

Chem101 - Lecture 1

Matter, Measurements And Calculations

What is Chemistry?

- **Chemistry** is the study of *matter*
- Much of what we interact with in the world around us is made up of matter.

What then is *matter*?

• Matter is anything that has *mass* and *occupies space* (has volume)

Then what is mass?

- Mass is a measurement of the amount of matter in a object
 - These definitions may seem cyclical to you.
 - We will see that mass is directly related to the number of atoms that an object contains.

Then what is mass?

- In physics we learn that an object's mass is equivalent to its *inertia*.
 - It is a measure of how much an object resists changes in its velocity or direction of movement.

Exercise 1.1

A heavy steel ball is suspended by a thin wire. The ball is hit from the side with a hammer, but hardly moves. Describe what you think would happen if this identical experiment were carried out on the moon.

What is *weight*?

- Weight is the force that an object exerts on another object due to gravitational attraction.
- Weight is directly proportional to mass
 - This is why the Earth has such a strong attraction for objects.

What is weight?

- At the surface of the Earth the proportionality constant, relating weight to mass, is essentially the same everywhere.
 - This allows us to use the two terms (mass and weight) interchangeably.

Measuring mass and weight

- In lab you will learn
 - That the mass of an object is determined using a *balance*,
 - While the weight of an object is determined using a *scale*.

Properties and Changes

- **Properties** are the characteristics of an object that allow us to distinguish it from other objects.
- There are two basic categories of properties:
 - Physical properties
 - Chemical properties

Physical Properties

- **Physical properties** of matter are properties that can be observed or measured without trying to change the composition of the matter being observed.
- For example
 - Color, size, density, melting point, et al.

Chemical Properties

- Chemical properties of matter are properties that are observed when an attempt is made to change the composition of the matter.
- For example
 - Paper burns easily.
 - Glass does not
- When paper burns, its composition changes.

Chemical Change

- Burning a piece of paper is an example of a **chemical change**.
- Chemical change occurs whenever the composition of a substance changes.
- When a chemical change occurs the physical properties of the matter also change.

Physical Change

- The physical properties of matter can change, however, *without* a chemical change.
- For example
 - When ice melts to form liquid water
 - When liquid water evaporates to form water vapor
- Such changes are called **physical changes.**

Classify each of the following properties as physical or chemical. Explain your reason for each.

- Iron melts at 1535°C. а.
- b. Alcohol is very flammable.
- The metal used in artificial hip-joints C. implants is not corroded by body fluids.
- d. A 1-in. cube of aluminum weighs less than 1-in. cube of lead.
- Gasoline burns readily. e.

- Scientific models are used to help us "visualize" and understand the behavior of nature.
- Models are devised through and iterative process of
 - Scientific observation
 - Formulation of hypotheses
 - Testing of hypotheses

Observations about Gases

- At constant temperature the volume of a gas changes with pressure:
 - Increasing pressure decreases volume
 - Decreasing pressure increases volume
- At constant volume the pressure of a gas changes with temperature:
 - Increasing temperature increases pressure
 - Decreasing temperature decreases pressure

Observations about Gases

- Gases have mass.
- Gases mix rapidly with one another when brought together.

- All matter is made up of very tiny particles.
 - Early on these particles were called *molecules*.
- We now know that molecules make up many, but not all, substances.
 - For now we will consider only those substances that are made up of molecules.

• For gases, these molecules move rapidly about colliding with each other and with the walls of the container:

- A molecule is the smallest particle of a *pure substance* that has the properties of that substance and is capable of stable independent existence.
- A **molecule** is the limit of *physical* subdivision of a *pure substance*.
 - Any further subdivision can only be done chemically, by changing the composition of the substance.

- A molecule can be *chemically* separated into smaller particles called atoms.
 - Circles are often used to graphically represent atoms:

Types of Molecules

- Diatomic
 - Contain two atoms
- Triatomic
 - Contain three atoms
- Polyatomic
 - Contain more than three atoms
- Homoatomic
 - Contain only one type of atom
- Heteratomic
 - Contain more than one type of atom

Exercise 1.13

A sample of solid elemental (homoatomic) phosphorus that is deep read in color is burned. While the phosphorus is burning, a white smoke is produced that is actually a finely divided solid. The white solid is collected.

- a. Have the molecules of phosphorus been changed by the process of burning? Explain.
- b. Is the collected white solid a different substance from the phosphorus? Explain.
- c. In terms of the number of atoms contained, how do you think the size of the molecules of the white solid compares with the size of the molecules of phosphorus? Explain.
- d. Classify the molecules of the collected white solid using the terms *homoatomic* and *heteroatomic*. Explain your reasoning.

Classification of Matter

- Given a sample of matter,
 - Is it a pure substance

or

- Is it a *mixture*
- It has to be *one* **or** the *other*

Pure Substances

- A **pure substance** is matter that has a constant composition and fixed properties.
- This is because all of its molecules are identical.
- Oxygen, carbon dioxide, water sucrose and aluminum are examples of pure substances.

<u>Mixtures</u>

- A mixture is a physical blend of matter that can be physically separated into two or more components, which are themselves pure substances.
- In a mixture not all of the molecules are identical.
- Air, sugar water and steel are examples of mixtures.
- Most samples of matter are mixtures.

Pure Substances vs. Mixtures

- Pure substances have a fixed set of physical properties
- The physical properties of mixtures depend on the relative amounts of its components.
- The physical properties of a mixture resemble an average of the physical properties of its constituent components.
 - In a mixture the components do not lose their physical identity.

28

Classification of Matter

- **Homogeneous** matter has the same properties throughout the sample.
 - All pure substances are homogeneous.
- Homogenous mixtures are called solutions.
 - Sugar water is a homogeneous mixture (solution).
- Mixtures that are not homogeneous are heterogeneous mixtures.
 - A mixture of sand and sugar is a heterogeneous mixture.

Classification of Pure Substances

- **Elements** are pure substances that are made of *homoatomic* molecules.
 - Oxygen, nitrogen, carbon and mercury are examples of elements.
 - The **periodic table** is an arrangement of all the elements.
- **Compounds** are pure substances that are made of *heteratomic* molecules.
 - Carbon monoxide, carbon dioxide, water and sugar are examples of compounds.

Classify each pure substance represented below by a capital letter as an element or a compound. Indicate when such a classification cannot e made and explain why.

- Two elements when mixed combine to form only substance L.
- An element and a compound when mixed form substances M and Q.
- Substance **X** is not change by heating.

- Units give numbers meaning
 - 1 meter
 - 10 pounds
 - 23 seconds
- Nearly all of the numbers we will be working with have units.
 - If you fail to give the units for these numbers they will be meaningless!
 - Advice: *Do not give meaningless answers to problems*.

- We will be using the metric system of units.
- Like our number system, the metric system is a *decimal* system.
- It contains only a few **basic** units
 - These include:
 - Mass gram
 - Length meter
 - Time second

The metric system

- Most of the units in the metric system are **derived** units:
 - Area meter x meter = m^2
 - Volume *meter* x *meter* x *meter* = m^3
 - Velocity $\frac{meter}{second} = m/s$
 - Energy -

 $\frac{kilogram \ x \ meter \ x \ meter}{second \ x \ second} = \frac{kg \ m^2}{s^2} = Joule$