms of X-ray spectroscopy. These methods often seem very obscure, but
their underlying principles are similar to those of X-ray crystallography.

In Chapter 10, “Other Types of Models,” T discuss alternative methods of
structure determination: NMR spectroscopy and various forms of theoretical
modeling. Just like crystallographic models, NMR and theoretical models are
sometimes more, sometimes less, than meets the eye. A brief description of
how these models are obtained, along with some analogies among criteria of
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quality for various types of models, can help make you a wiser user of all
types of models.

For new or would-be users of models, I present in Chapter 11 an introduc-
tion to molecular modeling, demonstrating how modern graphics programs
allow users to display and manipulate models and to perform powerful struc-
ture analysis, even on desktop computers. This chapter also provides informa-
tion on how to use the World Wide Web to obtain graphics programs and learn
how to use them. It also provides an introduction to the Protein Data Bank
(PDB), a World Wide Web resource from which you can obtain most of the
available macromolecular models.

There is an additional, brief chapter that does not lie between the covers of
this book. It is the Crystallography Made Crystal Clear (CMCC) Home Page
on the World Wide Web at www.usm.maine.edu/~rhodes/CMCC. This web
page is devoted to making sure that you can find all the Internet resources
mentioned here. Because many Internet resources and addresses change
rapidly, 1 did not include them in these pages; but instead, I refer you to the
CMCC Home Page. At that web address, I maintain links to all resources men-
tioned here or, if they disappear or change markedly, to new ones that serve
the same or similar functions. For easy reference, the address of the CMCC
Home Page is shown on the cover and title page of this book.

Today’s scientific textbooks and journals are filled with stories about the
molecular processes of life. The central character in these stories is often a
protein or nucleic acid molecule, a thing never seen in action, never perceived
directly. We see model molecules in books and on computer screens, and we
tend to treat them as everyday objects accessible to our normal perceptions. In
fact, models are hard-won products of technically difficult data collection and
powerful but subtle data analysis. This book is concerned with where our mod-
els of structure come from and how to use them wisely.

An Overview of Protein
Crystallography

l. Introduction

The most common experimental means of obtaining a detailed picture of a
large molecule, allowing the resolution of individual atoms, is to interpret the
diffraction of X rays from many identical molecules in an ordered array like a
crystal. This method is called single-crystal X-ray crystallography. As of this
writing, roughly 8000 protein and nucleic-acid structures have been obtained
by this method. In addition, the structures of roughly 1300 macromolecules,
mostly proteins of fewer than 150 residues, have been solved by nuclear mag-
netic resonance (NMR) spectroscopy, which provides a model of the molecule
in solution, rather than in the crystalline state. Finally, there are theoretical
models, built by analogy with the structures of known proteins having similar
sequence, or based on simulations of protein folding. All methods have their
strengths and weaknesses, and they will undoubtedly coexist as complemen-
tary methods for the foreseeable future. One of the goals of this book is to make
users of crystallographic models aware of the strengths and weaknesses of
X-ray crystallography, so that users’ expectations of the resulting models are in
keeping with the limitations of crystallographic methods. Chapter 10 provides,
in brief, complementary information about other types of models.
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This chapter provides a simplified overview of how researchers use the
technique of X-ray crystallography to learn macromolecular structures. Chap-
ters 3-8 are simply expansions of the material in this chapter. In order to keep
the language simple, I will speak primarily of proteins, but the concepts I de-
scribe apply to all macromolecules and macromolecular assemblies that pos-
sess ordered structure, including carbohydrates, nucleic acids, and nucleo-
protein complexes like ribosomes and whole viruses.

A. Obtaining an image of a microscopic object

When we see an object, light rays bounce off (are diffracted by) the object and
enter the eye through the lens, which reconstructs an image of the object and
focuses it on the retina. In a simple microscope, an illuminated object is placed
just beyond one focal point of a lens, which is called the objective lens. The
lens collects light diffracted from the object and reconstructs an image beyond
the focal point on the opposite side of the lens, as shown in Fig. 2.1.

For a simple lens, the relationship of object position to image position in
Fig. 2.1 is (OF )J(IF') = (FL )(F'L ). Because the distances FL and F''L are
constants (but not necessarily equal) for a fixed lens, the distance OF is in-
versely proportional to the distance IF". Placing the object near the focal point

L

Figure 2.1  Action of a simple lens. Rays parallel to the lens strike the lens and are
refracted into paths passing through a focus. Rays passing through a focus strike the
lens and are refracted into paths parallel to the lens axis. As a result, the lens produces
an image at / of an object at O, such that (OF )(IF') = (FL)(F'L).

I. Introduction 7

F results in a magnified image produced at a considerable distance from F' on
the other side of the the lens, which is convenient for viewing. In a compound
microscope, the most common type, an additional lens, the eyepiece, is added
to magnify the image produced by the objective lens.

B. Obtaining images of molecules

In order for the object to diffract light and thus be visible under magnification,
the wavelength (A\) of the light must be, roughly speaking, no larger than the
object. Visible light, which is electromagnetic radiation with wavelengths of
400=700 nm (nm = 10~ m), cannot produce an image of individual atoms
in protein molecules, in which bonded atoms are only about 0.15 nm or 1.5 A
(A = 10719 m) apart. Electromagnetic radiation of this wavelength falls into
the X-ray range, so X rays are diffracted by even the smallest molecules.
X-ray analysis of proteins seldom resolves the hydrogen atoms, so the protein
models described in this book include elements on only the second and higher
rows of the periodic table. The positions of all hydrogen atoms can be de-
duced on the assumption that bond lengths, bond angles, and conformational
angles in proteins are just like those in small organic molecules.

Even though individual atoms diffract X rays, it is still not possible to pro-
duce a focused image of a molecule, for two reasons. First, X rays cannot be
focused by lenses. Crystallographers sidestep this problem by measuring the
directions and strengths (intensities) of the diffracted X rays and then using a
computer to simulate an image-reconstructing lens. In short, the computer
acts as the lens, computing the image of the object and then displaying it on a
screen or drawing it on paper (Fig. 2.2).

Second, a single molecule is a very weak scatterer of X rays. Most of the
X rays will pass through a single molecule without being diffracted, so the
diffracted beams are too weak to be detected. Analyzing diffraction from crys-
tals, rather than individual molecules, solves this problem. A crystal of a pro-
tein contains many ordered molecules in identical orientations, so each
molecule diffracts identically, and the diffracted beams for all molecules aug-
ment each other to produce strong, detectable X-ray beams.

C. A thumbnail sketch of protein crystallography

In brief, determining the structure of a protein by X-ray crystallography en-
tails growing high-quality crystals of the purified protein, measuring the di-
rections and intensities of X-ray beams diffracted from the crystals, and using
a computer to simulate the effects of an objective lens and thus produce an
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!:igure 2.2 Crystallographic analogy of lens action. X-rays diffracted from the ob-
Ject are received and measured by a detector. The measurements are fed to a computer,
which simulates the action of a lens to produce a graphics image of the object.

image of the crystal’s contents, like the small section of a molecular image
shown in Plate 2a. Finally, that image must be interpreted, which entails dis-
playing it by computer graphics and building a molecular model that is con-
sistent with the image (Plate 2b).

The resulting model is often the only product of crystallography that the
user sees. It is therefore easy to think of the model as a real entity that has
been directly observed. In fact, our “view” of the molecule is quite indirect.
Understanding just how the crystallographer obtains models of protein mole-
cules from diffraction measurements is essential to fully understanding how
to use models properly.

Il. Crystals

A. The nature of crystals

Under certain circumstances, many molecular substances, including proteins,
solidify to form crystals. In entering the crystalline state from solution, indi-
vidual molecules of the substance adopt one or a few identical orientations.
The resulting crystal is an orderly three-dimensional array of molecules, held
together by noncovalent interactions. Figure 2.3 shows such a crystalline array
of molecules.

Il. Crystals 9

Figure 2.3 Six unit cells in a crystalline lattice. Each unit cell contains two mole-
cules of alanine (hydrogen atoms not shown) in different orientations.

The lines in the figure divide the crystal into identical unit cells. The array of
points at the corners or vertices of unit cells is called the lattice. The unit cell is
the smallest and simplest volume element that is completely representative of
the whole crystal. If we know the exact contents of the unit cell, we can imagine
the whole crystal as an efficiently packed array of many unit cells stacked be-
side and on top of each other, more or less like identical boxes in a warehouse.

From crystallography, we obtain an image of the electron clouds that sur-
round the molecules in the average unit cell in the crystal. We hope this image
will allow us to locate all atoms in the unit cell. The location of an atom is
usually given by a set of three-dimensional Cartesian coordinates, x, y, and z.
One of the vertices (a lattice point or any other convenient point) is used as
the origin of the unit cell’s coordinate system and is assigned the coordinates
x =0,y =0, and z = 0, usually written (0,0,0). See Fig. 2.4.

B. Growing crystals

Crystallographers grow crystals of proteins by slow, controlled precipitation
from aqueous solution under conditions that do not denature the protein.
A number of substances cause proteins to precipitate. Ionic compounds
(salts) precipitate proteins by a process called “salting out.” Organic sol-
vents also cause precipitation, but they often interact with hydrophobic
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Figure 2.4 One unit cell from Fig. 2.3. The position of an atom in the unit cell can
be specified by a set of spatial coordinates x, y, z.

portions of proteins and thereby denature them. The water-soluble polymer
polyethylene glycol (PEG) is widely used because it is a powerful precipi-
tant and a weak denaturant. It is available in preparations of different aver-
age molecular masses, such as PEG 400, with average molecular mass of
400 daltons.

One simple means of causing slow precipitation is to add denaturant to an
aqueous solution of protein until the denaturant concentration is just below
that required to precipitate the protein. Then water is allowed to evaporate
slowly, which gently raises the concentration of both protein and denaturant
until precipitation occurs. Whether the protein forms crystals or instead forms
a useless amorphous solid depends on many properties of the solution, includ-
ing protein concentration, temperature, pH, and ionic strength. Finding the
exact conditions to produce good crystals of a specific protein often requires
many careful trials and is perhaps more art than science. I will examine crys-
tallization methods in Chapter 3.

lll. Collecting X-ray data

Figure 2.5 depicts the collection of X-ray diffraction data. A erystal is mounted
between an X-ray source and an X-ray detector. The crystal lies in the path of
a narrow beam of X rays coming from the source. A simple detector is X-ray
film, which when developed exhibits dark spots where X-ray beams have im-
pinged. These spots are called reflections because they emerge from the crys-
tal as if reflected from planes of atoms.
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Diffracted

Direct Xerays

X-ray tube Reflections

Figure 2.5 Crystallographic data collection. The crystal diffracts the source beam
into many discrete beams, each of which produces a distinct spot (reflection) on the
film. The positions and intensities of these reflections contain the information needed
to determine molecular structures.

Figure 2.6 shows the complex diffraction pattern of X rays produced on
film by a protein crystal. Notice that the crystal diffracts the source beam into
many discrete beams, each of which produces a distinct reflection on the film.
The greater the intensity of the X-ray beam that reaches a particular position,
the darker the reflection.

An optical scanner precisely measures the position and the intensity of each
reflection and transmits this information in digital form to a computer for
analysis. The position of a reflection can be used to obtain the direction in
which that particular beam was diffracted by the crystal. The intensity of a re-
flection is obtained by measuring the optical absorbance of the spot on the
film, giving a measure of the strength of the diffracted beam that produced the
spot. The computer program that reconstructs an image of the molecules in
the unit cell requires these two parameters, the beam intensity and direction,
for each diffracted beam.

Although film for data collection has largely been replaced by devices that
feed diffraction data (positions and intensities of each reflection) directly into
computers, [ will continue to speak of the data as if collected on film because
of the simplicity of that format, and because diffraction patterns are usually
published in a form identical to their appearance on film. T will discuss other
methods of collecting data in Chapter 4.
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Figure 2.6 Diffraction pattern from a crystal of the MoFe (molybdenum-iron)
protein of the enzyme nitrogenase from Clostridium pasteurianum. Notice that the re-
flections lie in a regular pattern, but their intensities (darkness of spots) are highly vari-
able. [The hole in the middle of the pattern results from a small metal disk (beam stop)
used to prevent the direct X-ray beam, most of which passes straight through the crys-
tal, from destroying the center of the film.] Photo courtesy of Professor Jeffery Bolin.

IV. Diffraction

A. Simple objects

You can develop some visual intuition for the information available from
X-ray diffraction by examining the diffraction patterns of simple objects like
spheres or arrays of spheres (Figs. 2.7-2.10). Figure 2.7 depicts diffraction by
a single sphere, shown in cross section on the left. The diffraction pattern, on
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Figure 2.7 Sphere (cross-section, on left) and its diffraction pattern (right). Images
for Figures 2.7-2.10 were generously provided by Dr. Kevin Cowtan.

the right, exhibits high intensity at the center, and smoothly decreasing inten-
sity as the diffraction angle increases.

For now, just accept the fact that diffraction by a sphere produces this pat-
tern, and think of it as the diffraction signature of a sphere. In a sense, you are
already equipped to do very simple structure determination; that is, you can
now recognize a simple sphere by its diffraction pattern.

B. Arrays of simple objects:
Real and reciprocal lattices

Figure 2.8 depicts diffraction by a crystalline array of spheres, with a cross
section of the crystal on the left, and its diffraction pattern on the right.

The diffraction pattern, like that produced by crystalline nitrogenase
(Fig. 2.6), consists of reflections (spots) in an orderly array on the film. The
spacing of the reflections varies with the spacing of the spheres in their array.
Specifically, observe that although the lattice spacing of the crystal is smaller
vertically, the diffraction spacing is smaller horizontally. In fact, there is a
simple inverse relationship between the spacing of unit cells in the crystalline
lattice, called the real lattice, and the spacing of reflections in the lattice on
the film, which, because of its inverse relationship to the real lattice, is called
the reciprocal lattice.

The images shown in Figures 2.7-2.10 are computed, rather than experimental, diffraction
patterns. Computation of these patterns involves use of the Fourier transform (Section V.E).
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Figure 2.8 Lattice of spheres (left) and its diffraction pattern (right). If you look at
the pattern and blur your eyes, you will see the diffraction pattern of a sphere. The pat-
tern is that of the average sphere in the real lattice, but it is sampled at the reciprocal
lattice points.

Because the real lattice spacing is inversely proportional to the spacing of
reflections, crystallographers can calculate the dimensions, in angstroms, of
the unit cell of the crystalline material from the spacings of the reciprocal lat-
tice on the X-ray film (Chapter 4). The simplicity of this relationship is a dra-
matic example of how the macroscopic dimensions of the diffraction pattern
are connected to the submicroscopic dimensions of the crystal.

C. Intensities of reflections

Now look at the intensities of the reflections in Fig. 2.8. Some are intense
(“bright”), whereas others are weak or perhaps missing from the otherwise
evenly spaced pattern. These variations in intensity contain important infor-
mation. If you blur your eyes slightly while looking at the diffraction pattern,
so that you cannot see individual spots, you will see the intensity pattern char-
acteristic of diffraction by a sphere, with lower intensities farther from the
center, as in Fig. 2.7. (You just determined your first crystallographic struc-
ture.) The diffraction pattern of spheres in a lattice is simply the diffraction
pattern of the average sphere in the lattice, but this pattern is incomplete.
The pattern is sampled at points whose spacings vary inversely with real-
lattice spacings. The pattern of varied intensities is that of the average sphere
because all the spheres contribute to the observed pattern. To put it another
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way, the observed pattern of intensities is actually a superposition of the many
identical diffraction patterns of all the spheres.

D. Arrays of complex objecis

This relationship between (1) diffraction by a single object and (2) diffrac-
tion by many identical objects in a lattice holds true for complex objects also.
Figure 2.9 depicts diffraction by six spheres that form a planar hexagon, like
the six carbons in benzene.

Notice the starlike six-fold symmetry of the diffraction pattern. Again, just
accept this pattern as the diffraction signature of a hexagon of spheres. (Now
you know enough to recognize two simple objects by their diffraction pat-
terns.) Figure 2.10 depicts diffraction by these hexagonal objects in a lattice
of the same dimensions as that in Fig. 2.8.

As before, the spacing of reflections varies reciprocally with lattice spacing,
but if you blur your eyes slightly, or compare Figs. 2.9 and 2.10 carefully, you
will see that the starlike signature of a single hexagonal cluster is present in
Fig. 2.10. From these simple examples, you can see that the reciprocal-
lattice spacing (the spacing of reflections in the diffraction pattern) is charac-
teristic of (inversely related to) the spacing of identical objects in the crystal,
whereas the reflection intensities are characteristic of the shape of the individ-
ual objects. From the reciprocal-lattice spacing in a diffraction pattern, we can
compute the dimensions of the unit cell. From the intensities of the reflections,

Figure 2.9 A planar hexagon of spheres (left) and its diffraction pattern (right).
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Figure 2.10 Lattices of hexagons (left) and its diffraction pattern (right). If you
look at the pattern and blur your eyes, you will see the diffraction pattern of a hexagon.
The pattern is that of the average hexagon in the real lattice, but it is sampled at the
reciprocal lattice points.

we can learn the shape of the individual molecules that compose the crystal. It
is actually advantageous that the object’s diffraction pattern is sampled at reci-
procal-lattice positions. This sampling reduces the number of intensity mea-
surements we must take from the film and makes it easier to program a
computer o locate and measure the intensities.

E. Three-dimensional arrays

Unlike the two-dimensional arrays in these examples, a crystal is a three-
dimensional array of objects. If we rotate the crystal in the X-ray beam, a differ-
ent cross section of objects will lie perpendicular to the beam, and we will see a
different diffraction pattern. In fact, just as the two-dimensional arrays of ob-
jects we have discussed are cross sections of objects in the three-dimensional
crystal, each two-dimensional array of reflections (each diffraction pattern
recorded on film) is a cross section of a three-dimensional lattice of reflec-
tions. Figure 2.11 shows a hypothetical three-dimensional diffraction pattern,
with the reflections that would be produced by all possible orientations of a
crystal in the X-ray beam.

Notice that only one plane of the three-dimensional diffraction pattern is
superimposed on the film. With the crystal in the orientation shown, reflec-
tions shown in the plane of the film (solid spots) are the only refiections that
produce spots on the film. In order to measure the directions and intensities of

V. Coordinate Systems in Crystallography 17
Reflection
Unrecorded (unrecorded) at

reflections (hollow) pi)siliun k!l

X-ray Tube Recorded
reflections
(solid)
Figure 2.11 Crystallographic data collection, showing reflections measured at one
particular crystal orientation (solid, on film) and those that could be measured at other
orientations (hollow, within the sphere but not on the film). The relationship
between measured and unmeasured reflections is more complex than shown here (see
Chapter 4).

all additional reflections (shown as hollow spots), the crystallographer must
collect diffraction patterns from all unique orientations of the crystal with re-
spect to the X-ray beam. The direct result of erystallographic data collection
is a list of intensities for each point in the three-dimensional reciprocal lattice.
This set of data is the raw material for determining the structures of molecules
in the crystal.

(Nete: The spatial relationship involving beam, crystal, film, and reflections
is more complex than shown here. I will discuss the actual relationship in
Chapter 4.)

V. Coordinate systems in crystallography

Each reflection can be assigned three coordinates or indices in the imaginary
three-dimensional space of the diffraction pattern. This space, the strange land
where the reflections live, is called reciprocal space. Crystallographers usually
use h, k, and I to designate the position of an individual reflection in the recip-
rocal space of the diffraction pattern. The central reflection (the round solid
spot at the center of the film in Fig. 2.11) is taken as the origin in reciprocal
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space and assigned the coordinates (hk[) = (0,0,0), usually written
hkl = 000. (The 000 reflection is not measurable because it is always obscured
by X rays that pass straight through the crystal.) The other refiections are
assigned whole-number coordinates counted from this origin, so the indices
h, k, and [ are integers. Thus the parameters we can measure and analyze in the
X-ray diffraction pattern are the position ikl and the intensity /; ,, of each reflec-
tion. The position of a reflection is related to the angle by which the
diffracted beam diverges from the source beam. For a unit cell of known dimen-
sions, the angle of divergence uniquely specifies the indices of a reflection (see
Chapter 4).

Alternatively, actual distances, rather than reflection indices, can be mea-
sured in reciprocal space. Because the dimensions of reciprocal space are the
inverse of dimensions in the real space of the crystal, distances in reciprocal
space are expressed in the units A~ (called reciprocal angstroms). Roughly
speaking, the inverse of the reciprocal-space distance from the origin out to
the most distant measurable reflections gives the potential resolution of the
model that we can obtain from the data. So a crystal that gives measurable re-
flections out to a distance of 1/(3 A) from the origin should yield a model with
a resolution of 3 A.

The crystallographer works back and forth between two different coordinate
systems. I will review them briefly. The first system (see Fig. 2.4) is the unit cell
(real space), where an atom’s position is described by its coordinates x.,y.z.

i
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Figure 2.12 Fun in reciprocal space. © The New Yorker Collection, 1991. John
O’ Brien, from cartoonbank.com. All rights reserved.
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A vertex of the unit cell, or any other convenient position, is taken as the origin,
with coordinates x,y,z = (0,0,0). Coordinates in real space designate real spatial
positions within the unit cell. Real-space coordinates are usually given in
angstroms or nanometers, or in fractions of unit cell dimensions. The second
system (see Fig. 2.11) is the three-dimensional diffraction pattern (reciprocal
space), where a reflection’s position is described by its indices iikl. The central
reflection is taken as the origin with the index 000 (round black dot at center of
sphere). The position of a reflection is designated by counting reflections from
000, so the indices i, k, and [ are integers. Distances in reciprocal space, ex-
pressed in reciprocal angstroms or reciprocal nanometers, are used to judge the
potential resolution that the diffraction data can yield.

Like Alice’s looking-glass world, reciprocal space may seem strange to you
at first (Fig. 2.12). We will see, however, that some aspects of crystallography
are actually easier to understand, and some calculations are more convenient,
in reciprocal space than in real space (Chapter 4).

VI. The mathematics of crystallography:
A brief description

The problem of determining the structure of objects in a crystalline array from
their diffraction pattern is, in essence, a matter of converting the experimen-
tally accessible information in the reciprocal space of the diffraction pattern to
otherwise inaccessible information about the real space inside the unit cell.
Remember that a computer program that makes this conversion is acting as a
simulated lens to reconstruct an image from diffracted radiation. Each reflec-
tion is produced by a beam of electromagnetic radiation (X rays), so the com-
putations entail treating the reflections as waves and recombining these waves
to produce an image of the molecules in the unit cell,

A. Wave equations: Periodic functions

Each reflection is the result of diffraction from complicated objects, the mole-
cules in the unit cell, so the resulting wave is complicated also. Before consid-
ering how the computer represents such an intricate wave, let us consider
mathematical descriptions of the simplest waves.

A simple wave, like that of visible light or X rays, can be described by a
periodic function, for instance, an equation of the form
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f(x) = Fcos2a(hx + a) 2.1
or
f(x) = Fsin2%(hx + ). (2.2)

In these functions, f(x) specifies the vertical height of the wave at any hori-
zontal position x along the wave. The variable x and the constant « are angles
expressed in fractions of the wavelength; that is, x = 1 implies a position of
one full wavelength (27 radians or 360°) from the origin. The constant F speci-
fies the amplitude (the height of the crests and troughs) of the wave. For exam-
ple, the crests of the wave f(x) = 3 cos 2mx are three times as high and the
troughs are three times as deep as those of the wave f(x) = cos 2mx (compare
b with ¢ in Fig. 2.13).

The constant /i in a simple wave equation specifies the frequency or wave-
length of the wave. For example, the wave f(x) = cos 2w (3x) has five times
the frequency (or one-fifth the wavelength) of the wave f(x) = cos 27 x (com-
pare ¢ with a in Fig. 2.13). (In the wave equations used in this book, & takes
on integral values only.)

Finally, the constant « specifies the phase of the wave, that is, the position of
the wave with respect to the origin of the coordinate system on which the wave is
plotted. For example, the position of the wave f(x) = cos 2w (x + /4) is shifted
by one-quarter of 24t radians (or one-quarter of a wavelength, or 90°) from the
position of the wave f(x) = cos 2mx (compare Fig. 2.13d with Fig. 2.134). Be-
cause the wave is repetitive, with a repeat distance of one wavelength or 24 radi-
ans, a phase of !/4 is the same as a phase of 1Y/4, or 2¥/4, or 3%/4, and so on. In
radians, a phase of () is the same as a phase of 2, or 4, or 6, and so on.

These equations describe one-dimensional waves, in which a property (in
this case, the height of the wave) varies is one direction. Visualizing a one-
dimensional function f(x) requires a two-dimensional graph, with the second
dimension used to represent the numerical value of f(x). For example, if f(x)
describes the electrical part of an electromagnetic wave, the x-axis is the di-
rection the wave is moving, and the height of the wave at any position on the
x-axis represents the momentary strength of the electrical field at a distance x
from the origin. The field strength is in no real sense perpendicular to x, but it
1s convenient to use the perpendicular direction to show the numerical value
of the field strength. In general, visualizing a function in n dimensions re-
quires n + 1 dimensions.

B. Complicated periodic functions: Fourier series

As discussed in Section VLA, any simple sine or cosine wave can therefore
be described by three constants—the amplitude F, the frequency A, and the
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Figure 2.13 Graphs of four simple wave equations f(x) = Fcos 2w(hx + a).
@F=1Lh=1la=0 fix)y=cos2m(x). B) F=3, h=1La=0flx)= 3 cos
2 (x). Increasing F increases the amplitude of the wave. (@F=1,h=3a=0
f(x) = cos 2w (3x). Increasing h increases the frequency (or decreases the wavelength M)
of the wave. (d) F=1,h =1, o = Y4: f(x) = cos 27(x + !/4). Changing « changes
the phase (position) of the wave.
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phase a. It is less obvious that far more complicated waves can also be de-
scribed with this same simplicity. The French mathematician Jean Baptiste
Joseph Fourier (1768-1830) showed that even the most intricate periodic
functions can be described as the sum of simple sine and cosine functions
whose wavelengths are integral fractions of the wavelength of the compli-
cated function. Such a sum is called a Fourier series and each simple sine or
cosine function in the sum is called a Fourier term.

Figure 2.14 shows a periodic function, called a step function, and the be-
ginning of a Fourier series that describes it. A method called Fourier synthesis
is used to compute the sine and cosine terms that describe a complex wave,
which I will call the “target” of the synthesis. I will discuss the results of
Fourier synthesis, but not the method itself. In the example of Fig. 2.14, the
first four terms produced by Fourier synthesis are shown individually (f,
through f), and each is added sequentially to the Fourier series. Notice that
the first term in the series, fi, = 1, simply displaces the sums upward so that
they have only positive values like the target function. (Sine and cosine func-
tions themselves have both positive and negative values, with average values
of zero.) The second term f; = cos 2mx, has the same wavelength as the step
function, and wavelengths of subsequent terms are simple fractions of that
wavelength. (It is equivalent to say. and it is plain in the equations, that the
frequencies & are simple multiples of the frequency of the step function.) No-
tice that the sum of only the first few Fourier terms merely approximates the
target. If additional terms of shorter wavelength are computed and added, the
fit of the approximated wave to the target improves, as shown by the sum of
the first six terms. Indeed, using the tenets of Fourier theory, it can be proved
that such approximations can be made as similar as desired to the target wave-
form, simply by including enough terms in the series.

Look again at the components of the Fourier series, functions f;, through f5.
The low-frequency terms like f; approximate the gross features of the target
wave. Higher-frequency terms like f5 improve the approximation by filling in
finer details, for example, making the approximation better in the sharp cor-
ners of the target function.

Figure 2.14 Beginning of a Fourier series to approximate a target function, in this
case, a step function or square wave. f, = 1: f; = cos 27 (x); f, = (—1/3) cos 2w (3x);
L= 1/5) cos 21 (5x). In the left column are the target and terms f; through f5. In the
right column are f;, and the succeeding sums as each term is added to f;,. Notice that
the approximaton improves (i.e. each successive sum looks more like the target) as the
number of Fourier terms in the sum increase. In the last graph, terms 7, fg and f; are
added (but not shown separately) to show further improvement in the approximation.
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C. Structure factors: Wave descriptions
of X-ray reflections

Each diffracted X ray that arrives at the film to produce a recorded reflection
can also be described as the sum of the contributions of all scatterers in the
unit cell. The sum that describes a diffracted ray is called a structure—factor
equation. The computed sum for the reflection Rkl is called the structure
factor Fy; ;. As I will show in Chapter 4, the structure—factor equation can be
written in several different ways. For example, one useful form is a sum in
which each term describes diftraction by one atom in the unit cell, and thus
the series contains the same number of terms as the number of atoms.

If diffraction by atom A in Fig. 2.15 is represented by f,, then one diffracted
ray (producing one reflection) from the unit cell of Fig. 2.15 is described by a
structure—factor equation of this form:

Fyg =Sa tlg T T L0t fgr =+ [ (2.3)

The structure—factor equation implies, and correctly so, that each reflection
on the film is the result of diffractive contributions from all atoms in the unit
cell. That is, every atom in the unit cell contributes to every reflection in the dif-
fraction pattern. The structure factor is a wave created by the superposition of
many individual waves, each resulting from diffraction by an individual atorm.

D. Electron-density maps

To be more precise about diffraction, when we direct an X-ray beam toward a
crystal, the actual diffractors of the X rays are the clouds of electrons in the
molecules of the crystal. Diffraction should therefore reveal the distribution of
electrons, or the electron density, of the molecules. Electron density, of course,
reflects the molecule’s shape; in fact, you can think of the molecule’s boundary
as a van der Waals surface, the surface of a cloud of electrons that surrounds
the molecule. Because, as noted earlier, protein molecules are ordered, and be-
cause, in a crystal, the molecules are in an ordered array, the electron densily in
a crystal can be described mathematically by a periodic function.

If we could walk through the crystal depicted in Fig. 2.3, along a linear path
parallel to a cell edge, and carry with us a device for measuring electron den-
sity, our device would show us that the electron density varies along our path
in a complicated periodic manner, rising as we pass through molecules, falling
in the space between molecules, and repeating its variation identically as we
pass through each unit cell. Because this statement is true for linear paths
parallel to all three cell edges, the electron density, which describes the surface
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Figure 2.15 Every atom contributes to every reflection in the diffraction pattern, as
described for this unit cell by Eq. (2.3).

features and overall shape of all molecules in the unit cell, is a three-
dimensional periodic function. T will refer to this function as p{x,)-‘.z)r implyin_g
that it specifies a value p for electron density at every position x,yz in the unit
cell. A graph of the function is an image of the electron clouds that surround
the molecules in the unit cell. The most readily interpretable graph is a contour
map—a drawing of a surface along which there is constant electron _d(ff:lsily (refer
to Plate 2a). The graph is called an electron-density map. The map s, in essence,
a fuzzy image of the molecules in the unit cell. The goal of crystallography is to
obtain the mathematical function whose graph is the desired electron-
density map.

E. Electron density from structure factors

Because the electron density we seek is a complicated periodic function, it can
be described as a Fourier series. Do the many structure—factor equations, each
a sum of wave equations describing one reflection in the diffraction palt?m,
have any connection with the Fourier series that describes the electron densu,\"?
As uu:n;ioned earlier, each structure—factor equation can be written as a sum in
which each term describes diffraction from one atom in the unit cell. But Ih‘is is
only one of many ways to write a structure—factor equation. Another way 1s to
ima{gine dividing the electron density in the unit cell into many small volume
elements by inserting planes parallel to the cell edges (Fig. 2.16).

These volume elements can be as small and numerous as desired. Now be-
cause the true diffractors are the clouds of electrons, each structure-factor
equation can be written as a sum in which each term describes dl_ffraclwn by
the electrons in one volume element. In this sum, each term contains the aver-
age numerical value of the desired electron density function p(x,yz) within
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0.0,0) ﬁ

Figure 2.16 Small volume element m within the unit cell, one of many elements
formed by subdividing the unit cell with planes parallel to the cell edges. The average
clectron density within m is p, (x.3.z). Every volume element contributes to every
reflection in the diffraction pattern, as described by Eq. (2.4).

one volume element. If the cell is divided into n elements, and the average
electron density in volume element m is p,,, then one diffracted ray from the
unit cell of Fig. 2.16 is described by a structure—factor equation of this form:

Frw =f(p) + f(py) + -+ fp,,) + -+ f(p,). (2.4)

So each reflection is described by an equation like this, giving us a large num-
ber of equations describing reflections in terms of the electron density. Is there
any way to solve these equations for the function p(x,)z) in terms of the mea-
sured reflections? After all, structure factors like Eq. (2.4) describe the reflec-
tions in terms of p(x,3,z), which is precisely the function the crystallographer is
trying to leamn. I will show in Chapter 5 that a mathematical operation called the
Fourier transform solves the structure~factor equations for the desired function
p(x,.2), just as if they were a set of simultaneous equations describing p(x,y,z)
in terms of the amplitudes, frequencies, and phases of the reflections.

The Fourier transform describes precisely the mathematical relationship
between an object and its diffraction pattern. In Figs. 2.7-2.10, the diffraction
patterns are the Fourier transforms of the corresponding objects or arrays of
objects. To put it another way, the Fourier transform is the lens-simulating op-
eration that a computer performs to produce an image of molecules (or more
precisely, of electron clouds) in the crystal. This view of p(x,y,z) as the Fourier
transform of the structure factors implies that if we can measure three para-
meters—amplitude, frequency, and phase—of each reflection, then we can
obtain the function p(x,y,z), graph the function, and “see” a fuzzy image of the
molecules in the unit cell.
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F. Electron density from measured reflections

Are all three of these paramelers accessible in the data on our films? We will
see in Chapter 5 that the measurable intensity /,,;, of one refiection gives the
amplitude of one Fourier term in the series that describes p(x,y,z), and that
the position Akl specifies the frequency for that term. But the phase « of each
reflection is not recorded on the film. In Chapter 6, we will see how to obtain
the phase of each reflection, completing the information we need to calculate
p(x,).2).

A final note: Even though we cannot measure phases by simply collecting
diffraction patterns, we can compute them from a known structure, and we can
depict them by adding color to images like those of Figures 2.7-2.10. In his in-
novative World Wide Web Book of Fourier?, Kevin Cowtan illustrates phases
in diffraction patterns in this clever manner. For example, Plate 3a shows a lat-
tice of simple objects, each one like the carbon atoms in ethylbenzene. Plate 3b
is the computed Fourier transform of (). Image (c) depicts a lattice of the ob-
jects in (a), and d) depicts the corresponding diffraction pattern.

Because patterns (b) and (d) were computed from objects of known struc-
ture, rather than measured experimentally from real objects, the phases are
known. The phase of each reflection is depicted by its color, according to the
color wheel (f). The phase can be expressed as an angle between 0° and 360°
[this is the angle « in Eqgs. (2.1) or (2.2)]. In Plate 3, the phase angle of each
region (in &) or reflection (in d) is the angle that corresponds to the angle of
its color on the color wheel (). For example, red corresponds to a phase angle
of 0°, and green to an angle of about 135°. So a dark red reflection has a high
intensity and a phase angle of 0°. A pale green reflection has a low intensity
and a phase angle of about 135°. This depiction, then, gives a full description
of each reflection, including the phase angle that we do not learn from diffrac-
tion experiments, which would give us only the intensities, as shown in (e). In
a sense then, Figs. 2.7 through 2.10 and Plate 3¢ show diffraction patterns,
whereas Plates 3b and 3d show structure—factor patterns, which depict the
structure factors fully. Note again that (d) is a sampling of (b) at points corre-
sponding to the reciprocal lattice of the lattice in (¢). In other words, the
diffraction pattern (d ) still contains the diffraction signature, including both
intensities and phases, of the object in (a).

In these terms, I will restate a central problem of crystallography: In order
to determine a structure, we need a full-color version of the diffraction
pattern—that is, a full description of the structure factors. But diffraction
experiments give us only the black-and-white version, the intensities of the

2Access to Kevin Cowtan’s Book of Fourier is provided at the CMCC Home Page,
www.usm.maine.cdu/~rhodes/CMCC.
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refiections, but no information about their phases. We must learn the phase
angles from further experimentation, as described fully in Chapter 6.

G. Obtaining a model

Having obtained p(x,yz), we graph the function to produce an electron-
density map, an image of the molecules in the unit cell. Finally, we interpret
the map by building a model that fits it (refer to Plate 2b). In interpreting the
molecular image and building the model, a crystallographer takes advantage
of all current knowledge about the protein under investigation, as well as
knowledge about protein structure in general. Probably the most important in-
formation required is the sequence of amino acids in the protein. In a few rare
instances, the amino-acid sequence has been learned from the crystallographic
structure. But in almost all cases, crystallographers know the sequence to start
with, from the work of chemists or molecular biologists, and use it to help
them interpret the image obtained from crystallography. In effect, the crystal-
lographer starts with knowledge of the chemical structure, but without knowl-
edge of the conformation. Interpreting the image amounts to finding a
chemically realistic conformation that fits the image precisely.

A crystallographer interprets a map by displaying it on a graphics computer
and building a graphics model within it. The final model must be (1) consis-
tent with the image and (2) chemically realistic; that is, it must possess bond
lengths, bond angles, conformational angles, and distances between neighbor-
ing groups that are all in keeping with established principles of molecular
structure and stereochemistry. With such a model in hand, the crystallogra-
pher can begin to explore the model for clues about its function.

In Chapters 3-7, I will take up in more detail the principles introduced in
this chapter.




