

Drug Discovery Case Studies

Hugo Kubinyi

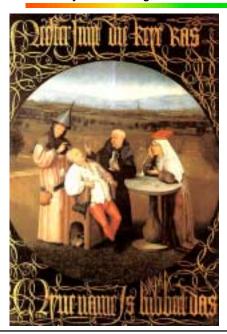
University of Heidelberg Germany

E-Mail kubinyi@t-online.de HomePage www.kubinyi.de

University of Heidelberg

Basilius Besler Hortus Eystettensis Eichstätt, 1613 Squill

Squill (Scilla alba = Urginea maritima)



Theriak

originally a mixture of 54 materials, as antidote against all kind of poisons (1st century B.C. till 18th century), used also as a remedy against the plague.

Public theriak preparation at a market.

University of Heidelberg

The Stone of Folley

Hieronymus Bosch (~1450 - 1516)

"Master snyt die keye ras. Myne name is Lubbert das"

A quack docter, assisted by a priest and a nun, extracts the "stone of folley" from the brain of a patient.

The Doctrine of Signatures: "Nature helps Mankind"

Mistletoe, Viscum album

St. John's Wort,

Hypericum perforatum

Truelove, Paris quadrifolia

"Diß Beerlein ist von Gestalt wie ein Augapfel oder Äuglein anzusehen ... Zu den kranken und bösen Augen / ein sehr nützlich und heilsamb Kraut ist" (Johannes Francke, 1618)

University of Heidelberg

Heroic Times: Who Is a Good Surgeon?

Davy, 1799: Experiments with laughing gas

First Half of 19th Century: Sniffle parties

Long, 1841-1849: Ether acts as anesthetic

Wells, 1844: Laughing gas acts as anesthetic

Heroic Times: Who Is a Good Surgeon?

Davy, 1799: Experiments with laughing gas

First Half of 19th Century: Sniffle parties

Long, 1841-1849: Ether acts as anesthetic

Wells, 1844: Laughing gas acts as anesthetic

Simpson, 1847: Chloroform

Liebreich, 1868/69: Chloral hydrate as "prodrug" of chloroform

Schmiedeberg, 1885: Urethane as "prodrug" of ethanol

Dreser, 1899: i-Amyl carbamate (Hedonal)

Queen Victoria (1819-1901) 1853 * Prince Leopold

von Mering 1903: first barbiturate Barbiton (Barbara / Barbara day)

University of Heidelberg

A. W. Hofmann (1818-1892)

1845: Queen Victoria visits Germany; Prince Albert engages August Wilhelm Hofmann

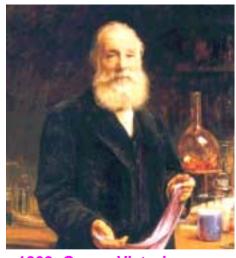
1856: Hofmann asks the 18-years old student William H. Perkin to synthesize quinine by oxidation of allyl-toluidine

Lack of Success in a Quinine Synthesis (1856)

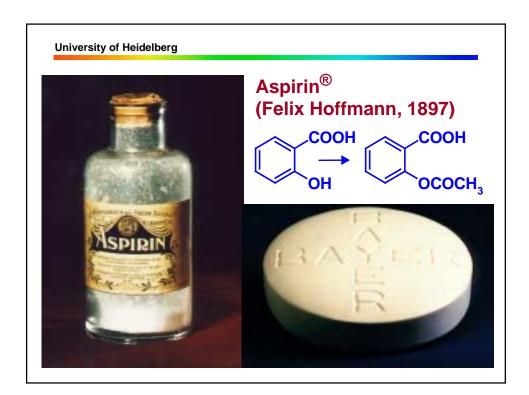
$$C_{10}H_{13}N \xrightarrow{3 [O]} C_{20}H_{24}N_2O_2 \qquad H_2C \xrightarrow{C} H$$
allyl-
toluidine
$$Quinine \qquad MeO \qquad H$$

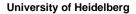
$$NH_2 \qquad IO$$

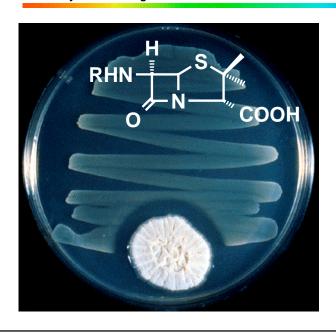
$$H_3C \qquad N$$


$$H_2N \qquad N$$

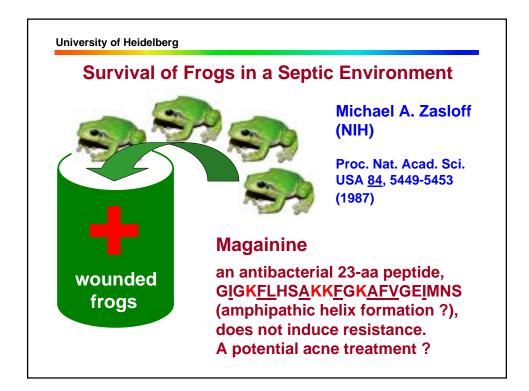
$$R = H \text{ or methyl} \qquad Mauveine \\ (Mauve)$$


University of Heidelberg


A. W. Hofmann (1818-1892) and W. H. Perkin (1838-1907)

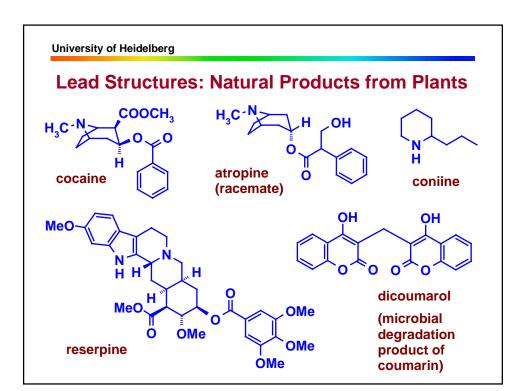


1862: Queen Victoria wears a dress in mauve color



"Penicillin happened, it came out of the blue."

A. Fleming, 1930


Serendipitous Drug Discoveries

Acetanilide, Acetylsalicylic acid, Aminoglutethimide, Amphetamine, Chloral hydrate, Chlordiazepoxide, Chlorpromazine, Cinnarizine, Cisplatin, Clonidine, Cromoglycate, Cyclosporin, Dichloroisoproterenol, Dicoumarol, Diethylstilbestrol, Diphenhydramine, Diphenoxylate, Disulfiram, Ether, Etomidate, Griseofulvin, Guanethidine, Haloperidol, Heparin, Imipramine, Iproniazid, Isoniazid, Levamisole, Lithium carbonate, Lysergide (LSD), Meprobamate, Merbaphen, Methaqualone, Mifepristone, Naftifine, Nalorphine, Nitrogen mustard, Nitroglycerine, Nitrous oxide, Norethynodrel/Mestranol, Penicillin, Pethidine (Meperidine), Phenylbutazone, Phenolphthalein, Praziquantel, Prednisone, Propafenone, Sulfamidochrysoidine, Sulfonamides, Tamoxifen, Urethane, Valproic acid, Warfarin.

Sweeteners: Saccharin, Cyclamate, Aspartame

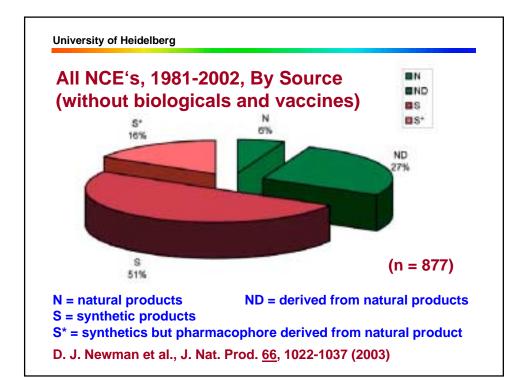
- R. M. Roberts, Serendipity Accidental Discoveries in Science, John Wiley & Sons, New York, 1989.
- H. Kubinyi, Chance Favors the Prepared Mind. From Serendipity to Rational Drug Design, J. Receptor & Signal Transduction Research 19, 15-39 (1999).

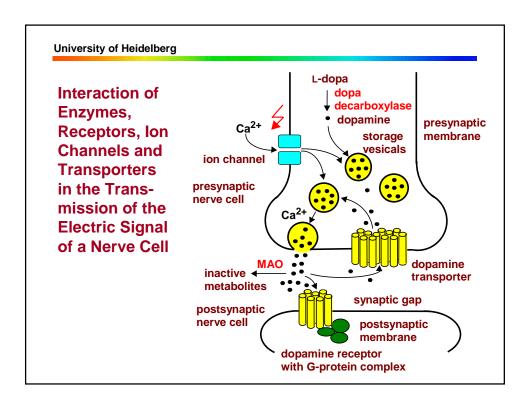
Four Possible Strategies in Research No hypotheses, no experiments No hypotheses, only experiments Hypotheses and experiments Hypotheses and experiments Rolf Zinkernagel (Nobel prize in Medicine 1996)

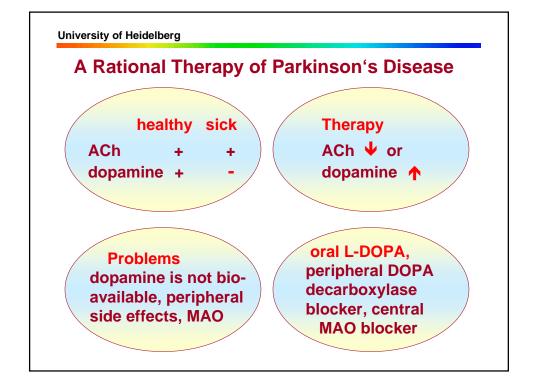
Lead Structures: Natural Products from Plants H₃C H₄CH₃ Artemisinine H₄CH₃ H₄CH₃ H₅C H₇CH₄ H₇CH₃ H₈C H₈C

Synthetic Statin Analogs

University of Heidelberg


Lead Structures: Other Natural Products Albert Hofmann and His Problem Child LSD


ergotamine (Claviceps purpurea; ergot = Secale cornutum)


Acute Toxicity of Lysergic Acid Diethylamide in Animals and Maximum Tolerated Dose in Man

H	CO-N(Et) ₂
	H CH ₃
HN I	LSD

Species	LD ₅₀ in mg/kg		
Mouse	50-60		
Rat	16.5		
Rabbit	0.3		
Elephant	« 0.06		
Man	» 0.003		

Integrated Optimisation of Drug Therapy Dopamine Substitution in Parkinson's Disease

dopamine

L-dopa, a dopamine prodrug

benserazide

(R)-(-)-selegiline

University of Heidelberg

The Similarity Principle in Drug Design -Lead Optimization is an Evolutionary Procedure

Medicinal chemists, all the time, used the similarity of chemical compounds to design new analogs of active leads. Whenever they discovered compounds with improved activity, selectivity, pharmacokinetics, etc., they used these compounds to search analogs with even further improved properties. However, ...

Isosteric Replacement of Atoms and Groups

Substituents: F, CI, Br, I, CF₃, NO₂

Methyl, Ethyl, Isopropyl, Cyclopropyl, t.-Butyl,
-OH, -SH, -NH₂, -OMe, -N(Me)₂

Linkers: -CH₂-, -NH-, -O-COCH₂-, -CONH-, -COO>C=O, >C=S, >C=NH, >C=NOH, >C=NOAlkyl

Atoms and Groups in Rings: -CH=, -N=
-CH₂-, -NH-, -O-, -S-,
-CH₂CH₂-, -CH₂-O-, -CH=CH-, -CH=N
Large Groups: -NHCOCH₃, -SO₂CH₃

-COOH, -CONHOH, -SO₂NH₂, NH, NH, NO

University of Heidelberg

Consequences of Isosteric Replacement

acetylsalicylic acid

sulfanilamide, $R = SO_2NH_2$

Consequences of Isosteric Replacement

Inhibition of Carbonic Anhydrase by Sulfonamides

$$CH_3SO_2NH_2$$
, $K_i = 100 \mu M$, $pK_a = 10.5$
 $CF_3SO_2NH_2$, $K_i = 2 nM$, $pK_a = 5.8$

Specificity of GABA Receptor Ligands

GABA GABA_B receptor affinity

$$H_2N$$

OH

 $IC_{50} = 20 \text{ nM}$
 $IC_{50} = 4,500 \text{ nM}$
 $IC_{50} = 4,500 \text{ nM}$

University of Heidelberg

Isosteric Replacement of Aromatic Rings

A. Stütz, Angew. Chem. Int. Ed. Engl. <u>26</u>, 320-328 (1987)

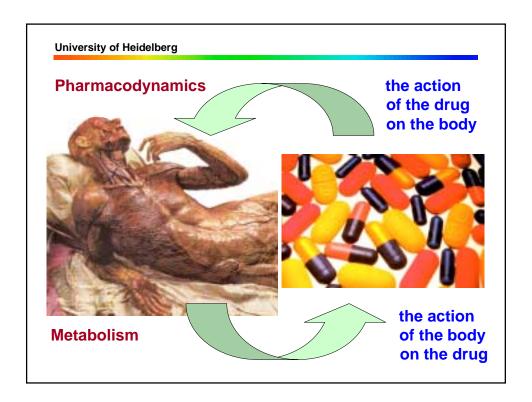
H. Hübner et al., J. Med. Chem. 43, 756-762 (2000)

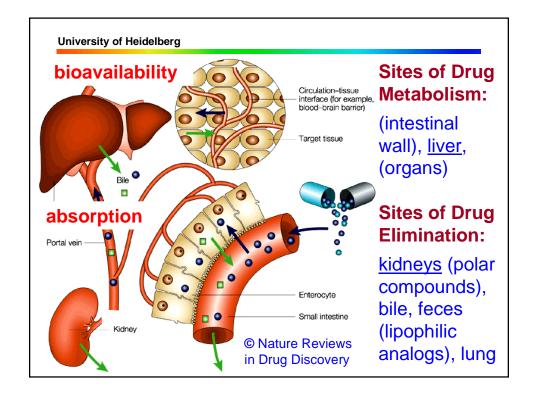
Morphine and its Derivatives

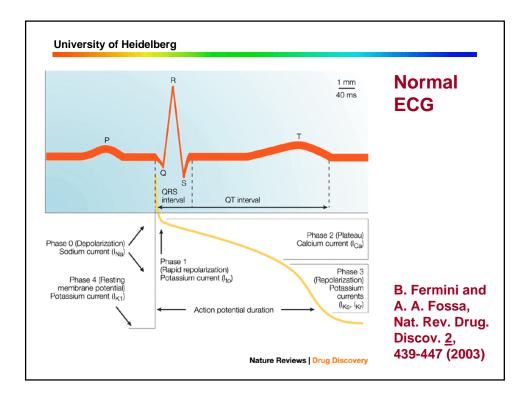
than morphine)

University of Heidelberg

codeine, R1 = Me, R2 = H

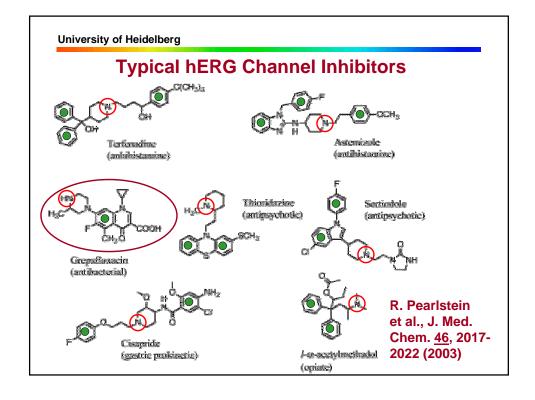

(antitussive)


Distant Morphine Analogs


University of Heidelberg

Serendipitous Discovery of Diethylstilbestrol

The Serendipitous Discovery of the Pill OH 1. Birch reduction 2. enol ether cleavage Norethynodrel (Searle)


The QT Interval Prolongation Problem

Many different drugs produce prolongation of the QT interval of the ECG (antihistamines, antipsychotics, antimicrobials, Ca antagonists ...)

Several drugs have been withdrawn from the market and ~ 10% of drug candidates fail in development due to this problem, e.g. Terfenadine (Seldane™), Sertindole, Astemizole, ...

A typical reason for QT interval prolongation is the blockade of the cardiac hERG K+ channel by interaction of the drug with S6 domain of the protein.

Source: T. Langer, University of Innsbruck, Austria

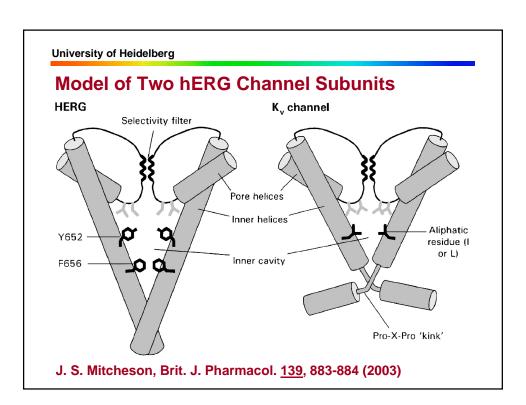

Target and Channel Affinities of hERG Inhibitors

Table 1. Comparison of the HERG Channel Affinity to That of the Intended Pharmacological Target for Several Drugs

drug	target affinity	HERG IC ₅₀	comment
terfenadine	58 nM (histamine H1 K _i)	56 nM	withdrawn
astemizole	3 nM (histamine H1 K _i)	0.9 nM	withdrawn
cisapride	29 nM (serotonin 5HT4 Ki)	47 nM	withdrawn
sertindole	0.6 nM (serotonin 5HT2A Kt)	3 nM	withdrawn
thioridazine	27 nM (dopamine D2 K _i)	191 nM	black boxa
pimozide	12 nM (dopamine D2 K _i)	18 nM	TDP^b
grepafloxacin	up to 2.4 µM (bacterial MIC)	$50 \mu M$	withdrawn

Black box label from FDA for proarrhythmia. b Torsades de pointes arrhythmia observed clinically. Minimum inhibitory concentration.

R. Pearlstein et al., J. Med. Chem. 46, 2017-2022 (2003)

Oxidative Metabolism and Drug Design

diphenhydramine
lipophilic H₁ antagonist
(sedative side effect)

terfenadine
(Seldane®),
R = CH₃: polar
H₁ antagonist
(originally
designed as an antipsychotic

agent; no sedative side effect but cardiotoxic, especially in combination with CYP 3A4 inhibitors)

fexofenadine (Allegra®), R = COOH: active terfenadine metabolite (no sedative side effect, no cardiotoxicity)

University of Heidelberg

SAR of hERG Channel Ligands

Terfenadine analogs

 $R = CH_3$, Terfenadine $IC_{50} = 56 \text{ nM}$

R = OH $IC_{50} = 460 \text{ nM}$

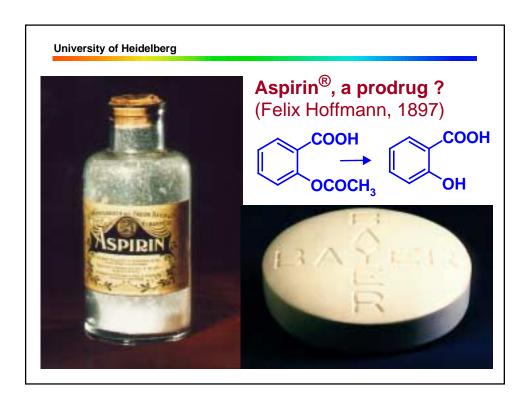
R = COOH, Fexofenadine $IC_{50} = 23,000 \text{ nM}$

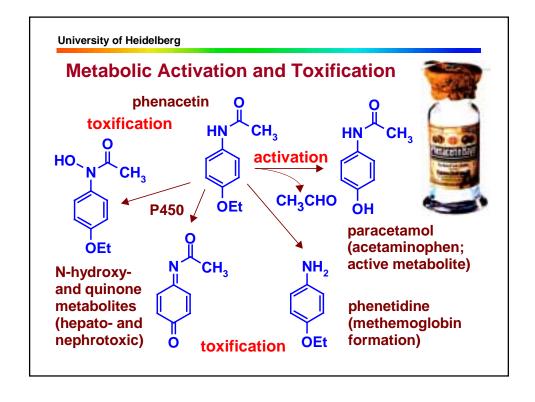
R. A. Pearlstein et al., Bioorg. Med. Chem. Lett. <u>13</u>, 1829-1835 (2003)

Oxidative Metabolism and Drug Design

SCH 48461 ED₅₀ (hamster) = 2.2 mg/kg Ezetimib (SCH 58235, oral cholesterol absorption inhibitor) ED₅₀ (hamster) = 0.04 mg/kg

M. van Heek et al., J. Pharmacol. Exp. Ther. <u>283</u>, 157-163 (1997); D. A. Smith, H. van de Waterbeemd and D. K. Walker, Pharmacokinetics and Metabolism in Drug Design, Wiley-VCH, 2001, p. 85


University of Heidelberg


Prodrugs, Soft Drugs and Targeted Drugs

Prodrugs are inactive (less active) drug analogs that have better pharmakokinetic properties (e.g. oral bioavailability, BBB penetration)

Soft drugs are biologically active derivatives of inactive drug analogs; they are degraded to inactive analogs, e.g. esters of corticosteroid carboxylic acids, which are (topically) active.

Targeted drugs are drugs or prodrugs that exert their biological action only in certain cells or organs (e.g. Omeprazole, Aciclovir).

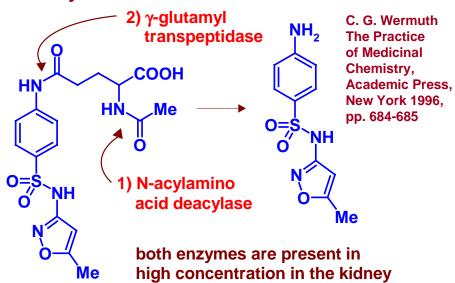
Prodrugs: Esters

clofibrate, R = Et clofibric acid, R = H

chloramphenicol (bitter taste), R = H tasteless prodrug R = CO(CH₂)₁₄CH₃

University of Heidelberg

Melagatran (Astra)


was one of the first thrombin inhibitors with some oral bioavailability

 K_i (thrombin) = 2 nM

Ximelagatran (H 376/95) is a double prodrug of melagatran:

ester group (cleaved by esterases)
amidoxime (reduced by NADH-cytochrome b5
reductase + CYP 2A6)

Kidney-Selective Release of Sulfamethoxazole

University of Heidelberg

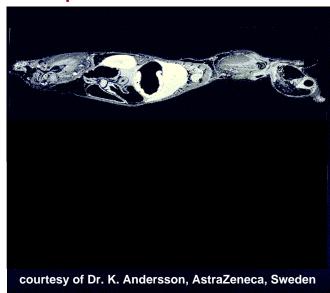
Prodrugs: Hydrazides and Azo Compounds

sulfanilamide, an antimetabolite of p-aminobenzoic acid

Omeprazole Case Study

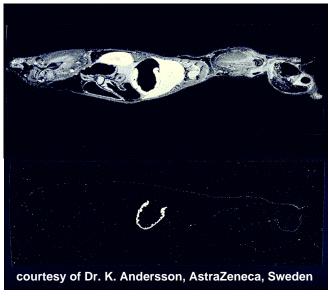
University of Heidelberg

Omeprazole Case Study

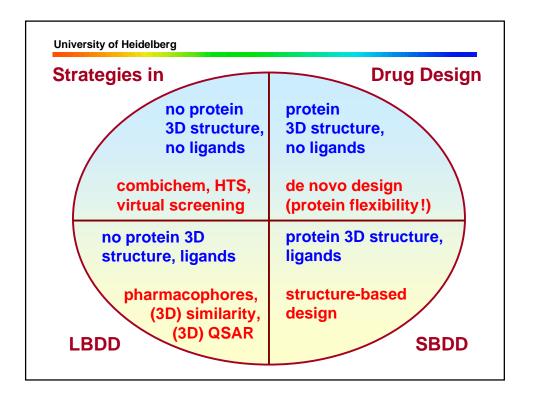

Picoprazole, 1976 preclinical candidate

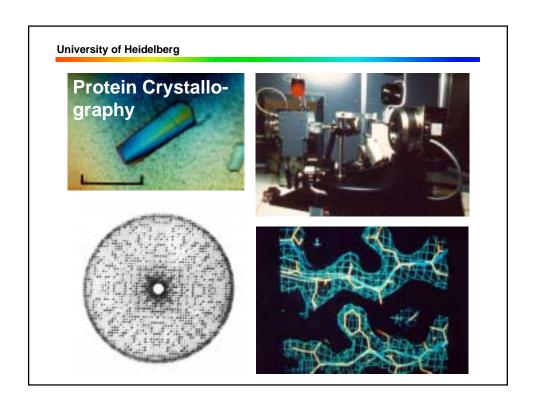
Tox study:

vasculitis 🥰 🖨 🖨


Omeprazole Activation in Acid-Producing Cells

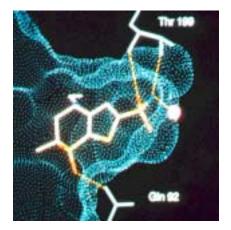
Distribution of radio-labelled omeprazole, one minute after i.v. injection, rat


University of Heidelberg


Omeprazole Activation in Acid-Producing Cells

Distribution of radio-labelled omeprazole, one minute after i.v. injection, rat

sixteen hours after i.v. injection, rat


Structure-Based Design of Dorzolamide

$$K_{\rm i}$$
 = 300 nM $H_{\rm 3}C$ Methazolamide $N_{\rm i}$ $N_{\rm 3}$ $N_{\rm 1}$ $N_{\rm 2}$ $N_{\rm 3}$ $N_{\rm 2}$ $N_{\rm 3}$ $N_{\rm 2}$ $N_{\rm 3}$ $N_{\rm 4}$ $N_{\rm 2}$ $N_{\rm 3}$ $N_{\rm 4}$ $N_{\rm 2}$ $N_{\rm 4}$ $N_{\rm 5}$ $N_{\rm 5}$ $N_{\rm 4}$ $N_{\rm 5}$ $N_{\rm 5}$ $N_{\rm 5}$ $N_{\rm 7}$ $N_{\rm 7}$

University of Heidelberg

Binding Mode of Carbonic Anhydrase Inhibitors

$$CH_3SO_2NH_2$$
, $K_i = 100 \mu M$, $pK_a = 10.5$
 $CF_3SO_2NH_2$, $K_i = 2 nM$, $pK_a = 5.8$

Virtual Screening, Carbonic Anhydrase Inhibitors

A 3D search in a database of \approx 90,000 compounds yielded 3,314 molecules; these were rank-ordered by their pharmacophores, 100 were finally docked and 13 docking hits were biologically tested.

$$X = S K_i = 0.9 \text{ nM}$$
 $X = SO_2 K_i = 0.8 \text{ nM}$
 $X = SO_2 K_i = 0.8 \text{ nM}$
 $X = SO_2 K_i = 0.8 \text{ nM}$

S. Grüneberg et al., Angew. Chem., Int. Ed. Engl. <u>40</u>, 389-393 (2001); J. Med. Chem. <u>45</u>, 3588-3602 (2002).

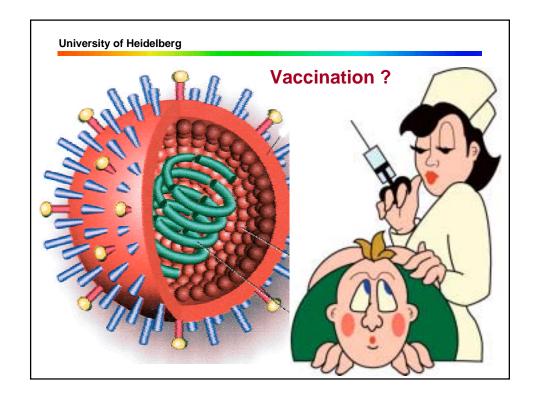
University of Heidelberg

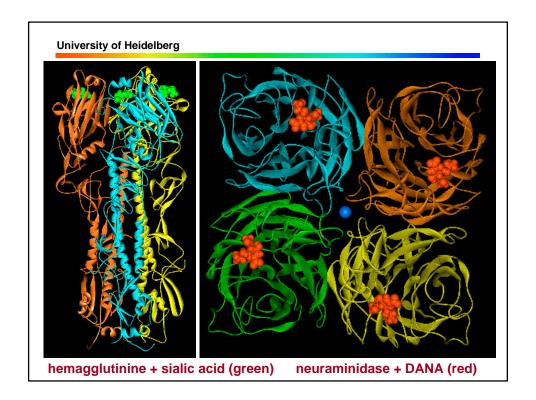
Combinatorial Design of Carbonic Anhydrase Inhibitors

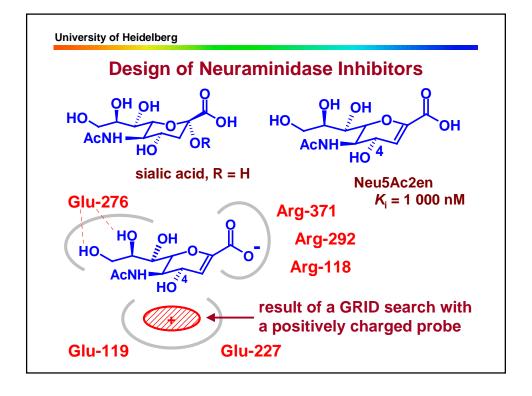
R enantiomer, $K_d = 30 \text{ pM}$ $K_d = 120 \text{ nM}$ (S enantiomer: $K_d = 230 \text{ pM}$)

Program CombiSMoG, "best" N-substituents from 100,000 candidates (20 scored by knowledge-based potentials)

B. A. Grzybowski et al., Acc. Chem. Res. <u>35</u>, 261-269 (2002);


B. A. Grzybowski et al., Proc. Natl. Acad. Sci. USA <u>99</u>, 1270-1273 (2002)


Influenza


In 1918/19, the "Spanish Flu" killed about 20-40 mio people. Especially young and very old people died from influenza. The heavy death toll of this pandemic disease has to be compared to the number of 11 mio victims of World War I.

Egon Schiele prepared this drawing of his wife, one day before her death and four days before he died himself, only 28 years old.

Design of Neuraminidase Inhibitors

sialic acid, R = H

Glu-276

Arg-371

Arg-292

AcNH

HN

Arg-118

4-Guanidino-Neu5Ac2en $K_i = 1 000 \text{ nM}$ Arg-292

Arg-118

 $K_i = 0.1-0.2 \text{ nM}$ $K_i = 0.1-0.2 \text{ nM}$ Zanamivir (Relenza, Glu-119 Glu-227 Glaxo-Wellcome)

University of Heidelberg

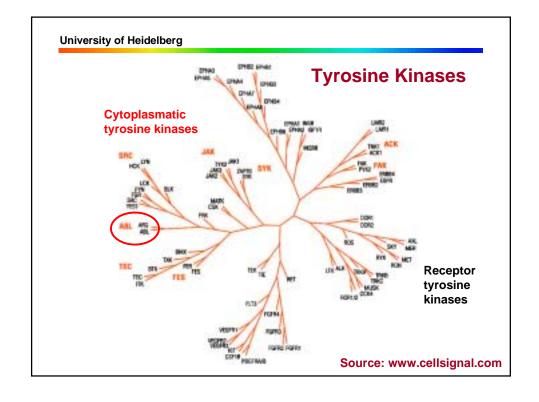
Design of Bioavailable Neuraminidase Inhibitors

 $4-NH_2-Neu5Ac2en$ $K_i = 50 \text{ nM}$

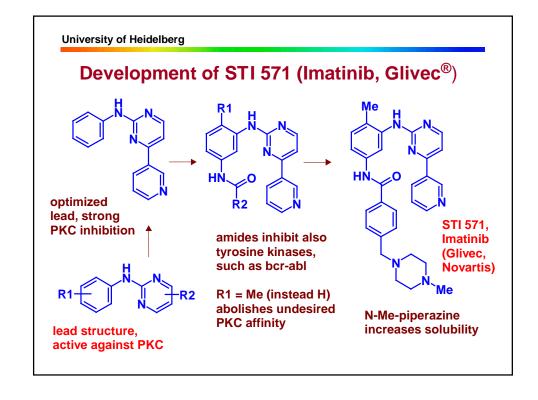
a) R = H $K_i = 8 \mu M$

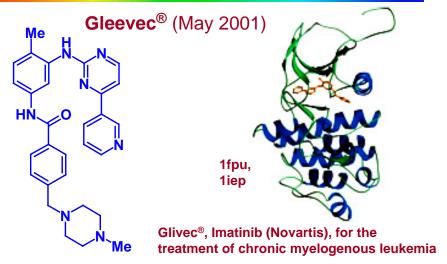
b) R = CH(OH)CH(OH)CH₂OH $K_i > 100 \mu M$

Acnh
$$\stackrel{E}{\longrightarrow}$$
 $IC_{50} > 200 \ \mu M$

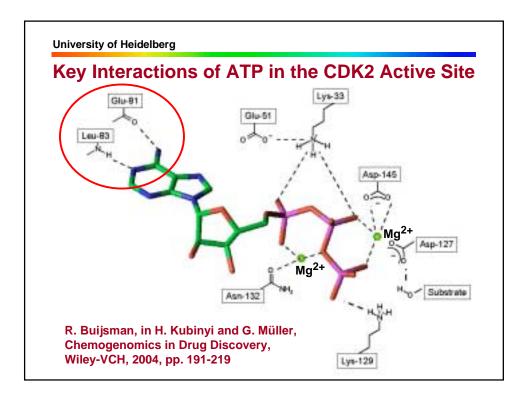

Design of Bioavailable Neuraminidase Inhibitors

RO 3 2 1 COOH	
AcNH 4 5 6 NH ₂	
GS 4071, R = CH(Et) ₂ IC ₅₀ = 1 nM	
(Et) ₂ CHO COOEt	
AcNH	


GS 4104 (ester prodrug of GS 4071) Oseltamivir (Tamiflu, Roche)


 \overline{NH}_2

R =	IC ₅₀ (nM)
Н	6 300
CH ₃	3 700
CH ₂ CH ₃	2 000
CH ₂ CH ₂ CH ₃	180
CH ₂ CH ₂ CF ₃	225
CH ₂ OCH ₃	2 000
CH ₂ CH=CH ₂	2 200
CH ₂ CH ₂ CH ₂ CH ₃	300
CH ₂ CH(CH ₃) ₂	200
CH(CH ₃)CH ₂ CH ₃	10
CH(CH ₂ CH ₃) ₂	1
CH(CH ₂ CH ₂ CH ₃) ₂	, 16
Cyclopentyl	22
Cyclohexyl	60
Phenyl	530



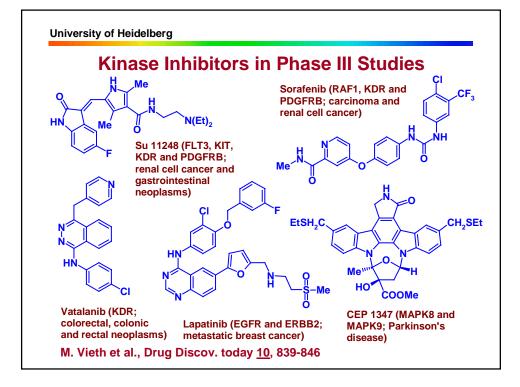
University of Heidelberg **Chromosome Translocation in CML** abl = tyr protein kinase chromosome 9 bcr = ser/thr protein kinase chromosome 22 22-, philadelphia chromosome, bcr-abl fusion protein, a hybrid present in 90+% of all with constitutionally enhanced cases of chronic myetyrosine protein kinase activity logenous leukemia

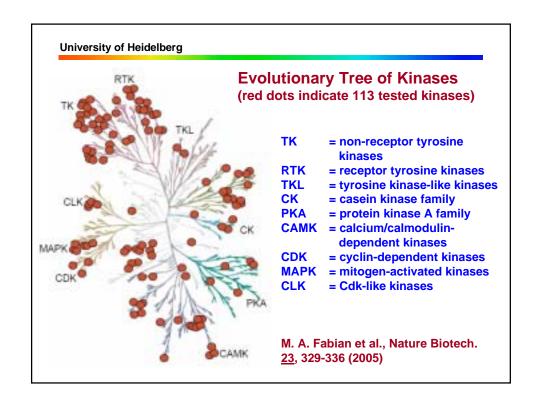
 K_i ABL = 38 nM; K_i PGDFR = 50 nM (PDGFR = platelet-derived growth factor receptor); > 1000-fold selective vs. EGFR, c-src, PKA, PKC α (R. Capdeville et al., Nature Rev. Drug Discov. 1, 493-502 (2002))

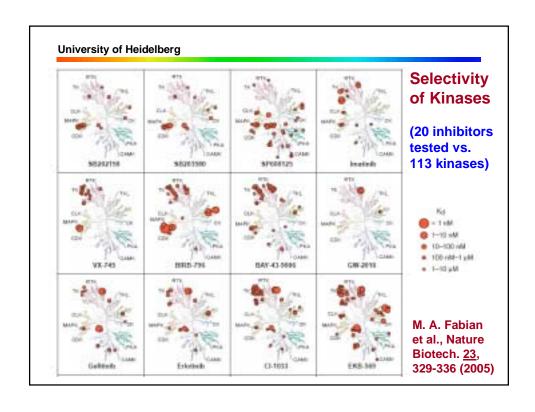
CML and GIST;

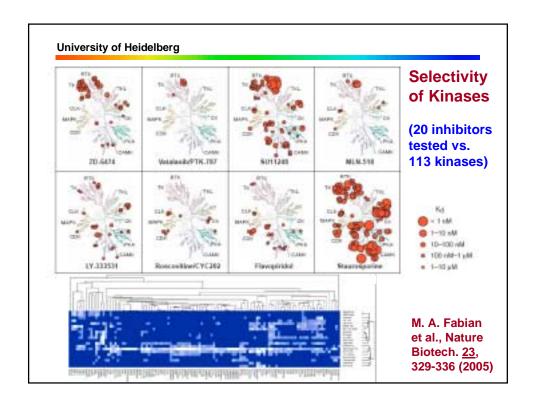
USA, 2001)

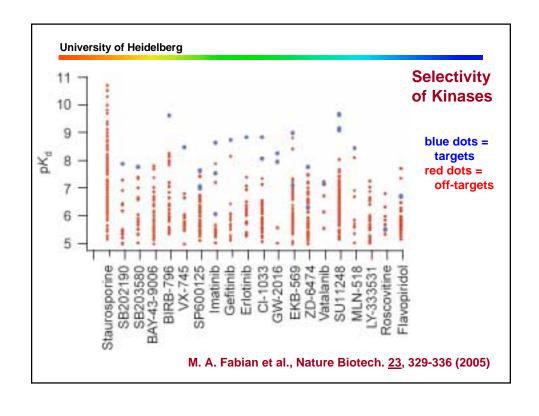
Kinase Inhibitors in Human Therapy


Fasudil (ROCK1; i.v., brain


hemorrhage; Japan, 1995)


M. Vieth et al., Drug Discov. today <u>10</u>, 839-846

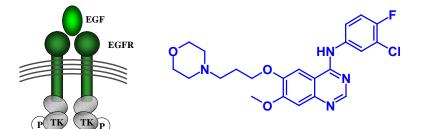

Erlotinib (EGFR; non-small-cell


lung cancer; USA, 2004)

Voltaire, by J. A. Houdon

The Past Voltaire (1694-1778):

Doctors
pour drugs of which
they know little,
to cure diseases of which
they know less,
into human beings
of whom
they know nothing.


University of Heidelberg

The Future: Pharmacogenomics - New Opportunities from Personalized Medicine

Genotyping of drug targets and metabolic enzymes enables

- cost savings in drug development through better design of clinical trials
- selection of the "best drug" for a certain patient
- individual dose ranges (variance in target sensitivity, reduced or increased metabolism)
- fewer toxic side effects
- fewer unexpected drug-drug interactions

Gefitinib[®], Iressa, ZD1839 (EGFR TK inhibitor)

cell proliferation û apoptosis ↓ angiogenesis û metastasis û

third-line therapy for non-small-cell lung cancer (75% of lung cancer cases)

clinical response to Iressa ~ 10%

University of Heidelberg

J. G. Paez et al.

EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy Science 304 (5676), 1497-1500 (2004)

T. J. Lynch et al.

Activating Mutations in the Epidermal Growth Factor Receptor Underlying Responsiveness of Non-Small-Cell Lung Cancer and Gefitinib New Engl. J. Med. 350, 2129-2139 (2004)

8 out of 9 Iressa-responsive patients showed mutations in the kinase domain

0 out of 7 non-responsive patients showed mutations 2 out of 25 non-treated patients showed mutations (8%)

Recommended Literature

- F. J. Clarke, How Modern Medicines are Discovered, Futura Publishing Company, Mount Kisco, 1973.
- A. Burger, A Guide to the Chemical Basis of Drug Design, John Wiley & Sons, New York, 1983.
- W. Sneader, Drug Discovery: The Evolution of Modern Medicines, John Wiley & Sons, Chichester, 1985
- E. Bäumler, Die großen Medikamente. Forscher und ihre Entdeckungen schenken uns Leben, Gustav Lübbe Verlag, Bergisch Gladbach, 1992.
- W. Sneader, Drug Prototypes and their exploitation, John Wiley & Sons, Chichester, 1996.
- H.-J. Böhm, G. Klebe and H. Kubinyi, Wirkstoffdesign, Spektrum Akademischer Verlag, Heidelberg, 1996.
- J. Ryan, A. Newman, and M. Jacobs, Editors, The Pharmaceutical Century. Ten Decades of Drug Discovery, Supplement to ACS Publications, American Chemical Society, Washington, 2000.
 - R. Silverman, The Organic Chemistry of Drug Design and Drug Action, 2nd Edition, Elsevier Academic Press, Burlington, 2004.