Hugo Kubinyi, www.kubinyi.de

Variable Selection and Model Validation

Hugo Kubinyi

Germany

E-Mail kubinyi@t-online.de HomePage www.kubinyi.de

Hugo Kubinyi, www.kubinyi.de

A Few Problems in Statistical Analyses

inappropriate biological data wrong scaling of biological data data from different labs different binding modes mixed data (e.g. oral absorption and bioavailability) different mechanism of action (e.g. toxicity data) too few data points too many single points lack of chemical variation clustered data small variance of y values systematic error/s in y too large errors in y values outliers / wrong values wrong model selection

Some More Problems in Statistical Analyses

inappropriate x variables too many x variables (Topliss) a) in the model selection b) in the final model x variable scaling in CoMFA fields interrelated x variables singular matrix elimination of variables that are significant only with others insignificant model (F test) insignificant x variables (t test) no qualitative (biophysical) model no causal relationship (the storks) extrapolation too far outside of observation space no validation method applied wrong validation method,

Bailar's Laws of Data Analysis (Clin. Pharmacol. Therapeutics, 1979)
There are no "right" answers
Statistics is not the only way to wisdom
Rare events happen all the time
No sample is ever large enough - so what?
No analysis is ever perfect - so what?
Something is always wrong with the data.
How to Lie With Statistics (Darrell Huff) Lies, Damned Lies and Statistics (Benjamin Disraeli)
All models are wrong - some may be useful
The scaling of variables changes the result
A diagram tells you more than thousand equations

- Validation - an extremely difficult problem.

Hugo Kubinyi, www.kubinyi.de

S. H. Unger and C. Hansch J. Med. Chem. <u>16</u>, 745-749 (1973)

One must rely heavily on statistics in formulating a quantitative model but, at each critical step in constructing the model, one must set aside statistics and ask questions. ... without a qualitative

perspective one is apt to generate statistical unicorns, beasts that exist on paper but not in reality.

... it has recently become all too clear that one can correlate a set of dependent variables using random numbers as dependent variables. Such correlations meet the usual criteria of high significance ...

Jackknife Method

corresponds to LOO crossvalidation; used for the estimation of confidence intervals of nonlinear parameters, like ß, and log P_o.

S. W. Dietrich, N. D. Dreyer, C. Hansch and D. L. Bentley, J. Med. Chem. <u>23</u>, 1201-1205 (1980)

Lateral Validation of QSAR Models

Hydrolysis of X-C₆H₄OCO-CH₂NHCOC₆H₅ (I) and X-C₆H₄OCOCH₂-NHSO₂CH₃ (II); ρ Coefficients

Enzyme	Substrate	ρ	рН	Protease
Papain	I	0.57	6	Cysteine
Papain	II	0.55	6	Cysteine
Ficin	I I	0.57	6	Cysteine
Ficin	II	0.62	6	Cysteine
Actinidin	I	0.74	6	Cysteine
Bromelain B	I	0.70	6	Cysteine
Bromelain B	II	0.68	6	Cysteine
Bromelain D	I	0.63	6	Cysteine
Subtilisin	I	0.49	7	Serine
Chymotrypsin	1	0.42	6.9	Serine
Trypsin	1	0.71	7	Serine

Example	e - Step	wise Re	gressio	n Ana
Y	X-1	X-2	X-3	X-4
78.5	7	26	6	60
74.3	1	29	15	52
104.3	11	56	8	20
87.6	11	31	8	47
95.9	7	52	6	33
109.2	11	55	9	22
102.7	3	71	17	6
72.5	1	31	22	44
93.1	2	54	18	22
115.9	21	47	4	26
83.8	1	40	23	34
113.3	11	66	9	12
109.4	10	68	8	12

The Hald Data Set: Fo	rward Selection
Y vs. X-4	r = 0.821; s = 8.96; F = 22.80
Y vs. X-1 and X-4	r = 0.986; s = 2.73; F = 176.63
The Hald Data Set: Ba	ckward Elimination
Y vs. X-1 to X-4	r = 0.991; s = 2.45; F = 111.48
Y vs. X-1, X-2 and X-4	r = 0.991; s = 2.31; F = 166.83
Y vs. X-1 and X-2	r = 0.989; s = 2.41; F = 229.50
The Hald Data Set: Ste	epwise Selection of Variables
Y vs. X-4	r = 0.821; s = 8.96; F = 22.80
Y vs. X-1 and X-4	r = 0.986; s = 2.73; F = 176.63
Y vs. X-1, X-2 und X-4	r = 0.991; s = 2.31; F = 166.83
Y vs. X-1 and X-2	r = 0.989; s = 2.41; F = 229.50
The Hald Data Set "Be	st" Model:

A Common Situation

A chemist synthesizes about 30 compounds.

The biologists determines the activity values.

Both ask the chemoinformatician to derive a QSAR model.

The chemoinformatician loads 1500 variables (e.g. from the program DRAGON, Roberto Todeschini) and derives a QSAR model, containing only a few variables, which meets all statistical criteria.

Chemist, biologist and chemoinformatician publish the results. Everybody is happy.

The Selwood D	ata Set
n = 31 objects and	k = 53 independent variables.
Cheoretically, the	re are:
53	one-variable models,
1,378	two-variable models,
23,426	three-variable models,
, 22,957,480	six-variable models,
····,	in total
7,160,260,814	,092,303 regression models,

Variables of the Selwood Data Set

ATCH1 - ATCH10 = partial atomic charges DIPV_X, DIPV_Y and DIPV_Z = dipole vectors DIPMOM = dipole moment ESDL1 - ESDL10 = electrophilic superdelocalizability NSDL1 - NSDL10 = nucleophilic superdelocalizability VDWVOL = van der Waals volume SURF_A = surface area MOFI_X, MOFI_Y and MOFI_Z = moments of inertia PEAX_X, PEAX_Y and PEAX_Z = ellipsoid axes MOL_WT = molecular weight S8_1DX, S8_1DY and S8_1DZ = substituent dimensions S8_1CX, S8_1CY and S8_1CZ = substituent centers LOGP = partition coefficient M_PNT = melting point SUM_F and SUM_R = sums of the F and R constants

Evolutionary	Genetic
Algorithms	Algorithms
tart with one	start with several to many
random model	models (population)
nutation	mutation and crossover
inear path	parallel pathes
very fast (must	slow (depends in the
be repeated)	size of the population)
esult: one or few	result: several to many
models	models
III variables have	some variables may
same chance	die out

(1646-1716)

"It is unworthy for excellent men to lose hours like slaves in the labour of calculation which could safely be relegated to anyone else if machines

Evolution of a Model - F Criterion 9 generations, 111 models, 6 seconds						
Va	riables	k	S	FIT	F	
Start:	4, 17, 36	3	0.667	0.477	6.356	
	4, 17	2	0.666	0.519	9.084	
	17	1	0.697	0.411	13.142	
	5, 17, 36, <mark>50</mark>	4	0.470	1.420	16.682	
	5, 36, 50	3	0.506	1.325	17.661	
	4, 5, 36, 50	4	0.452	1.576	18.520	
4,	5, 11, 36, 50	5	0.415	1.676	18.775	
4, 5, 1	1, 36, 39, 50	6	0.3775	1.788	19.965	
End: 4,	5, 11, 39, 50	5	0.377 ₁	2.127	23.818	

Hugo Kubinyi, www.kubinyi.de

Evolution of a Model - FIT Criterion

8 generations, 129 models, 7 seconds

Variables		k	S	FIT	F
Start:	35, 52	2	0.695	0.412	7.212
	52	1	0.683	0.467	14.934
	11, 52	2	0.645	0.608	10.647
11, 39	, 40, 50, 52	5	0.448	1.375	15.402
11	, 39, 50, 52	4	0.449	1.614	18.964
	39, 50, 52	3	0.462	1.720	22.935
	4, 5, 39, 50	4	0.424	1.873	22.010
End: 4,5	5, 11 , 39, 50	5	0.377	2.127	23.818

Hugo Kubinyi, www.kubinyi.de					
MUSEUM: "Best"	Mode	ls With	n Up to	6 Varia	ables
Variables	r	S	F	Q ²	SPRESS
4, 5, 11, 39, 50	0.909	0.377	23.818	0.696	0.499
4, 5, 11, 38, 50	0.909	0.377	23.781	0.696	0.499
38, 50, 52	0.849	0.460	23.267	0.647	0.518
4, 11, 38, 48, 50, 52	0.924	0.354	23.240	0.754	0.458
4, 11, 39, 48, 50, 52	0.924	0.354	23.233	0.751	0.461
4, 11, 38, 47, 50, 52	0.924	0.354	23.191	0.749	0.463
4, 11, 39, 47, 50, 52	0.923	0.355	23.087	0.746	0.466
17, 36, 50	0.848	0.462	23.040	0.644	0.520
39, 50, 52	0.847	0.462	22.935	0.643	0.520
4, 17, 35, 37, 50	0.905	0.385	22.709	0.676	0.515

Comparison of Published "Best" Models						
Variables	F	CSA	GFA	FIT-Cr		
4, 5, 11, 39, 50	23.818		 Image: A start of the start of	✓		
4, 5, 11, 38, 50	23.781	✓	✓	✓		
38, 50, 52	23.267		 Image: A start of the start of	✓		
4, 11, 38, 48, 50, 52	23.240			✓		
4, 11, 39, 48, 50, 52	23.233			✓		
4, 11, 38, 47, 50, 52	23.191			✓		
4, 11, 39, 47, 50, 52	23.087			✓		
17, 36, 50	23.040		✓	✓		
39, 50, 52	22.935			✓		
4, 17, 35, 37, 50	22.709		 Image: A start of the start of	 Image: A start of the start of		

Vectors	r	S	F	Q ²	SPRESS
1	0.687	0.611	25.93	0.201	0.751
2	0.814	0.497	27.52	-0.172	0.926
3	0.884	0.408	32.03	-0.419	1.038
4	0.909	0.371	30.77	0.198	0.795
5	0.929	0.335	31.58	0.279	0.768
6	0.949	0.292	35.98	0.238	0.806
7	0.953	0.285	32.67	0.251	0.817
8	0.959	0.274	31.32	-0.166	1.042

Hugo Kubinyi, www.	kubinyi.de				
Variable Se	electior	n: Best	Three-Va	riable N	lodels
Variables	r	S	F	Q ²	SPRESS
38, 50, 52	0.849	0.460	23.267	0.647	0.518
17, 36, 50	0.848	0.462	23.040	0.644	0.520
39, 50, 52	0.847	0.462	22.935	0.643	0.520
17, 38, 50	0.838	0.476	21.153	0.604	0.548
17, 39, 50	0.835	0.479	20.708	0.601	0.551
17, 35, 50	0.830	0.486	19.877	0.596	0.553
40, 50, 52	0.830	0.486	19.863	0.598	0.552
4, 5, 11	0.829	0.487	19.827	0.612	0.543
36, 50, 52	0.829	0.487	19.769	0.586	0.560
17, 40, 50	0.827	0.490	19.411	0.589	0.559

(11 vai	riables fro	om from 1	0 best 3-v	ariable m	odels)
Vectors	r	S	F	Q ²	SPRESS
1	0.729	0.576	32.83	0.284	0.711
2	0.826	0.507	25.91	0.519	0.593
3	0.889	0.399	33.86	0.658	0.509
4	0.902	0.384	28.25	0.665	0.514
5	0.909	0.376	23.91	0.671	0.519
6	0.913	0.377	19.97	0.618	0.571
7	0.918	0.375	17.57	0.532	0.646
8	0.919	0.380	14.99	0.558	0.642

Hugo Kubinyi, www.kubinyi.de Comparison of PLS and Regression Analyses a) PLS, all variables (5 components) r = 0.929; s = 0.335; F = 31.58 $Q^2 = 0.279$; $s_{PRESS} = 0.768$ b) Regression (best 3-variable model) r = 0.849; s = 0.460; F = 23.27 $Q^2 = 0.647$; $s_{PRESS} = 0.518$ c) PLS, reduced variable set (5 components) r = 0.909; s = 0.376; F = 23.91 $Q^2 = 0.671$; $s_{PRESS} = 0.519$

The Real Situation

A chemist prepares some 20 compounds.

The biologist determines the activity values.

They both ask the chemoinformatician to derive a QSAR model.

The resulting model does not contain more than four variables, is selected from about fifty variables and is validated by all statistical criteria, including LOO cross-validation <u>and</u> y scrambling.

How good is the predictivity of the model for a test set of 10 compounds?

