

7-Substituted 4-Hydroxyquinoline-3-carboxylic Acids as Inhibitors of Cell Respriation

(K. J. Shah and E. A. Coats, J. Med. Chem. 20, 1001 (1977))

Substituent R	pl50	pl50			
	malate deh.	ascites	π	MR *)	
Н	-	2.98	0.00	0.103	
CI	2.44	3.84	0.71	0.603	
F	1.98	3.30	0.14	0.092	
OCH3	-	3.28	-0.02	0.787	
COCH3	3.04	3.10	-0.55	1.118	
N(CH ₃) ₂	3.32	3.33	0.18	1.555	
OCH ₂ C ₆ H ₅	4.49	4.41	1.66	3.219	
OCH ₂ C ₆ H ₃ (3,4-Cl ₂)	5.32	4.82	3.08	4.219	
NO ₂	2.72	3.24	-0.28	0.736	
CONH ₂	3.13	2.24	-1.49	0.981	
СООН	2.97	2.24	-0.32	0.693	
SO ₂ CH ₃	3.18	2.75	-1.63	1.349	
ОН	3.31	3.04	-0.67	0.285	
SO ₂ NH ₂	3.02	2.47	-1.82	1.228	

Malatdehydrogenase Inhibition Intercorrelation π vs. MR: $r^2 = 0.50$ (n = 12; r = 0.637; s = 0.714; F = 6.82)π $pl_{50} = 0.688 (\pm 0.17) MR + 2.322 (\pm 0.31)$ MR (n = 12; r = 0.941; s = 0.314; F = 77.16) π (n.s.), MR (n = 12; r = 0.942; s = 0.328; F = 35.33) **Respiration Inhibition of Ascites Tumour Cells** Intercorrelation π vs. MR: $r^2 = 0.45$ $pl_{50} = 0.524 (\pm 0.15) \pi + 3.255 (\pm 0.18)$ π (n = 14; r = 0.914; s = 0.314; F = 60.89)(n = 14; r = 0.696; s = 0.556; F = 11.24)MR π , MR (n.s.) (n = 14; r = 0.921; s = 0.315; F = 30.73)

Activity increases with increasing lipophilicity (= size) of X, Activity increases with increasing lipophilicity (= size) of Y, as long as Y is not larger than an iodine atom, Activity decreases with increasing lipophilicity (= size) of Z, Activity decreases with electron acceptors in Y and Z, Activity decreases significantly by O-methylation; i.e. iodine and iso-propyl are the "best" Y-substituents; mid-size Y-alkyl residues should be more active than Y = iodine. **Natural Hormones:** 100 % $\mathsf{T}_3, \ \mathsf{X} = \mathsf{Y} = \mathsf{I}, \mathsf{Z} = \mathsf{H}$ biological activity T_4 , X = Y = Z = I18 % biological activity Synthetic Analogs: X = I, Y = iso-propyI, Z = H 142 % biological activity X = Z = I, Y = iso-propyl 55 % biological activity X = Me, Y = iso-propyl, Z = H 3.6 % biological activity

$pl_{50} = -0.15 \pi^{2} + 0.94 \pi - 0.35 E_{s} + 2.88$ (n = 41; r = 0.933; s = 0.267) optimum lipophilicity $\pi_{o} = 3.3$

Further variation with large substituents of equal lipophilicity showed that compounds with the largest substituents had the highest activities.

 $pl_{50} = -0.20 E_s^2 - 1.23 E_s + 4.393$ (n = 14; r = 0.940; s = 0.242)

The *tert*.-butyl analog bromobutide was selected as candidate for further development, because of high selectivity and ease of synthesis.

Quantum Chemical Parameters in Hansch-Analyses Mutagenic activity of triazenes A. J. Shusterman et al., Mol. Pharmacol. <u>36</u>, 939 (1989) log 1/C = 1.04 (±0.17) log P - 1.63 (±0.35) σ^+ + 3.06 (n = 17; r = 0.974; s = 0.315) log 1/C = 0.95 (±0.32) log P + 1.91 (±0.89) ε_{HOMO} + 19.85 (n = 17; r = 0.912; s = 0.571) log 1/C = 0.92 (±0.36) log P - 6.90 (±3.96) qN_{1-HOMO} + 5.70 (n = 17; r = 0.887; s = 0.641) All compounds, including heterocyclic analogs: log 1/C = 0.95 (±0.25) log P + 2.22 (±0.88) ε_{HOMO} + 22.69 (n = 21; r = 0.919; s = 0.631) log 1/C = 0.97 (±0.24) log P - 7.76 (±2.73) qN_{1-HOMO} + 5.96 (n = 21; r = 0.931; s = 0.585)

Hugo Kubinyi, www.kubinyi.de Mutagenic Activity of Nitroaromatic Compounds R. de Compadre et al., Environ. Mol. Mutagen. 15, 44-55 (1990) TA_{100} . TA_{98} = Revertants per nmol mutagen in two different strains of Salmonella typhimurium $\log TA_{100} = 1.36 (\pm 0.20) \log P - 1.98 (\pm 0.39) \epsilon_{LUMO} - 7.01$ (n = 47; r = 0.911; s = 0.737; F = 99.9) $\log TA_{98} = -2.29 (\pm 0.41) \varepsilon_{LUMO} + 1.62 (\pm 0.28) \log P$ - 4.21 (±0.80) log (BP + 1) - 7.74 optimum $\log P = 4.86$ (n = 66; r = 0.886; s = 0.750; F = 54.3) Mutagenic Activity of Various Nitro-substituted Aromatic Compounds, Salmonella typhimurium TA_{os} A. K. Debnath et al., J. Med. Chem. 34, 786-797 (1991) log TA98 = 0.65 (±0.16) log P - 2.90 (±0.59) log(ßP + 1) - 1.38 (±0.25) ε_{LUMO} + 1.88 (±0.39) Ι₁ - 2.89 (±0.81) Ι₂ - 4.15 (±0.58) optimum $\log P = 4.93$ $\log \beta = -5.48$ (n = 188; r = 0.900; s = 0.886)

Transport and Distribution - Nonlinear Structure-Activity Relationships

Permeation of active compounds through the skin: Inflammatory activity of phorbol esters

Compound	π	log 1/C
Phorbol-12,13-dibutyrate	4	10.17
Phorbol-12,13-dihexanoate	6	10.49
Phorbol-12,13-dioctanoate	8	10.92
Phorbol-12,13-didecanoate	10	11.00
Phorbol-12,13-didodecanoate	12	9.54
Phorbol-12,13-ditetradecanoate	14	7.85

Antihistaminic Activity of Mandelic Acid Esters

Guinea pig ileum, *in vitro*; A. B. H. Funcke, M. J. E. Ernsting, R. F. Rekker and W. Th. Nauta, Arzneim.-Forsch. **3**, 503-506 (1953)

			Yobsd. [–] Ycalc.		
Ester	log P	log 1/C	Parabolic Model	Bilinear Model	
Methyl	0.41	-0.52	0.31	0.09	
Ethyl	0.91	-0.22	-0.05	-0.03	
Propyl	1.41	0.20	-0.20	-0.04	
Butyl	1.91	0.59	-0.27	-0.07	
Pentyl	2.41	1.08	-0.16	0.00	
Hexyl	2.91	1.52	0.00	0.04	
Heptyl	3.41	1.70	-0.01	-0.14	
Octyl	3.91	2.18	0.38	0.11	
Nonyl	4.41	2.26	0.47	0.21	
Decyl	4.91	1.45	-0.25	-0.28	
Undecyl	5.41	1.28	-0.23	0.10	

a) first 8 compounds $\log 1/C = 0.785 (\pm 0.06) \log P - 0.878$ (n = 8; r = 0.997; s = 0.075; F = 1,158) b) all compounds $\log 1/C = 0.467 (\pm 0.23) \log P - 0.310$ (n = 11; r = 0.834; s = 0.540; F = 20.53) Parabolic Model $\log 1/C = -0.189 (\pm 0.09) (\log P)^2 + 1.566 (\pm 0.56) \log P - 1.438$ $\log P_o = 4.14$ $(n = 11; r = 0.958; s = 0.298; F = 44.46)$ Franke Model $\log 1/C = 0.802 (\pm 0.11) \log P - 0.585 (\pm 0.15) (\log [P > P_x])^2 + 0.901$ $\log P_x = 3.433$ $\log P_o = 4.12$ (n = 11; r = 0.989; s = 0.164; F = 104.54) "Cut-off " Model $\log 1/C = 0.785 (\pm 0.08) \log P - 1.764 (\pm 0.32) \log [P > P_o] - 0.878$ $\log P_o = 4.17$ $(n = 11; r = 0.994; s = 0.121; F = 195.1)$ Bilinear Model $\log 1/C = 0.852 (\pm 0.12) \log P - 2.257 (\pm 0.55) \log (\beta P + 1) - 0.963$ $\log \beta = -4.356$ $\log P_o = 4.14$	Lineen Medel	
a) first 8 compounds $\log 1/C = 0.785 (\pm 0.06) \log P - 0.878$ (n = 8; r = 0.997; s = 0.075; F = 1,158) b) all compounds $\log 1/C = 0.467 (\pm 0.23) \log P - 0.310$ (n = 11; r = 0.834; s = 0.540; F = 20.53 Parabolic Model $\log 1/C = -0.189 (\pm 0.09) (\log P)^2 + 1.566 (\pm 0.56) \log P - 1.438$ $\log P_o = 4.14$ (n = 11; r = 0.958; s = 0.298; F = 44.46 Franke Model $\log 1/C = 0.802 (\pm 0.11) \log P - 0.585 (\pm 0.15) (\log [P > P_x])^2 + 0.901$ $\log P_x = 3.433$ $\log P_o = 4.12$ (n = 11; r = 0.989; s = 0.164; F = 104.54) "Cut-off " Model $\log 1/C = 0.785 (\pm 0.08) \log P - 1.764 (\pm 0.32) \log [P > P_o] - 0.878$ $\log P_o = 4.17$ (n = 11; r = 0.994; s = 0.121; F = 195.1 Bilinear Model $\log 1/C = 0.852 (\pm 0.12) \log P - 2.257 (\pm 0.55) \log (\beta P + 1) - 0.963$ $\log \beta = -4.356$ $\log P_o = 4.14$		
$(n = 8; r = 0.997; s = 0.075; F = 1,158)$ b) all compounds $log 1/C = 0.467 (\pm 0.23) log P - 0.310$ $(n = 11; r = 0.834; s = 0.540; F = 20.53)$ Parabolic Model $log 1/C = -0.189 (\pm 0.09) (log P)^2 + 1.566 (\pm 0.56) log P - 1.438$ $log P_o = 4.14$ $(n = 11; r = 0.958; s = 0.298; F = 44.46)$ Franke Model $log 1/C = 0.802 (\pm 0.11) log P - 0.585 (\pm 0.15) (log [P > P_x])^2 + 0.901$ $log P_x = 3.433 \qquad log P_o = 4.12$ $(n = 11; r = 0.989; s = 0.164; F = 104.54)$ "Cut-off " Model $log 1/C = 0.785 (\pm 0.08) log P - 1.764 (\pm 0.32) log [P > P_o] - 0.878$ $log P_o = 4.17 \qquad (n = 11; r = 0.994; s = 0.121; F = 195.1)$ Bilinear Model $log 1/C = 0.852 (\pm 0.12) log P - 2.257 (\pm 0.55) log (BP + 1) - 0.963$ $log B = -4.356 \qquad log P_o = 4.14$	a) first 8 compounds	$\log 1/C = 0.785 (\pm 0.06) \log P - 0.878$
b) all compounds $\log 1/C = 0.467 (\pm 0.23) \log P - 0.310$ (n = 11; r = 0.834; s = 0.540; F = 20.53) Parabolic Model $\log 1/C = -0.189 (\pm 0.09) (\log P)^2 + 1.566 (\pm 0.56) \log P - 1.438$ $\log P_o = 4.14$ $(n = 11; r = 0.958; s = 0.298; F = 44.46)$ Franke Model $\log 1/C = 0.802 (\pm 0.11) \log P - 0.585 (\pm 0.15) (\log [P > P_x])^2 + 0.901$ $\log P_x = 3.433$ $\log P_o = 4.12$ (n = 11; r = 0.989; s = 0.164; F = 104.54) "Cut-off " Model $\log 1/C = 0.785 (\pm 0.08) \log P - 1.764 (\pm 0.32) \log [P > P_o] - 0.878$ $\log P_o = 4.17$ $(n = 11; r = 0.994; s = 0.121; F = 195.1)$ Bilinear Model $\log 1/C = 0.852 (\pm 0.12) \log P - 2.257 (\pm 0.55) \log (BP + 1) - 0.963$ $\log B = -4.356$ $\log P_o = 4.14$		(n = 8; r = 0.997; s = 0.075; F = 1,158)
$(n = 11; r = 0.834; s = 0.540; F = 20.53$ Parabolic Model $log 1/C = -0.189 (\pm 0.09) (log P)^2 + 1.566 (\pm 0.56) log P - 1.438$ $log P_o = 4.14 \qquad (n = 11; r = 0.958; s = 0.298; F = 44.46$ Franke Model $log 1/C = 0.802 (\pm 0.11) log P - 0.585 (\pm 0.15) (log [P > P_x])^2 + 0.901$ $log P_x = 3.433 \qquad log P_o = 4.12$ $(n = 11; r = 0.989; s = 0.164; F = 104.54)$ "Cut-off " Model $log 1/C = 0.785 (\pm 0.08) log P - 1.764 (\pm 0.32) log [P > P_o] - 0.878$ $log P_o = 4.17 \qquad (n = 11; r = 0.994; s = 0.121; F = 195.1$ Bilinear Model $log 1/C = 0.852 (\pm 0.12) log P - 2.257 (\pm 0.55) log (BP + 1) - 0.963$ $log B = -4.356 \qquad log P_o = 4.14$	b) all compounds	log 1/C = 0.467 (±0.23) log P - 0.310
Parabolic Model log 1/C = - 0.189 (±0.09) (log P) ² + 1.566 (±0.56) log P - 1.438 log P _o = 4.14 (n = 11; r = 0.958; s = 0.298; F = 44.46 Franke Model log 1/C = 0.802 (±0.11) log P - 0.585 (±0.15) (log [P > P _x]) ² + 0.901 log P _x = 3.433 log P _o = 4.12 (n = 11; r = 0.989; s = 0.164; F = 104.54) "Cut-off " Model log 1/C = 0.785 (±0.08) log P - 1.764 (±0.32) log [P > P _o] - 0.878 log P _o = 4.17 (n = 11; r = 0.994; s = 0.121; F = 195.1 Bilinear Model log 1/C = 0.852 (±0.12) log P - 2.257 (±0.55) log (BP + 1) - 0.963 log ß = -4.356 log P _o = 4.14		(n = 11; r = 0.834; s = 0.540; F = 20.53)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Parabolic Model	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	log 1/C = - 0.189 (±0.09)) (log P) ² + 1.566 (±0.56) log P - 1.438
Franke Model log 1/C = 0.802 (±0.11) log P - 0.585 (±0.15) (log [P > P _x]) ² + 0.901 log P _x = 3.433 log P _o = 4.12 (n = 11; r = 0.989; s = 0.164; F = 104.54) "Cut-off " Model log 1/C = 0.785 (±0.08) log P - 1.764 (±0.32) log [P > P _o] - 0.878 log P _o = 4.17 (n = 11; r = 0.994; s = 0.121; F = 195.1 Bilinear Model log 1/C = 0.852 (±0.12) log P - 2.257 (±0.55) log (ßP + 1) - 0.963 log ß = -4.356 log P _o = 4.14 (n = 0.000 e 0.000 e 0.000)	$\log P_{o} = 4.14$	(n = 11; r = 0.958; s = 0.298; F = 44.46
$\begin{split} &\log 1/C = 0.802 \ (\pm 0.11) \ \log P - 0.585 \ (\pm 0.15) \ (\log [P > P_x])^2 + 0.901 \\ &\log P_x = 3.433 \qquad \log P_o = 4.12 \\ &(n = 11; \ r = 0.989; \ s = 0.164; \ F = 104.54) \end{split}$ $\begin{aligned} & \text{"Cut-off `` Model} \\ &\log 1/C = 0.785 \ (\pm 0.08) \ \log P - 1.764 \ (\pm 0.32) \ \log [P > P_o] - 0.878 \\ &\log P_o = 4.17 \qquad (n = 11; \ r = 0.994; \ s = 0.121; \ F = 195.1 \end{aligned}$ Bilinear Model $&\log 1/C = 0.852 \ (\pm 0.12) \ \log P - 2.257 \ (\pm 0.55) \ \log \ (\& P + 1) - 0.963 \\ &\log B = -4.356 \qquad \log P_o = 4.14 \end{split}$	Franke Model	• • • • • • • • •
$log P_x = 3.433 \qquad log P_o = 4.12 \\ (n = 11; r = 0.989; s = 0.164; F = 104.54) \\ "Cut-off " Model \\ log 1/C = 0.785 (\pm 0.08) log P - 1.764 (\pm 0.32) log [P > P_o] - 0.878 \\ log P_o = 4.17 \qquad (n = 11; r = 0.994; s = 0.121; F = 195.1 \\ Bilinear Model \\ log 1/C = 0.852 (\pm 0.12) log P - 2.257 (\pm 0.55) log (BP + 1) - 0.963 \\ log B = -4.356 \qquad log P_o = 4.14 \\ (m = 10, 20, 20, 20, 20, 20, 20, 20, 20, 20, 2$	log 1/C = 0.802 (±0.11)	log P - 0.585 (±0.15) (log [P > P]) ² + 0.901
(n = 11; r = 0.989; s = 0.164; F = 104.54) "Cut-off " Model log 1/C = 0.785 (±0.08) log P - 1.764 (±0.32) log [P > P] - 0.878 log P = 4.17 (n = 11; r = 0.994; s = 0.121; F = 195.1 Bilinear Model log 1/C = 0.852 (±0.12) log P - 2.257 (±0.55) log (ßP + 1) - 0.963 log ß = -4.356 log P = 4.14 (n = 11; r = 0.994; s = 0.121; F = 195.1 Bilinear Model	log P. = 3.433	$\log P_{a} = 4.12$
"Cut-off " Model log 1/C = 0.785 (±0.08) log P - 1.764 (±0.32) log [P > P _o] - 0.878 log P _o = 4.17 (n = 11; r = 0.994; s = 0.121; F = 195.1 Bilinear Model log 1/C = 0.852 (±0.12) log P - 2.257 (±0.55) log (β P + 1) - 0.963 log β = - 4.356 log P _o = 4.14	(n = 11; r = 0.98)	9: $s = 0.164$; $F = 104.54$)
$\begin{array}{l} \log 1/C = 0.785 \ (\pm 0.08) \ \log P - 1.764 \ (\pm 0.32) \ \log \left[P > P_{o} \right] - 0.878 \\ \log P_{o} = 4.17 \\ \textbf{(n = 11; r = 0.994; s = 0.121; F = 195.1)} \\ \textbf{Bilinear Model} \\ \log 1/C = 0.852 \ (\pm 0.12) \ \log P - 2.257 \ (\pm 0.55) \ \log \ (\beta P + 1) - 0.963 \\ \log \beta = -4.356 \\ \log P_{o} = 4.14 \\ \end{array}$	"Cut-off " Model	-,,,
$\log P_o = 4.17$ (n = 11; r = 0.994; s = 0.121; F = 195.1 Bilinear Model $\log 1/C = 0.852 (\pm 0.12) \log P - 2.257 (\pm 0.55) \log (\beta P + 1) - 0.963$ $\log \beta = -4.356$ $\log P_o = 4.14$	$\log 1/C = 0.785 (+0.08)$	log P - 1 764 (+0 32) log [P > P 1 - 0 878
Bilinear Model log 1/C = $0.852 (\pm 0.12) \log P - 2.257 (\pm 0.55) \log (\beta P + 1) - 0.963$ log $\beta = -4.356$ log $P_0 = 4.14$	$\log P = 4.17$	$(n - 11 \cdot r - 0.994 \cdot s - 0.121 \cdot F - 1951)$
$\log 1/C = 0.852 (\pm 0.12) \log P - 2.257 (\pm 0.55) \log (\beta P + 1) - 0.963$ $\log \beta = -4.356 \qquad \log P_o = 4.14$	Bilinear Model	(1 = 11,1 = 0.004, 0 = 0.121,1 = 100.1
$\log \beta = -4.356 \qquad \log P_0 = 4.14$	$1 - \frac{1}{2} = 0.852 (10.12)$	
$\log 15 = -4.356$ $\log P_0 = 4.14$	$\log 1/C = 0.852 (\pm 0.12)$	$\log P = 2.257 (\pm 0.55) \log (\ln P + 1) = 0.965$
	$\log 15 = -4.356$	$\log P_0 = 4.14$

Barbiturates, permeation through an organic membrane $\log k_{abs} = 0.949 (\pm 0.06) \log P - 1.238 (\pm 0.11) \log (\beta P + 1)$ - 3.131 $\log \beta = -5.27$ optimum $\log P = 1.79$ (n = 23; r = 0.992; s = 0.081; F = 389.66)Homologous alkyl carbamates, gastric absorption $\log k_{abs} = 0.138 (\pm 0.06) \log P - 0.228 (\pm 0.16) \log (\beta P + 1)$ - 2.244 $\log \beta = -1.678$ optimum $\log P = 1.87$ (n = 8; r = 0.971; s = 0.030; F = 22.14)Homologous alkyl carbamates, intestinal absorption $\log k_{abs} = 0.234 (\pm 0.10) \log P - 0.502 (\pm 0.15) \log (\beta P + 1)$ - 0.786 $\log \beta = -0.621$ optimum $\log P = 0.56$ (n = 8; r = 0.989; s = 0.031; F = 61.10)

Alcohols, neurotoxicity, permeation of blood-brain barrier $\log 1/C = -0.269 (\pm 0.038) (\log P)^2 + 1.030 (\pm 0.14) \log P$ + 1.674 optimum $\log P = 1.92$ (1.82 / 2.02) (n = 10; r = 0.989; s = 0.101; F = 154.9) $\log 1/C = +0.892 (\pm 0.050) \log P - 1.766 (\pm 0.10) \log (\beta P + 1)$ + 1.586 $\log \beta = -1.933$ optimum $\log P = 1.94$ (n = 10; r = 0.998; s = 0.041; F = 637.6)Various drugs, permeation of blood-placenta barrier $\log TR = 0.354 (\pm 0.06) \log P - 0.469 (\pm 0.13) \log (\beta P + 1)$ - 0.116 log ß = - 0.658 optimum $\log P = 1.15$ (n = 21; r = 0.949; s = 0.106; F = 51.17)

Inhibition Alcohols	n of Mond at Differ	oamin ent p⊦	oxidase b I Values	y Amines	s and
C. M. McEv H. Kubinyi	wen et al., . , Prog. Dru	J. Biol. g Res.	Chem. <u>243,</u> <u>23</u> , 97-108 (5217-5225 (1979)	(1968)
Compound	log P	рН	<i>K</i> i, mM	log 1/K _i	log 1/Ki ^{corr}
<i>n</i> -Propanol	0.38	8.72	72	1.14	
n-Butanol	0.88a)	7.51	3.6	2.44	
		8.72	3.6	2.44	
n-Pentanol	1.38	8.72	0.17	3.77	= log 1/ <i>K</i> j
n-Heptanol	2.38	8.72	0.025	4.60	
n-Octanol	2.88	7.51	0.034	4.47	
		8.72	0.032	4.49	

^{a)} experimental value, all other values extrapolated

Compound	log P	рН	<i>K</i> i, mM	log 1/ <i>K</i> i	log 1/Ki ^{corr b}
<i>n</i> -Propylamine	0.47	7.62	25	1.60	4.64
		8.72	2.0	2.70	4.64
<i>n</i> -Butylamine	0.97a)	7.51	1.2	2.92	6.07
		8.11	0.31	3.51	6.06
		8.72	0.073	4.14	6.08
<i>n</i> -Pentylamine	1.47	7.62	0.044	4.36	7.40
		8.72	0.0035	5.46	7.40
<i>n</i> -Hexylamine	1.97	7.57	0.0092	5.04	8.13
		8.72	0.00068	6.17	8.11
<i>n</i> -Heptylamine	2.47	7.62	0.0075	5.12	8.17
<i>n</i> -Octylamine	2.97	7.48	0.015	4.82	8.00
		7.62	0.010	5.00	8.04
<i>n</i> -Nonylamine	3.47	8.72	0.00096	6.02	7.96

Parabolic Model log 1/ $K_i^{corr} = \log 1/K_i + \log (1 + 10^{pKa-pH}) =$ - 0.717 (±0.10) (log P)² + 3.781 (±0.35) log P - 3.556 (±0.18) I + 3.242 (±0.26) optimum log P = 2.64 (n = 21; r = 0.997; s = 0.185; F = 937) Bilinear Model log 1/ $K_i^{corr} = \log 1/K_i + \log (1 + 10^{pKa-pH}) =$ 3.130 (±0.17) log P - 3.797 (±0.32) log (ßP + 1) - 3.507 (±0.12) I + 3.379 (±0.15) log ß = - 1.781 optimum log P = 2.45 (n = 21; r = 0.999; s = 0.118; F = 1,737)

Hugo Kubinyi, www.kubinyi.de Absorption of Acids and Phenols from the Rat Colon, in situ, at pH = 6.8Compound log P log %ABS pKa **5-Nitrosalicylic acid** 1.98 2.3 0.30 *m*-Nitrobenzoic acid 1.83 3.4 1.00 Salicylic acid 2.26 3.0 1.08 Benzoic acid 1.85 4.2 1.28 Phenylbutazone 3.22 4.4 1.58 o-Nitrophenol 1.79 7.0 1.74 **Thiopental** 2.50 7.6 1.70 p-Hydroxypropiophenone 1.85 7.8 1.66 *m*-Nitrophenol 2.00 8.2 1.64 Phenol 1.46 9.9 1.55

Lien. E. J., in Drug Design. Volume V, Ariëns, E. J., Ed., Academic Press, New York, 1975, p. 81–132

log % ABS = 0.156 (±0.08) (pK_a - pH) + 0.366 (±0.44) log P + 0.755 (n = 10; r = 0.866; s = 0.258)

Two wrong assumptions: log % ABS and $pK_a - pH$!!

Compound	log P	рК _а	рК _а - рН	log P _{app}	log k _{abs}
5-Nitrosalicylic acid	1.98	2.3	-4.5	-2.52	-1.69
<i>m</i> -Nitrobenzoic acid	1.83	3.4	-3.4	-1.57	-0.98
Salicylic acid	2.26	3.0	-3.8	-1.54	-0.89
Benzoic acid	1.85	4.2	-2.6	-0.75	-0.68
Phenylbutazone	3.22	4.4	-2.4	0.82	-0.32
o-Nitrophenol	1.79	7.0	0.2	1.58	-0.10
Thiopental	2.50	7.6	0.8	2.44	-0.16
<i>p</i> -Hydroxypropio-					
phenone	1.85	7.8	1.0	1.81	-0.21
<i>m</i> -Nitrophenol	2.00	8.2	1.4	2.00	-0.24
Phenol	1.46	9.9	3.1	1.46	-0.35

Hugo Kubinyi, www.kubinyi.de R. A. Scherrer and S. M. Howard, J. Med. Chem. <u>20</u>, 53-58 (1977) log % ABS = $-0.079 (\log P_{app})^2 + 0.236 \log P_{app} + 1.503 optimum \log P_{app})^2 + 0.236 \log P_{app} + 1.503 (n = 10; r = 0.982; s = 0.096)$ log k_{abs} = $-0.078 (\pm 0.041) (\log P_{app})^2 + 0.265 (\pm 0.045) \log P_{app} - 0.425 optimum \log P_{app} = 1.70 (n = 10; r = 0.984; s = 0.102; F = 105.87)$ H. Kubinyi, Arzneim.-Forsch. (Drug Res.) <u>29</u>, 1067-1080 (1979) log k_{abs} = $1.024 (\pm 0.31) \log P_{app} - 0.881 (\pm 0.36) \log (\beta P_{app} + 1) + 0.935 \log \beta = 1.600 (n = 10; r = 0.991; s = 0.081; F = 112.86)$

