Topic 7 Drug Discovery and design Pt. 1

Chapter 9 Patrick

Contents

Part 1: Sections 9.1-9.3

- 1. Target disease
- 2. Drug Targets
- 3. Testing Drugs
 - 3.1. In vivo Tests
 - 3.2. In vitro Tests
 - 3.2.1. Enzyme Inhibition Tests
 - 3.2.2. Testing with Receptors

DRUG DESIGN AND DEVELOPMENT

Stages

- 1) Identify target disease
- 2) Identify drug target
- 3) Establish testing procedures
- 4) Find a lead compound
- 5) Structure Activity Relationships (SAR)
- 6) Identify a pharmacophore
- 7) Drug design- optimising target interactions
- 8) Drug design optimising pharmacokinetic properties
- 9) Toxicological and safety tests
- 10) Chemical development and production
- 11) Patenting and regulatory affairs
- **12) Clinical trials**

1. TARGET DISEASE

Priority for the Pharmaceutical Industry

• Can the profits from marketing a new drug outweigh the cost of developing and testing that drug?

Questions to be addressed

- Is the disease widespread? (e.g. cardiovascular disease, ulcers, malaria)
- Does the disease affect the first world? (e.g. cardiovascular disease, ulcers)
- Are there drugs already on the market?
- If so, what are there advantages and disadvantages? (e.g. side effects)
- Can one identify a market advantage for a new therapy?

2. DRUG TARGETS-Remember?

A) LIPIDS

Cell Membrane Lipids

B) PROTEINS

Receptors Enzymes Carrier Proteins Structural Proteins (tubulin)

C) NUCLEIC ACIDS DNA RNA

D) CARBOHYDRATES

Cell surface carbohydrates Antigens and recognition molecules

2. DRUG TARGETS TARGET SELECTIVITY

Between species

- Antibacterial and antiviral agents
- Identify targets which are unique to the invading pathogen
- Identify targets which are shared but which are significantly different in structure

Within the body

- Selectivity between different enzymes, receptors etc.
- Selectivity between receptor types and subtypes
- Selectivity between isozymes
- Organ selectivity

3. TESTING DRUGS

- Tests are required in order to find lead compounds and for drug optimisation
- Tests can be *in vivo* or *in vitro*
- A combination of tests is often used in research programs

3.1 in vivo Tests

- Carried out on live animals or humans
- Measure an observed physiological effect
- Measure a drug's ability to interact with its target and its ability to reach that target
- Can identify possible side effects
- Rationalization may be difficult due to the number of factors involved
- Transgenic animals genetically modified animals
- Drug potency concentration of drug required to produce 50% of the maximum possible effect
- Therapeutic ratio/index compares the dose level of a drug required to produce a desired effect in 50% of the test sample (ED_{50}) versus the dose level that is lethal to 50% of the sample (LD_{50})

3.2 in vitro Tests-See drug binding supplement

• Tests not carried out on animals/humans

Target molecules (e.g. isolated enzymes or receptors) Cells (e.g. cloned cells) Tissues (e.g. muscle tissue) Organs Micro-organisms (for antibacterial agents)

- More suitable for routine testing
- Used in high throughput screening
- Measure the interaction of a drug with the target but not the ability of the drug to reach the target
- Results are easier to rationalize less factors involved
- Does not demonstrate a physiological or clinical effect
- Does not identify possible side effects
- Does not identify effective prodrugs

3.2.1 Enzyme Inhibition Tests

- Identify competitive or non competitive inhibition
- Strength of inhibition measured as IC₅₀
- IC_{50} = concentration of inhibitor required to reduce enzyme activity by 50%

3.2.2 Testing with Receptors

- Not easy to isolate membrane bound receptors
- Carried out on whole cells, tissue cultures, or isolated organs
- Affinity strength with which compounds bind to a receptor
- Efficacy measure of maximum biochemical effect resulting from binding of a compound to a receptor.
- Potency concentration of an agonist required to produce 50% of the maximum possible effect.

Contents

Part 2: Section 9.4 Lead compounds from the natural world

- 4. The Lead Compound
 - 4.1. Sources of Lead Compounds
 - 4.2. Identification of Lead Compounds
 - 4.3. Lead Compounds from the Natural World
 - Plant Extracts
 - Plants and Ancient Records
 - Herbal Remedies of Olde
 - Venoms and Toxins
 - Endogenous Compounds

4 The Lead Compound

Introduction

Def: A compound demonstrating a property likely to be therapeutically useful

- The level of activity and target selectivity are not crucial
- Used as the starting point for drug design and development
- Found by design (molecular modelling or NMR) or by screening compounds (natural or synthetic)
- Need to identify a suitable test in order to find a lead compound
- Active Principle a compound that is isolated from a natural extract and which is principally responsible for the extract's pharmacological activity. Often used as a lead compound.

4.1 Sources of Lead Compounds

A) The Natural World

Plantlife (flowers, trees, bushes) Micro-organisms (bacteria, fungi) Animal life (frogs, snakes, scorpions) Biochemicals (Neurotransmitters, hormones) Marine chemistry (corals, bacteria, fish etc)

B) The Synthetic World

Chemical synthesis (traditional) Combinatorial synthesis

C) The Virtual World

Computer aided drug design

4.2 Identification of Lead Compounds

A) Isolation and purification

solvent-solvent extraction chromatography crystallization distillation

B) Structure determination

elemental analysis molecular weight mass spectrum infrared ultraviolet nmr (¹H, ¹³C, ²D) X-ray crystallography

MORPHINE

• OPIUM - Morphine

- CINCHONA BARK Quinine
- YEW TREE Taxol

WILLOW TREE - SALICYLIC ACID

COCA BUSH - COCAINE

4.3 Lead Compounds from the Natural World й С**-**ОН **VENOMS AND TOXINS** 0 Teprotide 0 0 0 Н 11 CHIC -N-CHIC O II −N−CH·C−N H I Ĥ 0 CH-CH₃ CH₂ ĊH₂ CH₂ 0 0 CH₂ **C=0** ĊH₃ -N-CHC-N H₂N – CHⁱC – Ì CH₂ NH₂ 0 ĊH₂ CH₂ Й С**—О**Н CH₂ NH ĊH₂ C=O OH 0 I C≡NH 11 HN Í NH₂ CH₃ н Captopril (anti-hypertensive)

BUT WAIT....why do plants make these things???!!!

VENOMS AND TOXINS

VENOMS AND TOXINS

Atracurium (Neuromuscular blocker)

ENDOGENOUS COMPOUNDS: found in YOU

NATURAL LIGANDS FOR RECEPTORS

ENDOGENOUS COMPOUNDS

NATURAL LIGANDS FOR RECEPTORS

4.3 Lead Compounds from the Natural World ENDOGENOUS COMPOUNDS

NATURAL SUBSTRATES FOR ENZYMES

Contents

Part 3: Section 9.4 - Lead compounds from the synthetic world

- 4.4. Lead Compounds from the Synthetic World
 - Organic Synthesis
 - Combinatorial Synthesis
 - Combinatorial Synthesis Peptide Synthesis
 - Combinatorial Synthesis Heterocyclic Synthesis

PRONTOSIL: a dye

SULFANILAMIDE: not RED

ANTABUSE

ORGANIC SYNTHESIS

4.4 Lead Compounds from the Synthetic World COMBINATORIAL SYNTHESIS

AUTOMATED SYNTHETIC MACHINES

4.4 Lead Compounds from the Synthetic World COMBINATORIAL SYNTHESIS - PEPTIDE SYNTHESIS

4.4 Lead Compounds from the Synthetic World COMBINATORIAL SYNTHESIS - HETEROCYCLIC SYNTHESIS

4.4 Lead Compounds from the Synthetic World COMBINATORIAL SYNTHESIS - HETEROCYCLIC SYNTHESIS

4.4 Lead Compounds from the Synthetic World COMBINATORIAL SYNTHESIS - HETEROCYCLIC SYNTHESIS

4.4 Lead Compounds from the Synthetic World COMBINATORIAL SYNTHESIS - HETEROCYCLIC SYNTHESIS

Contents

Part 4: Lead compounds - Impact of the human genome project

4.5. Lead Compounds

- Impact of the human genome project

- 4.6. Lead Compounds de novo design
- 4.7. Design of Lead Compounds using NMR Spectroscopy

4.5 Lead Compounds

- Impact of the human genome project

-

X-RAY CRYSTALLOGRAPHY

PROTEIN STRUCTURE

THYMIDYLATE KINASE INHIBITOR

ANTICANCER AGENT

NMR SPECTROSCOPY

NO OBSERVABLE BIOLOGICAL EFFECT

¹³C NMR

¹³C NMR

LEAD COMPOUND

Design of a lead compound as an immunosuppressant

Design of a lead compound as an immunosuppressant

