I. Multiple choice

- 1. The only membrane-bound enzyme in the citric acid cycle is
- a) aconitase
- b) the α-ketoglutarate dehydrogenase complex
- malate dehydrogenase succinate dehydrogenase.
- 2. Control of the citric acid cycle is exercised by each of the following enzymes, except for
- a) citrate synthase
- b) isocitrate dehydrogenase
- c aconitase
- d) the α-ketoglutarate dehydrogenase complex
- 3. Another name for Complex II in the electron transport chain is
- a) cytochrome c oxidase
- b) NADH-CoQ oxidoreductase
- c) cytochrome bcl complex d succinate dehydrogenase
- 4. The complex in the electron transport chain that does not have a direct link to coenzyme Q in some form is
- a) the succinate dehydrogenase complex
- b) Complex I
- © cytochrome c oxidase
- d) Complex III
- 5. Redox reactions of NADH-linked dehydrogenases involve
- a hydride ion transfer
- b) transfer of two-carbon groups
- c) transfer of three-carbon groups
- d) transfer of acetyl groups
- 6. Which enzymes in the citric acid cycle catalyze oxidative decarboxylation reactions?
- isocitrate dehydrogenase and the α -ketoglutarate dehydrogenase complex b) aconitase and succinate dehydrogenase
- c) the \alpha-ketoglutarate dehydrogenase complex and succinate thiokinase
- d) fumarase and succinate dehydrogenase
- 7.A unique feature of the glyoxylate cycle is that it allows the organisms that possess this pathway to
- a) produce fats from carbohydrates
- produce carbohydrates from fats c) convert acetyl-CoA to pyruvate
- d) do all of the above

2)Below are steady state (not at equilibrium) concentrations of metabolites in red blood cells. Answer the following. (10)

a) If the ratio of NAD+/NADH is 1000./1, what is the ΔG of the lactate dehydrogenase reaction. The ΔG° is -25.2 kJ/mol.

Steady-State Concentrations of Glycolytic Metabolites in Erythrocytes		Pyr + NAOH = Lactuate
Metabolite	mM	,
Glucose	5.0	NAD+
Glucose-6-phosphate	0.083	(417)
Fructose-6-phosphate	0.014	G > 1000
Fructose-1,6-bisphosphate	0.031	DG=160+ RT In [1000 1000]
Dihydroxyacetone phosphate	0.14	VC-1/2 + 1/1 /V CO
Glyceraldehyde-3-phosphate	0.019	HO -20
1,3-Bisphosphoglycerate	0.001	4 4
2,3-Bisphosphoglycerate	4.0	29 - 1100
3-Phosphoglycerate	0.12	+831.36 Inaosia 1
2-Phosphoglycerate	0.030	T 00 1000514 1
Phosphoenolpyruvate	0.023	
Pyruvate	0.051	0.4 10.0
Lactate	2.9	-25,200 + ·310 · 10,9
ATP	1.85	λ
ADP	0.14	8.31
P_{i}	1.0	00000

b) Is the phosphoglucoisomerase reaction more or less favorable thermodynamically under real erythrocyte conditions as compared to standard conditions? Show why! The ΔG° is -16.7 kJ/mol.

$$\Delta G' = -16,700 + 8.31 \cdot 310 \text{ Im} \frac{0.014}{0.083}$$

$$G = -16,700 + -543$$

$$= -17,24 \text{ KJ/mul}$$

Marchardole

Favorable

II.Problems, etc-Show all work to receive any credit

1. a) Hunters often claim that meat from game that was run to exhaustion is sour. Exaplain from a metabolic pespective why this might be so. (9)

Under Conditions of angerobic muscle activity (run to death!), the TCA + ETS cannot use the pyrurate from glycolysis. Thus to maintain stycolysis for ATP NAP + MAST be regenerated by pyr + NADH > lactate + NAD+, or glycolysis will stop So lactic acid is the sour taste.

b) Yeast in the anaerobic beer brewing process (fermentation) make ethanol to solve a metabolic problem. Explain the problem and how yeast solve it. What other product is produced by this process?

Yeast (macrobic) have the same problem they need to regenerate NAD+ to keep making ATP. They instead convert pyrute -> ethanol using up NADH in the process. They also generate (O2 as part of this process.

2. a) What would be the ratio of glyceraldehyde-3-phosphate (G-3-P)/dihydroxyacetone phosphate (DHAP) at equilibrium (K_{eq}) at 37°C? (8)

b) Under "realistic" cellular conditions [G-3-P]= 0.0012 mM and [DHAP]= 0.20 mM. What is the $\Delta G'$ at 37°C under these conditions?

$$\Delta G' = +7,560 + (8.315)(310) \ln \frac{0.0012}{0.20}$$

$$+ -13,200$$

$$= -5.640 \frac{5}{mol} = -5.64 \text{ kJ/mol}$$

3. a)What is the $\Delta G^{o'}$ for the process where succinate passes on its 2 electrons to O_2 ? b)What would be the K_{eq} for this process? c)What is the maximum number of ATPs which could be synthesized in this 2 electron process?(9)

(

synthesized in this 2 electron process?(9)

Succinate + 1/202 Fumarate + 1/20

Aunor acc

a)
$$\Delta G^{\circ} = 2 (9690)(6.816 - 0.031) = 151 \text{ KJ}/$$

b) $Keq = e^{-\frac{(-151,000)}{8.315 \cdot 298}} = 2.92 \times 10^{216}$

c) $\frac{-151}{-305} = 4.95 \text{ ATP or 4 in }$

Whole numbers 15 moximize