Topic 4 Proteins as Drug Targets

Receptors-Chapters 5 and 6 Patrick and Corey 78-80

Contents

- 1. Structure and function of receptors
 - 1.1. Chemical Messengers
 - 1.2. Mechanism
- 2. The binding site
- 3. Messenger binding
 - 3.1. Introduction
 - 3.2. Bonding forces
- 4. Overall process of receptor/messenger interaction
- 5. Signal transduction
 - 5.1. Control of ion channels
 - 5.2. Activation of signal proteins
 - 5.3. Activation of enzyme active site
- 6. Competitive (reversible) antagonists
- 7. Non competitive (irreversible) antagonists
- 8. Non competitive (reversible) allosteric antagonists
- 9. Antagonists by umbrella effect
- 10. Agonists

- Globular proteins acting as a cell's 'letter boxes'
- Located mostly in the cell membrane
- Receive messages from chemical messengers coming from other cells
- Transmit a message into the cell leading to a cellular effect
- Different receptors specific for different chemical messengers
- Each cell has a range of receptors in the cell membrane making it responsive to different chemical messengers

Chemical Messengers

Neurotransmitters: Chemicals released from nerve endings which travel across a nerve synapse to bind with receptors on target cells, such as muscle cells or another nerve. Usually short lived and responsible for messages between individual cells

Hormones: Chemicals released from cells or glands and which travel some distance to bind with receptors on target cells throughout the body

• Chemical messengers 'switch on' receptors without undergoing a reaction

Mechanism

- Receptors contain a binding site (hollow or cleft in the receptor surface) that is recognised by the chemical messenger
- Binding of the messenger involves intermolecular bonds
- Binding results in an induced fit of the receptor protein
- Change in receptor shape results in a 'domino' effect
- Domino effect is known as Signal Transduction, leading to a chemical signal being received inside the cell
- Chemical messenger does not enter the cell. It departs the receptor unchanged and is not permanently bound

Mechanism

2. The binding site

- A hydrophobic hollow or cleft on the receptor surface equivalent to the active site of an enzyme
- Accepts and binds a chemical messenger
- Contains amino acids which bind the messenger
- No reaction or catalysis takes place

3. Messenger binding

3.1 Introduction

- Binding site is nearly the correct shape for the messenger
- Binding alters the shape of the receptor (induced fit)
- Altered receptor shape leads to further effects signal transduction

3. Messenger binding

3.2 Bonding forces

- Ionic
- H-bonding
- van der Waals

3. Substrate binding

3.2 Bonding forces

Induced fit - Binding site alters shape to maximise intermolecular • bonding

optimum length for maximum binding strength lengths optimised

4. Overall process of receptor/messenger interaction

- Binding interactions must be:
 - strong enough to hold the messenger sufficiently long for signal transduction to take place
 - weak enough to allow the messenger to depart
- Implies a fine balance
- Drug design designing molecules with stronger binding interactions results in drugs that block the binding site antagonists

5.1 Control of ion channels

- Receptor protein is part of an ion channel protein complex
- Receptor binds a messenger leading to an induced fit
- Ion channel is opened or closed
- Ion channels are specific for specific ions (Na⁺, Ca²⁺, Cl⁻, K⁺)
- Ions flow across cell membrane down concentration gradient
- Polarises or depolarises nerve membranes
- Activates or deactivates enzyme catalysed reactions within cell

- 5. Signal transduction
- **5.1 Control of ion channels**

5.1 Control of ion channels

Anionic ion channels for Cl^{-} (e.g. $GABA_{A}$) = inhibitory

5.1 Control of ion channels:

5.2 Activation of signal proteins

- Receptor binds a messenger leading to an induced fit
- Opens a binding site for a signal protein (G-protein)
- G-Protein binds, is destabilised then split

 \mathbf{Q}

5.2 Activation of signal proteins

- G-Protein subunit activates membrane bound enzyme Binds to allosteric binding site Induced fit results in opening of active site
- Intracellular reaction catalysed

5.3 Activation of enzyme active site

- Protein serves dual role receptor plus enzyme
- Receptor binds messenger leading to an induced fit
- Protein changes shape and opens active site
- Reaction catalysed within cell

6. Competitive (reversible) antagonists

- Antagonist binds reversibly to the binding site
- Intermolecular bonds involved in binding
- Different induced fit means receptor is not activated
- No reaction takes place on antagonist
- Level of antagonism depends on strength of antagonist binding and concentration
- Messenger is blocked from the binding site
- Increasing the messenger concentration reverses antagonism

7. Non competitive (irreversible) antagonists

Irreversible antagonism

- Antagonist binds irreversibly to the binding site
- Different induced fit means that the receptor is not activated
- Covalent bond is formed between the drug and the receptor
- Messenger is blocked from the binding site
- Increasing messenger concentration does not reverse antagonism

8. Non competitive (reversible) allosteric antagonists

- Antagonist binds reversibly to an allosteric site
- Intermolecular bonds formed between antagonist and binding site
- Induced fit alters the shape of the receptor
- Binding site is distorted and is not recognised by the messenger
- Increasing messenger concentration does not reverse antagonism

9. Antagonists by umbrella effect

- Antagonist binds reversibly to a neighbouring binding site
- Intermolecular bonds formed between antagonist and binding site
- Antagonist overlaps with the messenger binding site
- Messenger is blocked from the binding site

10. Agonists

- Agonist binds reversibly to the binding site
- Similar intermolecular bonds formed as to natural messenger
- Induced fit alters the shape of the receptor in the same way as the normal messenger
- Receptor is activated
- Agonists are often similar in structure to the natural messenger

Contents

Part 1: Sections 6.1 - 6.2

- 1. Receptor superfamilies
- 2. Ion channel receptors (Ligand gated ion channels)
 - 2.1. General structure

2.2. Structure of protein subunits (4-TM receptor subunits)

- 2.3. Detailed structure of ion channel
- 2.4. Gating

1. Receptor superfamilies

• INTRACELLULAR RECEPTORS

Cationic ion channels for K⁺, Na⁺, Ca²⁺ (e.g. nicotinic) = $\stackrel{\smile}{\text{excitatory}}$ Anionic ion channels for Cl⁻ (e.g. GABA_A) = inhibitory

Transverse view (nicotinic receptor)

 $2x\alpha, \beta, \gamma, \delta$ subunits

Transverse view (glycine receptor)

2.2 Structure of protein subunits (4-TM receptor subunits)

4 Transmembrane (TM) regions (hydrophobic)

2.3 Detailed structure of ion channel

Note: TM2 of each protein subunit 'lines' the central pore

2.4 Gating

2.4 Gating

- Fast response measured in msec
- Ideal for transmission between nerves
- Binding of messenger leads directly to ion flows across cell membrane
- Ion flow = secondary effect (signal transduction)
- Ion concentration within cell alters
- Leads to variation in cell chemistry

Contents

Part 2: Sections 6.3 - 6.6

- 3. G-protein-coupled receptors (7-TM receptors)
 - 3.1. Structure Single protein with 7 transmembrane regions
 - 3.2. Ligands
 - 3.3. Ligand binding site varies depending on receptor type
 - 3.4. Bacteriorhodopsin & rhodopsin family
 - 3.5. Receptor types and subtypes
 - 3.6. Signal transduction pathway
 - a) Interaction of receptor with Gs-protein
 - b) Interaction of α s with adenylate cyclase
 - c) Interaction of cyclic AMP with protein kinase A (PKA)
 - 3.7. Glycogen metabolism triggered by adrenaline in liver cells
 - 3.8. GI proteins
 - 3.9. Phosphorylation
 - 3.10. Drugs interacting with cyclic AMP signal transduction
 - 3.11. Signal transduction involving phospholipase C (PLC)
 - 3.12. Action of diacylglycerol
 - 3.13. Action of inositol triphosphate
 - 3.14.Resynthesis of PIP2

3. G-protein-coupled receptors (7-TM receptors)

3.1 Structure - Single protein with 7 transmembrane regions

3.2 Ligands

- Monoamines e.g. dopamine, histamine, noradrenaline, acetylcholine (muscarinic)
- Nucleotides
- Lipids
- Hormones
- Glutamate
- Ca++

3.3 Ligand binding site - varies depending on receptor type

A) Monoamines - pocket in TM helices

- **B) Peptide hormones -** top of TM helices + extracellular loops + *N*-terminal chain
- **C) Hormones -** extracellular loops + *N*-terminal chain
- **D) Glutamate -** *N***-**terminal chain

3.4 Bacteriorhodopsin & rhodopsin family

- **Rhodopsin = visual receptor**
- Many common receptors belong to this same family
- Implications for drug selectivity depending on similarity (evolution)
- Membrane bound receptors difficult to crystallise
- X-Ray structure of bacteriorhodopsin solved bacterial protein similar to rhodopsin
- Bacteriorhodopsin structure used as 'template' for other receptors
- Construct model receptors based on template and amino acid sequence
- Leads to model binding sites for drug design
- Crystal structure for rhodopsin now solved better template

3.4 Bacteriorhodopsin & rhodopsin family

3.5 Receptor types and subtypes

Reflects differences in receptors which recognise the same ligand

3.5 Receptor types and subtypes

- Receptor types and subtypes not equally distributed amongst tissues.
- Target selectivity leads to tissue selectivity

Heart muscle	 β₁ adrenergic receptors
Fat cells	- β ₃ adrenergic receptors
Bronchial muscle	- $\alpha_1 \& \beta_2$ adrenergic receptors
GI-tract	- $\alpha_1 \alpha_2 \& \beta_2$ adrenergic receptors

- 3. G-protein-coupled receptors (7-TM receptors)
- **3.6 Signal transduction pathway**
- a) Interaction of receptor with G_s-protein
 - $\begin{array}{ll} G_S \mbox{-Protein} & \mbox{ membrane bound protein of 3 subunits } (\alpha, \, \beta, \, \gamma) \\ & \, \alpha_S \mbox{ subunit has binding site for GDP} \\ & \mbox{GDP bound non covalently} \end{array}$

3.6 Signal transduction pathway

a) Interaction of receptor with G_s-protein

• = GDP

3.6 Signal transduction pathway

a) Interaction of receptor with G_s-protein

- Process repeated for as long as ligand bound to receptor
- Signal amplification several G-proteins activated by one ligand
- α_s Subunit carries message to next stage

3.6 Signal transduction pathway

b) Interaction of α_s with adenylate cyclase

- Several-100 ATP molecules converted before α_s -GTP deactivated
- Represents another signal amplification
- Cyclic AMP becomes next messenger (secondary messenger)
- Cyclic AMP enters cell cytoplasm with message

3.6 Signal transduction pathway

c) Interaction of cyclic AMP with protein kinase A (PKA)

- **Protein kinase A = serine-threonine kinase**
- Activated by cyclic AMP
- Catalyses phosphorylation of serine and threonine residues on protein substrates
- Phosphate unit provided by ATP

- 3.6 Signal transduction pathway
- c) Interaction of cyclic AMP with protein kinase A (PKA)

3.6 Signal transduction pathway

c) Interaction of cyclic AMP with protein kinase A (PKA)

Protein kinase A - 4 protein subunits

- 2 regulatory subunits (R) and 2 catalytic subunits (C)

Note Cyclic AMP binds to PKA Induced fit destabilises complex Catalytic units released and activated

3.6 Signal transduction pathway

c) Interaction of cyclic AMP with protein kinase A (PKA)

Phosphorylation of other proteins and enzymes Signal continued by phosphorylated proteins Further signal amplification

3.7 Glycogen metabolism - triggered by adrenaline in liver cells

3.7 Glycogen metabolism - triggered by adrenaline in liver cells

Coordinated effect - activation of glycogen metabolism - inhibition of glycogen synthesis

Adrenaline has different effects on different cells - activates fat metabolism in fat cells

3. G-protein-coupled receptors (7-TM receptors) 3.8 G_I proteins

- Binds to different receptors from those used by G_s protein
- Mechanism of activation by splitting is identical
- α_I subunit binds adenylate cyclase to inhibit it
- Adenylate cyclase under dual control (brake/accelerator)
- Background activity due to constant levels of α_s and α_i
- Overall effect depends on dominant G-Protein
- Dominant G-protein depends on receptors activated

3.9 Phosphorylation

- Prevalent in activation and deactivation of enzymes
- Phosphorylation radically alters intramolecular binding
- Results in altered conformations

G-protein-coupled receptors (7-TM receptors)
 3.10 Drugs interacting with cyclic AMP signal transduction

Cholera toxin - constant activation of cAMP - diarrhea

Theophylline and caffeine

- inhibit phosphodiesterases
- phosphodiesterases responsible for metabolising cyclic AMP
- cyclic AMP activity prolonged

Theophylline

Caffeine

3.11 Signal transduction involving phospholipase C (PLC)

- G_{α} proteins interact with different receptors from G_{S} and G_{I}
- Split by same mechanism to give α_q subunit
- α_{q} Subunit activates or deactivates PLC (membrane bound enzyme)
- Reaction catalysed for as long as α_q bound signal amplification
- Brake and accelerator

3.11 Signal transduction involving phospholipase C (PLC)

Phosphatidylinositol diphosphate (integral part of cell membrane) Inositol triphosphate (polar and moves into cell cytoplasm) Diacylglycerol (remains in membrane)

R= long chain hydrocarbons

 $\bigcirc = PO_3^{2-}$

3.12 Action of diacylglycerol

- Activates protein kinase C (PKC)
- PKC moves from cytoplasm to membrane
- Phosphorylates enzymes at Ser & Thr residues
- Activates enzymes to catalyse intracellular reactions
- Linked to inflammation, tumour propagation, smooth muscle activity etc

3.12 Action of diacylglycerol

Drugs inhibiting PKC - potential anti cancer agents

Bryostatin (from sea moss)

G-protein-coupled receptors (7-TM receptors)
 3.13 Action of inositol triphosphate

- IP₃ hydrophilic and enters cell cytoplasm
- Mobilises Ca²⁺ release in cells by opening Ca²⁺ ion channels
- Ca²⁺ activates protein kinases
- Protein kinases activate intracellular enzymes
- Cell chemistry altered leading to biological effect

3.13 Action of inositol triphosphate

3.14 Resynthesis of PIP₂

Lithium salts used vs manic depression

Contents

Part 3: Section 6.7

4. Tyrosine kinase linked receptors

- 4.1. Structure
- 4.2. Reaction catalysed by tyrosine kinase
- 4.3. Epidermal growth factor receptor (EGF- R)
- 4.4. Insulin receptor (tetrameric complex)
- 4.5. Growth hormone receptor
- 4.6. Signalling pathways

- Bi-functional receptor / enzyme
- Activated by hormones
- Over-expression can result in cancer

4. Tyrosine kinase linked receptors4.1 Structure

4.2 Reaction catalysed by tyrosine kinase

4.3 Epidermal growth factor receptor (EGF-R)

- Binding site for EGF
- EGF protein hormone bivalent ligand
- Active site of tyrosine kinase

- 4.3 Epidermal growth factor receptor (EGF- R)
- Active site on one half of dimer catalyses phosphorylation of Tyr residues on other half
- Dimerisation of receptor is crucial
- Phosphorylated regions act as binding sites for further proteins and enzymes
- Results in activation of signalling proteins and enzymes
- Message carried into cell

4.4 Insulin receptor (tetrameric complex)

- Insulin binding site
- Kinase active site

4.5 Growth hormone receptor

Tetrameric complex constructed in presence of growth hormone

http://www.ebi.ac.uk/interpro/potm/2004_4/Page2.htm

- Growth hormone binding site
- Kinase active site(Janus, JAK kinase)

Tales from the drug development trenches-Tucson-John Kozarich, Ligand Pharmaceuticals

2-aminoethanol hemi((*Z*)-3'-(2-(1-(3,4-dimethylphenyl)-3-methyl-5-oxo-1*H*-pyrazol-4(5*H*)-ylidene)hydrazinyl)-2'-hydroxybiphenyl-3-carboxylate)

Thrombocyte, i.e. platelet

Eltrombopag, PROMACTA Binds to DIFFERENT site than thrombopoetin with Zn²⁺.

http://www.ligand.com/collaborations.php#Leading

Tales from the drug development trenches-Tucson

http://en.wikipedia.org/wiki/Cytokine_receptor

TPO and EPO receptors (cytokine type, also growth hormone) connected to Janus kinase (JAK) family of tyrosine kinases

- 4. Tyrosine kinase linked receptors
- 4.6 Signalling pathways

4.6 Signalling pathways

4.6 Signalling pathways

4.6 Signalling pathways

Contents

Part 4: Section 6.8

- 5. Intracellular receptors
 - 5.1. Structure
 - 5.2. Mechanism
 - 5.3. Oestrogen receptor

- Chemical messengers must cross cell membrane
- Chemical messengers must be hydrophobic
- Example steroids and steroid receptors

5. Intracellular receptors

5.1 Structure

Zinc fingers contain Cys residues (SH) Allow S-Zn interactions

5.2 Mechanism

- 1. Messenger crosses membrane
- 2. Binds to receptor
- 3. Receptor dimerisation
- 4. Binds co-activator protein

- 5. Complex binds to DNA
- 6. Transcription switched on or off
- 7. Protein synthesis activated or inhibited

5.3 Oestrogen receptor

5.3 Oestrogen receptor

- Phenol and alcohol of oestradiol are important binding groups
- Binding site is spacious and hydrophobic
- Phenol group of oestradiol positioned in narrow slot
- Orientates rest of molecule
- Acts as agonist

5.3 Oestrogen receptor

- Raloxifene is an antagonist (anticancer agent)
- Phenol groups mimic phenol and alcohol of oestradiol
- Interaction with Asp351 is important for antagonist activity
- Side chain prevents receptor helix H12 folding over as lid
- AF-2 binding region not revealed
- Co-activator cannot bind

5.3 Oestrogen receptor

Tamoxifen (Nolvadex) - anticancer agent which targets oestrogen receptor

Contents

Case Study-LATER

- 6. Case Study Inhibitors of EGF Receptor Kinase
 - 6.1. The target
 - 6.2. Testing procedures
 - In vitro tests
 - In vivo tests
 - Selectivity tests
 - 6.3. Lead compound Staurosporine
 - 6.4. Simplification of lead compound
 - 6.5. X-Ray crystallographic studies
 - 6.6. Synthesis of analogues
 - 6.7. Structure Activity Relationships (SAR)
 - 6.8. Drug metabolism
 - 6.9. Further modifications
 - 6.10.Modelling studies on ATP binding
 - 6.11.Model binding studies on Dianilinophthalimides
 - 6.12.Selectivity of action
 - 6.13.Pharmacophore for EGF-receptor kinase inhibitors
 - 6.14.Phenylaminopyrrolopyrimidines
 - 6.15.Pyrazolopyrimidines

6. Case Study - Inhibitors of EGF Receptor Kinase

6.1 The target

- Epidermal growth factor receptor
- Dual receptor / kinase enzyme role

6.1 The target

6.1 The target

Inhibitor Design

Possible versus binding site for tyrosine region Possible versus binding site for ATP

Inhibitors of the ATP binding site

Aims:

To design a potent but selective inhibitor versus EGF receptor kinase and not other protein kinases.

In vitro tests

Enzyme assay

using kinase portion of the EGF receptor produced by recombinant DNAtechnology. Allows enzyme studies in solution.

In vitro tests

Enzyme assay

Test inhibitors by ability to inhibit standard enzyme catalysed reaction

- Tests inhibitory activity only and not ability to cross cell membrane
- Most potent inhibitor may be inactive *in vivo*

In vitro tests

Cell assays

- Use cancerous human epithelial cells which are sensitive to EGF for growth
- Measure inhibition by measuring effect on cell growth blocking kinase activity blocks cell growth.
- Tests inhibitors for their ability to inhibit kinase and to cross cell membrane
- Assumes that enzyme inhibition is responsible for inhibition of cell growth

Checks

- Assay for tyrosine phosphorylation in cells should fall with inhibition
- Assay for m-RNA produced by signal transduction should fall with inhibition
- Assay fast growing mice cells which divide rapidly in presence of EGF

In vivo tests

- Use cancerous human epithelial cells grafted onto mice
- Inject inhibitor into mice
- Inhibition should inhibit tumour growth
- Tests for inhibitory activity + favourable pharmacokinetics

Selectivity tests

Similar *in vitro* and *in vivo* tests carried out on serinethreonine kinases and other tyrosine kinases

6.3 Lead compound - Staurosporine

- Microbial metabolite
- Highly potent kinase inhibitor but no selectivity
- Competes with ATP for ATP binding site
- Complex molecule with several rings and asymmetric centres
- Difficult to synthesise

6.4 Simplification of lead compound

6.5 X-Ray crystallographic studies

Different shapes implicated in different selectivity

6.5 X-Ray crystallographic studies

Propeller conformation relieves steric clashes

6.6 Synthesis of analogues

6.7 Structure Activity Relationships (SAR)

- R=H Activity lost if N is substituted
- Aniline aromatic rings essential (activity lost if cyclohexane)
- R¹=H or F (small groups). Activity drops for Me and lost for Et
- R²=H Activity drops if N substituted
- Aniline N's essential. Activity lost if replaced with S
- Both carbonyl groups important. Activity drops for lactam

6.7 Structure Activity Relationships (SAR)

Parent Structure: R=R¹=R²=H chosen for preclinical trials $IC_{50} = 0.7 \ \mu M$

CGP 52411

6.8 Drug metabolism

6.8 Drug metabolism

Introduce F at para position as metabolic blocker

- **6.9 Further modifications**
 - a) Chain extension

6.9 Further modifications

b) Ring extension / expansion

CGP 52411 (IC $_{50}$ 0.7 μ M)

CGP54690 (IC₅₀ 0.12µM) Inactive in cellular assays due to polarity (unable to cross cell membrane) CGP57198 (IC₅₀ 0.18μ M) Active *in vitro* and *in vivo*

- **6.9 Further modifications**
 - c) Simplification

CGP52411

CGP58522 Similar activity in enzyme assay Inactive in cellular assay

- No crystal structure for EGF- receptor available
- Make a model active site based on structure of an analogous protein which has been crystallised
- Cyclic AMP dependant protein kinase used as template

Cyclic AMP dependant protein kinase + Mg + ATP + Inhibitor (bound at substrate site)

- ATP bound into a cleft in the enzyme with adenine portion buried deep close to hydrophobic region.
- Ribose and phosphate extend outwards towards opening of cleft
- Identify binding interactions (measure distances between atoms of ATP and complementary atoms in binding site to see if they are correct distance for binding)
- Construct model ATP binding site for EGF-receptor kinase by replacing amino acid's of cyclic AMP dependent protein kinase for those present in EGF receptor kinase

Ribose forms H-bonds to Glu in ribose pocket

- Both imide carbonyls act as H-bond acceptors (disrupted if carbonyl reduced)
- Imide NH acts as H bond donor (disrupted if N is substituted)
- Aniline aromatic ring fits small tight ribose pocket
- Substitution on aromatic ring or chain extension prevents aromatic ring fitting pocket
- Bisindolylmaleimides form H-bond interactions but cannot fit aromatic ring into ribose pocket.
- Implies ribose pocket interaction is crucial for selectivity

6.12 Selectivity of action

POSERS ?

- Ribose pocket normally accepts a polar ribose so why can it accept an aromatic ring?
- Why can't other kinases bind dianilinophthalimides in the same manner?

6.12 Selectivity of action

- Ribose pocket is more hydrophobic in EGF-receptor kinase
- Cys can stabilise and bind to aromatic rings (S-Ar interaction)

- Stabilisation by S-Ar interaction not present in other kinases
- Leads to selectivity of action

6.13 Pharmacophore for EGF-receptor kinase inhibitors

- Pharmacophore allows identification of other potential inhibitors
- Search databases for structures containing same pharmacophore
- Can rationalise activity of different structural classes of inhibitor

6.14 Phenylaminopyrrolopyrimidines

CGP 59326 - Two possible binding modes for H-bonding

Only mode II tallies with pharmacophore and explains activity and selectivity

6.14 Phenylaminopyrrolopyrimidines

Binding Mode I like ATP (not favoured)

Binding mode II (favoured)

Illustrates dangers in comparing structures and assuming similar interactions (e.g. comparing CGP59326 with ATP)

6.14 Phenylaminopyrrolopyrimidines

6.15 Pyrazolopyrimidines i) Lead compounds

(I) EC50 0.80μM

(II) EC50 $0.22\mu M$

- Both structures are selective EGF-receptor kinase inhibitors
- Both structures belong to same class of compounds
- Docking experiments reveal different binding modes to obey pharmacophore

6.15 Pyrazolopyrimidines

ii) Structure I

6.15 Pyrazolopyrimidines

ii) Structure I

(I) EC₅₀ 0.80µM

(III) EC₅₀ 2.7µM

6.15 Pyrazolopyrimidines iii) Structure II

- Cannot bind in same mode since no fit to ribose pocket
- Binds in similar mode to phenylaminopyrrolopyrimidines

6.15 Pyrazolopyrimidines

iv) Drug design on structure II

• Upper binding pocket is larger than ribose pocket allowing greater variation of substituents on the 'upper' aromatic ring