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Sum rules for the forward elastic scattering of photons from bound atomic systems are obtained from
the appropriate dispersion relations and the nontrivial zeros of the scattering amplitude. The significance
of these sum rules for photon scattering from the hydrogenic atoms is outlined.

The problem of elastic forward photon scatter-
ing from atomic hydrogen over an extended fre-
quency interval was first solved by Gavrila.
Mittleman and Wolf? had earlier solved this prob-
lem for incident photon energies below the first
ionization threshold. Gavrila succeeded in ex-
pressing the Kramers-Heisenberg matrix element
in analytic form in terms of hypergeometric func-
tions. This work stimulated further theoretical
interest on the subject of coherent forward scat-
tering from atomic hydrogen.>=7 In this note, the
elastic photon scattering from bound atomic sys-
tems, in particular the hydrogenic atoms, is con-
sidered, with a view to pointing out some sum
rules which may be obtained on the basis of Gav-
rila’s calculations and by employing the dispersion
relations for forward photon scattering. Sum
rules of dispersion theoretic origin for photon
scattering, have been discussed for some time.%-!!
There has been renewed interest in the search for
additional sum rules which has, however, been re-
stricted to the very-high-energy region.'2-14

The basic equation relating the coherent forward
scattering amplitude 7,f (k) (7, is the classical ra-
dius of the electron) and the total cross section is
the well-known Kramers-Kronig dispersion rela-
tion
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derived under the assumption that f (k)/k vanishes
at infinity, f(0)=0, and f(-k)=f*(k). Subscripts
R and I on the scattering amplitude indicate real
and imaginary parts, respectively, and P stands
for the principal value. Some fairly interesting
sum rules may be obtained from Eq. (1) by exam-
ining the possibility that f(k) has nontrivial zeros,

, f(k;)=0 for some k=Fk;, where k;#0. If we
assume the existence of one such value, denoted
k,, then the result
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follows directly from Eq. (1). For the particular

11

case where several nontrivial zeros may exist,
additional sum rules may be obtained. Given the
subtracted dispersion relation Eq. (3)
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and designating any two nontrivial zeros as occurr-
ing at &, k,; f(k,)=f(k,)=0, then the following sum
rule is readily obtained

oL fo T Rk (R = 1)L = )0 p(R) dR =0 .

(4)

The sum rule emerges independent of the subtrac-
tion at k=%,. Equation (4) may of course be de-
rived directly from Eq. (2). The constant factor
k,k, has been explicitly included to emphasize that
we exclude nontrivial zeros. Similarly, for the
case of three nontrivial zeros
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A further sequence of sum rules may be obtained
depending on the number of known zeros of f(k).
These sum rules may be collectively written down
in condensed form as

f o (k) ke = f oz(k)kzdk

j crzz(k)le2 dk . (6)

A sum rule similar to Eq. (2) may be derived
for the differential elastic cross section
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Considering the dispersion relation based on
f2(k)/K? leads to the result

© dk_ dog(k) (" oh(k)dk
o, Em ), Por o ©

where f(k)/k— 0 as k— 0 (the differential cross sec-

tion vanishes as %*) and %, is a zero of f(k). An
additional dispersion relation is obtained by as-
suming F(k)— 0 as k-~ where F(%) is defined as

F(R)=[f2(k) - f2(R)] /R . (9)
The dispersion relation based on F(%) is given by
o (7 _fiR)ak
=P [ b (10)

where we have used F(k)—~0 as k-0 [since f;(k) is
zero for &~ 0and fz (k) vanishes like #*]. Equation
(10), under the assumption that a zero exists at
k=Fk,, leads to the following sum rule:

yo? fo F(k* = 1) 0%(k) dR =0 (11)

and hence a sum rule for the forward elastic differ-

ential scattering cross section follows directly
from Eq. (8)

1,52/mki[kZ(kz—kf)]_l%h&ldk=0 . (12)
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The principal value of the integral in the above
sum rules is not required since the integrands
are well behaved as £—k,. This can be explicitly
demonstrated from the data' for the hydrogen
atom.

The basis of all these dispersion sum rules is
the connection between o,(k) and f;(%) via the op-
tical theorem. Invariably only approximate rela-
tionships for f( %) (in various powers of ¢) can be
obtained, and the optical theorem is no longer ex-
act. However a set of optical theorems of various
orders of ¢ may be easily written, i.e., 0%’ (k)

=dnk~'r,f{V (k). From the point of discussing
Gavrila’s results, o,(k) is given to order ¢* and
the Rayleigh differential cross section is of order
e*. The zeros of f(k) are to order ¢%. Gavrila’s
analysis® needs to be supplemented by a small
imaginary part in the vicinity of the p-symmetry
resonances; otherwise 04(k) is zero to order &*
below the ionization threshold. In introducing
such resonance structure, it is implicitly as-
sumed that the line shapes are sufficiently nar-
row so as not to interfere appreciably with the
results found by Gavrila. This is of course en-
tirely reasonable for the first few resonances,
however very near to the threshold, this would
not be true.

Gavrila’s calculations for the elastic scattering
of photons by a hydrogen atom in the ground state
have been calculated in the dipole approximation.
The first three zeros are found to be located at
£=0.859075, 0.926 875 and 0.954935 Ry. In fact
below the ionization threshold, there are zeros
between every two consecutive resonances of p
symmetry. There are no zeros above threshold.
Although scattering from the hydrogen atom ex-
hibits zeros in the scattering amplitude (to order
e?), the functional form obtained by Gavrila is un-
satisfactory from the point of view of testing the
above sum rules. This derives from the fact that
there are an infinite number of bound-state reso-
nances. Further, the formulation of Gavrila has
paid no attention to the details at resonance.® So
in order to test for example the sum rule for the
forward elastic differential cross section, Eq.
(12), it is necessary to supplement Gavrila’s
formula by furnishing the details at each reso-
nance; i.e., each resonant line width must be
known. The above sum rules would likely be
more useful for checking approximations to the
scattering cross sections.

The writer is grateful to Dr. D. A. Hutchinson
for his comments on this note.
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