Lecture 9 - Fatty Acid Metabolism

Chem 454: Regulatory Mechanisms in Biochemistry
University of Wisconsin-Eau Claire
Introduction

Fatty acids play several important roles:

- Building blocks for phospholipids and glycolipids
- Target proteins to membranes
- High energy source of fuel
- Fatty acid derivatives are used as hormones and intracellular messengers
Introduction

Overview of fatty acid synthesis
1. Triglycerides

Triglycerides are a highly concentrated store of energy

- 9 kcal/g vs 4 kcal/g for glycogen
- Glycogen is also highly hydrated, 2 g H₂O/g glycogen
1.1 Pancreatic Lipases

- Dietary triacylglycerols must be broken down before being absorbed by the intestines.
- Bile salts, which act as detergents, are used to solublize the triacylglycerols.
1.1 Pancreatic Lipases

- Dietary triacylglycerols must be broken down before being absorbed by the intestines.
- Bile salts, which act as detergents, are used to solublize the triacylglycerols.
1.1 Pancreatic Lipases

Pancreatic lipases hydrolyze the ester bonds of the triacylglycerols while in the micelles.
In the intestinal mucosal cells, the fatty acids and monoacylglycerides are resynthesized into triacylglycerides and packaged into *chylomicrons*.

1.1 Chylomicrons
2. Utilization of Fatty Acids as Fuel

Three stages of processing

- Triglycerols are degraded to fatty acids and glycerol in the adipose tissue and transported to other tissues.

- Fatty acids are activated and transported into the mitochondria.

- Fatty acids are broken down into two-carbon acetyl-CoA units and fed into the citric acid cycle.
2.1 Breakdown of Triacylglycerols

In the adipose tissue, lipases are activated by hormone signaled phosphorylation.
2.1 Breakdown of Triacylglycerols

The lipases break the triacylglycerols down to fatty acids and glycerol.

- The fatty acids are transported in the blood by serum albumin.
2.1 Breakdown of Triacylglycerols

The glycerol is absorbed by the liver and converted to glycolytic intermediates.
2.2 Activation of Fatty Acids

Acyl CoA synthetase reaction occurs in the mitochondrial membrane.

\[\text{Fatty acid} + \text{ATP} \rightleftharpoons \text{Acyl adenylate} + \text{PP}_i \] (1)

\[\text{R-AMP} + \text{HS-CoA} \rightleftharpoons \text{R-CoA} + \text{AMP} \] (2)
2.3 Transport into Mitochondrial Matrix

Carnitine carries long-chain activated fatty acids into the mitochondrial matrix.
2.3 Transport into Mitochondrial Matrix

Carnitine carries long-chain activated fatty acids into the mitochondrial matrix
2.4 Fatty acid oxidation

Each round in fatty acid degradation involves four reactions

1. oxidation to *trans*-Δ²-Enoly-CoA
2.4 Fatty acid oxidation

Each round in fatty acid degradation involves four reactions

2. Hydration to L-3-Hydroxylacyl CoA
2.4 Fatty acid oxidation

Each round in fatty acid degradation involves four reactions

3. Oxidation to 3-Ketoacyl CoA
2.4 Fatty acid oxidation

Each round in fatty acid degradation involves four reactions

4. Thiolysis to produce Acetyl-CoA
2.4 Fatty acid oxidation

Each round in fatty acid degradation involves four reactions

- The process repeats itself
2.4 Fatty acid oxidation

Each round in fatty acid degradation involves four reactions

<table>
<thead>
<tr>
<th>Step</th>
<th>Reaction</th>
<th>Enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fatty acid + CoA + ATP \rightarrow acyl CoA + AMP + PP$_i$</td>
<td>Acyl CoA synthetase [also called fatty acid thio kinase and fatty acid:CoA ligase (AMP)]</td>
</tr>
<tr>
<td>2</td>
<td>Carnitine + acyl CoA \rightarrow acyl carnitine + CoA</td>
<td>Carnitine acyltransferase (also called carnitine palmitoyl transferase)</td>
</tr>
<tr>
<td>3</td>
<td>Acyl CoA + E-FAD \rightarrow trans-Δ^2-enoyl CoA + E-FADH$_2$</td>
<td>Acyl CoA dehydrogenases (several isozymes having different chain-length specificity)</td>
</tr>
<tr>
<td>4</td>
<td>trans-Δ^2-Enoyl CoA + H$_2$O \rightarrow L-3-hydroxyacyl CoA</td>
<td>Enoyl CoA hydratase (also called crotonase or 3-hydroxyacyl CoA hydratase)</td>
</tr>
<tr>
<td>5</td>
<td>L-3-Hydroxyacyl CoA + NAD$^+$ \rightarrow 3-ketoacyl CoA + NADH + H$^+$</td>
<td>L-3-Hydroxyacyl CoA dehydrogenase</td>
</tr>
<tr>
<td>6</td>
<td>3-Ketoacyl CoA + CoA \rightarrow acetyl CoA + acyl CoA (shortened by C$_2$)</td>
<td>β-Ketothiolase (also called thiolase)</td>
</tr>
</tbody>
</table>
2.5 ATP Yield

The complete oxidation of the sixteen carbon palmitoyl-CoA produces 106 ATP's

\[
\text{Palmitoyl-CoA} + 7 \text{FAD} + 7 \text{NAD}^+ + 7 \text{CoASH} + \text{H}_2\text{O} \rightarrow 8 \text{Acetyl-CoA} + 7 \text{FADH}_2 + 7 \text{NADH} + 7 \text{H}^+
\]
3.1 Special Cases

Unsaturated fatty acids (monounsaturated)
3.1 Special Cases

Unsaturated fatty acids (polyunsaturated)
3.2 Odd-Chain (skip)
3.3 Propionyl-CoA (skip)
3.4 Peroxisomes (skip)
3.5 Ketone Bodies

Use of fatty acids in the citric acid cycle requires carbohydrates for the production of oxaloacetate.

During starvation or diabetes, OAA is used to make glucose.

- Fatty acids are then used to make ketone bodies (acetoacetate and D-3-hydroxybutarate)
3.5 Ketone Bodies

Ketone bodies, acetoacetate and 3-hydroxybutyrate are formed from Acetyl-CoA
3.6 Ketone Bodies as a Fuel Source

The liver is the major source of ketone bodies.

- It is transported in the blood to other tissues

Acetoacetate in the tissues

- Acetoacetate is first activated to acetoacetate by transferring the CoASH from succinyl-CoA.
- It is then split into two Acetyl-CoA by a thiolase reaction
3.7 Fatty Acids Cannot be Used to Synthesize Glucose

Even though the citric acid cycle intermediate oxaloacetate can be used to synthesize glucose, Acetyl-CoA cannot be used to synthesize oxaloacetate.

- The two carbons that enter the citric acid cycle as Acetyl-CoA leave as CO₂.
4. Fatty Acid Synthesis.

Fatty acid are synthesized and degraded by different pathways.

- Synthesis takes place in the cytosol.
- Intermediates are attached to the acyl carrier protein (ACP).
- In higher organisms, the active sites for the synthesis reactions are all on the same polypeptide.
- The activated donor in the synthesis is malonyl-ACP.
- Fatty acid reduction uses NADPH + H⁺.
- Elongation stops at C₁₆ (palmitic acid)
4.1 Formation of Malonyl Coenzyme A

Formation of malonyl-CoA is the committed step in fatty acid synthesis.

\[
\text{CH}_3\text{C}-\text{S-CoA} + \text{HCO}_3^- + \text{ATP} \rightarrow \text{O-C-CH}_2\text{C-S-CoA} + \text{ADP} + \text{P}_i + \text{H}^+ \\
\text{Acetyl-CoA Carboxylase} \\
\text{Malonyl-CoA}
\]
4.2 Acyl Carrier Protein

The intermediates in fatty acid synthesis are covalently linked to the acyl carrier protein (ACP).
4.3 Elongation

In bacteria the enzymes that are involved in elongation are separate proteins; in higher organisms the activities all reside on the same polypeptide.

To start an elongation cycle, Acetyl-CoA and Malonyl-CoA are each transferred to an acyl carrier protein

\[
\text{Acetyl-CoA} + \text{ACP} \xrightarrow{\text{Acetyl transacylase}} \text{Acetyl-ACP} + \text{CoA} \\
\text{Malonyl-CoA} + \text{ACP} \xrightarrow{\text{Malonyl transacylase}} \text{Malonyl-ACP} + \text{CoA}
\]
4.3 Elongation

Acyl-malonyl ACP condensing enzyme forms Acetoacetyl-ACP.
The next three reactions are similar to the reverse of fatty acid degradation, except:

- The NADPH is used instead of NADH and FADH$_2$
- The D-enantiomer of Hydroxybutarate is formed instead of the L-enantiomer
The elongation cycle is repeated six more times, using malonyl-CoA each time, to produce palmityl-ACP.

A thioesterase then cleaves the palmityl-CoA from the ACP.
4.4 Multifunctional Fatty Acid Synthase

Domain 1
- Substrate entry (AT & MT) and condensation unit (CE)

Domain 2
- Reduction unit (DH, ER & KR)

Domain 3
- Palmitate release unit (TE)
4.4 Multifunctional Fatty Acid Synthase

The image shows a diagram of the multifunctional fatty acid synthase (FAS) enzyme complex. The diagram illustrates the steps involved in the synthesis of fatty acids, including:

- **Palmitate release**: This is the entry point for palmitate into the synthase complex.
- **Reduction** and **Condensation** steps are indicated, which are crucial for the elongation and biosynthesis of fatty acids.
- **Substrate entry** and **Translocation** steps are also depicted, highlighting the movement of substrates and products within the complex.

The enzyme complex is composed of various domains, each responsible for specific functions in the fatty acid synthesis process.
4.5 Fatty Acid Synthase Mechanism
4.5 Fatty Acid Synthase Mechanism

Condensation of Acyl-CoA with Malonyl-CoA:
4.5 Fatty Acid Synthase Mechanism

Reduction of the acetoacetate unit:
4.5 Fatty Acid Synthase Mechanism

Translocation to the condensing enzyme
4.5 Fatty Acid Synthase Mechanism

Transfer of Malonyl group to the other ACP:
4.6 Stoichiometry of FA synthesis

The stoichiometry of palmitate synthesis:

- **Synthesis of palmitate from Malonyl-CoA**

 \[
 \text{Acetyl-CoA} + 7 \text{malonyl-CoA} + 14 \text{NADPH} + 20 \text{H}^+ \rightarrow \text{palmitate} + 7 \text{CO}_2 + 14 \text{NADP}^+ + 8 \text{CoA} + 6 \text{H}_2\text{O}
 \]

- **Synthesis of Malonyl-CoA from Acetyl-CoA**

 \[
 7 \text{Acetyl-CoA} + 7 \text{CO}_2 + 7 \text{ATP} \rightarrow 7 \text{Malonyl-CoA} + 7 \text{ADP} + 7 \text{P}_i + 14 \text{H}^+
 \]

- **Overall synthesis**

 \[
 \text{Acetyl-CoA} + 7 \text{ATP} + 14 \text{NADPH} + 6 \text{H}^+ \rightarrow \text{palmitate} + 14 \text{NADP}^+ + 8 \text{CoA} + 6 \text{H}_2\text{O} + 7 \text{ADP} + 7 \text{P}_i
 \]
4.7 Citrate Shuttle

Acetyl-CoA is synthesized in the mitochondrial matrix, whereas fatty acids are synthesized in the cytosol.

- Acetyl-CoA units are shuttled out of the mitochondrial matrix as citrate:

\[
\text{Citrate} + \text{ATP} + \text{CoA} + \text{H}_2\text{O} \xrightarrow{\text{Citrate Lyase}} \text{Acetyl-CoA} + \text{ADP} + \text{P}_i + \text{Oxaloacetate}
\]
4.8 Sources of NADPH

The malate dehydrogenase and NADP$^+$-linked malate enzyme reactions of the citrate shuttle exchange NADH for NADPH

\[
\text{Oxaloacetate} + \text{NADH} + \text{H}^+ \xrightarrow{\text{Malate Dehydrogenase}} \text{Malate} + \text{NAD}^+
\]

\[
\text{Malate} + \text{NADP}^+ \xrightarrow{\text{NADP}^+-\text{linked Malate Enzyme}} \text{Pyruvate} + \text{CO}_2 + \text{NADPH}
\]

\[
\text{Pyruvate} + \text{CO}_2 + \text{ATP} + \text{H}_2\text{O} \xrightarrow{\text{Pyruvate Carboxylase}} \text{Oxaloacetate} + \text{ADP} + \text{P}_i + 2\text{H}^+
\]

\[
\text{NADP}^+ + \text{NADH} + \text{ATP} + \text{H}_2\text{O} \xrightarrow{} \text{NADPH} + \text{NAD}^+ + \text{ADP} + \text{P}_i + \text{H}^+
\]
4.9 Fatty Acid Synthase Inhibitors (skip)
4.10 Variations on a Theme (skip)
5. Regulation of Fatty Acid Synthesis

Regulation of Acetyl carboxylase

- **Global**
 - + insulin
 - - glucagon
 - - epinephrine

- **Local**
 - + Citrate
 - - Palmitoyl-CoA
 - - AMP
5.1 Regulation of Fatty Acid Synthesis
6. Elongation and Unsaturation

Endoplasmic reticulum systems introduce double bonds into long chain acyl-CoA's

- Reaction combines both NADH and the acyl-CoA's to reduce O_2 to H_2O.
6.1 Elongation and Unsaturation

Elongation and unsaturation convert palmitoyl-CoA to other fatty acids.

- Reactions occur on the cytosolic face of the endoplasmic reticulum.
- Malonyl-CoA is the donor in elongation reactions.
6.2 Eicosanoid Hormones

Eicosanoid horomones are synthesized from arachadonic acid (20:4).

- **Prostaglandins**
 - 20-carbon fatty acid containing 5-carbon ring
 - Prostacyclins
 - Thromboxanones

- **Leukotrienes**
 - contain three conjugated double bonds
6.2 Eicosanoid Hormones
6.2 Eicosanoid Hormones

[Diagram showing the conversion of Arachidonate to Prostaglandin G2 and then to Prostaglandin H2 via Cyclooxygenase and Peroxidase reactions.]

57
6.2 Eicosanoid Hormones

\[
\text{Prostaglandin } A_2
\]

\[
\text{Prostacyclin (PGI}_2\text{)}
\]

\[
\text{Thromboxane } A_2 \text{ (TXA}_2\text{)}
\]

\[
\text{Leukotriene } B_4
\]