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9 Coherence Selection:
Phase Cycling and Gradient Pulses†

9.1 Introduction

The pulse sequence used in an NMR experiment is carefully designed to
produce a particular outcome.  For example, we may wish to pass the spins
through a state of multiple quantum coherence at a particular point, or plan for
the magnetization to be aligned along the z-axis during a mixing period.
However, it is usually the case that the particular series of events we designed
the pulse sequence to cause is only one out of many possibilities.  For example,
a pulse whose role is to generate double-quantum coherence from anti-phase
magnetization may also generate zero-quantum coherence or transfer the
magnetization to another spin.  Each time a radiofrequency pulse is applied
there is this possibility of branching into many different pathways.  If no steps
are taken to suppress these unwanted pathways the resulting spectrum will be
hopelessly confused and uninterpretable.

There are two general ways in which one pathway can be isolated from the
many possible.  The first is phase cycling.  In this method the phases of the
pulses and the receiver are varied in a systematic way so that the signal from
the desired pathways adds and signal from all other pathways cancels.  Phase
cycling requires that the experiment is repeated several times, something which
is probably required in any case in order to achieve the required signal-to-noise
ratio.

The second method of selection is to use field gradient pulses.  These are
short periods during which the applied magnetic field is made inhomogeneous.
As a result, any coherences present dephase and are apparently lost.  However,
this dephasing can be undone, and the coherence restored, by application of a
subsequent gradient.  We shall see that this dephasing and rephasing approach
can be used to select particular coherences.  Unlike phase cycling, the use of
field gradient pulses does not require repetition of the experiment.

Both of these selection methods can be described in a unified framework
which classifies the coherences present at any particular point according to a
coherence order and then uses coherence transfer pathways to specify the
desired outcome of the experiment.

9.2 Phase in NMR

In NMR we have control over both the phase of the pulses and the receiver
phase.  The effect of changing the phase of a pulse is easy to visualise in the
usual rotating frame.  So, for example, a 90° pulse about the x-axis rotates
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magnetization from z onto –y, whereas the same pulse applied about the y-axis
rotates the magnetization onto the x-axis.  The idea of the receiver phase is
slightly more complex and will be explored in this section.

The NMR signal – that is the free induction decay – which emerges from the
probe is a radiofrequency signal oscillating at close to the Larmor frequency
(usually hundreds of MHz).  Within the spectrometer this signal is shifted down
to a much lower frequency in order that it can be digitized and then stored in
computer memory.  The details of this down-shifting process can be quite
complex, but the overall result is simply that a fixed frequency, called the
receiver reference or carrier, is subtracted from the frequency of the incoming
NMR signal.  Frequently, this receiver reference frequency is the same as the
transmitter frequency used to generate the pulses applied to the observed
nucleus.  We shall assume that this is the case from now on.

The rotating frame which we use to visualise the effect of pulses is set at the
transmitter frequency, ωrf, so that the field due to the radiofrequency pulse is
static.  In this frame, a spin whose Larmor frequency is ω0 precesses at (ω0 –
ωrf), called the offset Ω.  In the spectrometer the incoming signal at ω0 is down-
shifted by subtracting the receiver reference which, as we have already decided,
will be equal to the frequency of the radiofrequency pulses.  So, in effect, the
frequencies of the signals which are digitized in the spectrometer are the offset
frequencies at which the spins evolve in the rotating frame.  Often this whole
process is summarised by saying that the "signal is detected in the rotating
frame".

9.2.1 Detector phase

The quantity which is actually detected in an NMR experiment is the transverse
magnetization.  Ultimately, this appears at the probe as an oscillating voltage,
which we will write as

S tFID = cosω0

where ω0 is the Larmor frequency.  The down-shifting process in the
spectrometer is achieved by an electronic device called a mixer; this effectively
multiplies the incoming signal by a locally generated reference signal, Sref,
which we will assume is oscillating at ωrf

S tref rf= cosω
The output of the mixer is the product SFIDSref

S S A t t

A t t

FID ref rf

rf rf

=

= +( ) + −( )[ ]
cos cos
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ω ω

ω ω ω ω
0
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2 0 0

The first term is an oscillation at a high frequency (of the order of twice the
Larmor frequency as ω0 ≈ ωrf) and is easily removed by a low-pass filter.  The
second term is an oscillation at the offset frequency, Ω.  This is in line with the
previous comment that this down-shifting process is equivalent to detecting the
precession in the rotating frame.
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We can go further with this interpretation and say that the second term
represents the component of the magnetization along a particular axis (called
the reference axis) in the rotating frame.  Such a component varies as cos Ωt,
assuming that at time zero the magnetization is aligned along the chosen axis;
this is illustrated below

θ

t = 0 time t

At time zero the magnetization is assumed to be aligned along the reference axis.  After time t the
magnetization has precessed through an angle θ  = Ωt.  The projection of the magnetization onto the
reference axis is proportional to cos Ωt.

Suppose now that the phase of the reference signal is shifted by φ, something
which is easily achieved in the spectrometer.  Effectively, this shifts the
reference axis by φ, as shown below

φ

t = 0 time t

θ φ–

Shifting the phase of the receiver reference by φ is equivalent to detecting the component along an axis
rotated by φ from its original position (the previous axis is shown in grey).  Now the apparent angle of
precession is θ = Ωt – φ. and the projection of the magnetization onto the reference axis is proportional to
cos (Ωt – φ).

The component along the new reference axis is proportional to cos Ωt −( )φ .
How this is put to good effect is described in the next section.
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9.2.2 Quadrature detection

We normally want to place the transmitter frequency in the centre of the
resonances of interest so as to minimise off-resonance effects.  If the receiver
reference frequency is the same as the transmitter frequency, it immediately
follows that the offset frequencies, Ω , may be both positive and negative.
However, as we have seen in the previous section the effect of the down-
shifting scheme used is to generate a signal of the form cos Ωt.  Since cos(θ) =
cos(–θ) such a signal does not discriminate between positive and negative
offset frequencies.  The resulting spectrum, obtained by Fourier transformation,
would be confusing as each peak would appear at both +Ω and –Ω.

The way out of this problem is to detect the signal along two perpendicular
axes.  As is illustrated opposite, the projection along one axis is proportional to
cos(Ωt) and to sin(Ωt) along the other.  Knowledge of both of these projections
enables us to work out the sense of rotation of the vector i.e. the sign of the
offset.

The sin modulated component is detected by having a second mixer fed with
a reference whose phase is shifted by π/2.  Following the above discussion the
output of the mixer is

cos cos cos sin sin

sin

Ω Ω Ω
Ω

t t t

t

−( ) = +
=

π π π2 2 2

The output of these two mixers can be regarded as being the components of the
magnetization along perpendicular axes in the rotating frame.

The final step in this whole process is regard the outputs of the two mixers as
being the real and imaginary parts of a complex number:

cos sin expΩ Ω Ωt t t+ = ( )i i

The overall result is the generation of a complex signal whose phase varies
according to the offset frequency Ω.

9.2.3 Control of phase

In the previous section we supposed that the signal coming from the probe was
of the form cosω 0t  but it is more realistic to write the signal as
cos(ω0t + φsig) in recognition of the fact that in addition to a frequency the signal
has a phase, φsig.  This phase is a combination of factors that are not under our
control (such as phase shifts produced in the amplifiers and filters through
which the signal passes) and a phase due to the pulse sequence, which certainly
is under our control.

The overall result of this phase is simply to multiply the final complex signal
by a phase factor, exp(iφsig):

exp expi i sigΩt( ) ( )φ

As we saw in the previous section, we can also introduce another phase shift by
altering the phase of the reference signal fed to the mixer, and indeed we saw

θ x

y

The x and y projections of the
black vector are both positive.
If the vector had precessed in
the opposite direction (shown
shaded), and at the same
frequency, the projection along
x would be the same, but along
y it would be minus that of the
black vector.
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that the cosine and sine modulated signals are generated by using two mixers
fed with reference signals which differ in phase by π/2.  If the phase of each of
these reference signals is advanced by φrx, usually called the receiver phase, the
output of the two mixers becomes cos Ωt −( )φrx  and sin Ωt −( )φrx .  In the
complex notation, the overall signal thus acquires another phase factor

exp exp expi i isig rxΩt( ) ( ) −( )φ φ

Overall, then, the phase of the final signal depends on the difference between
the phase introduced by the pulse sequence and the phase introduced by the
receiver reference.

9.2.4 Lineshapes

Let us suppose that the signal can be written

S t B t t T( ) = ( ) ( ) −( )exp exp expi iΩ Φ 2

where Φ is the overall phase (= −φ φsig rx ) and B is the amplitude.  The term,
exp(-t/T2) has been added to impose a decay on the signal.  Fourier
transformation of S(t) gives the spectrum S(ω):

S B A Dω ω ω( ) = ( ) + ( )[ ] ( )i iexp Φ [1]

where A(ω) is an absorption mode lorentzian lineshape centred at ω  = Ω and
D(ω) is the corresponding dispersion mode lorentzian:

A
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ω
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Normally we display just the real part of S(ω) which is, in this case,

Re cos sinS B A Dω ω ω( )[ ] = ( ) − ( )[ ]Φ Φ
In general this is a mixture of the absorption and dispersion lineshape.  If we
want just the absorption lineshape we need to somehow set Φ to zero, which is
easily done by multiplying S(ω) by a phase factor exp(iΘ).

S B A D

B A D

ω ω ω

ω ω

( ) ( ) = ( ) + ( )[ ] ( ) ( )
= ( ) + ( )[ ] +[ ]( )

exp exp exp

exp

i i i i

i i

Θ Φ Θ

Φ Θ

As this is a numerical operation which can be carried out in the computer we
are free to choose Θ to be the required value (here –Φ) in order to remove the
phase factor entirely and hence give an absorption mode spectrum in the real
part.  This is what we do when we "phase the spectrum".

9.2.5 Relative phase and lineshape

We have seen that we can alter the phase of the spectrum by altering the phase
of the pulse or of the receiver, but that what really counts is the difference in
these two phases.

We will illustrate this with the simple vector diagrams shown below.  Here,
the vector shows the position of the magnetization at time zero and its phase,

absorption

dispersion

Ω
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φsig, is measured anti-clockwise from the x-axis.  The dot shows the axis along
which the receiver is aligned; this phase, φrx, is also measured anti-clockwise
from the x-axis.

If the vector and receiver are aligned along the same axis, Φ = 0, and the real
part of the spectrum shows the absorption mode lineshape.  If the receiver
phase is advanced by π/2, Φ = 0 – π/2 and, from Eq. [1]

S B A D

B A D

ω ω ω π

ω ω

( ) = ( ) + ( )[ ] −( )
= − ( ) + ( )[ ]

i i

i

exp 2

This means that the real part of the spectrum shows a dispersion lineshape.  On
the other hand, if the magnetization is advanced by π/2, Φ  = φ sig – φ r x

= π/2 – 0 = π/2 and it can be shown from Eq. [1] that the real part of the
spectrum shows a negative dispersion lineshape.  Finally, if either phase is
advanced by π, the result is a negative absorption lineshape.

x

y

φrx φ

9.2.6 CYCLOPS

The CYCLOPS phase cycling scheme is commonly used in even the simplest
pulse-acquire experiments.  The sequence is designed to cancel some
imperfections associated with errors in the two phase detectors mentioned
above; a description of how this is achieved is beyond the scope of this
discussion.  However, the cycle itself illustrates very well the points made in
the previous section.

There are four steps in the cycle, the pulse phase goes x, y, –x, –y i.e. it
advances by 90° on each step; likewise the receiver advances by 90° on each
step.  The figure below shows how the magnetization and receiver phases are
related for the four steps of this cycle
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x–x

y

–y

pulse x y –x –y

receiver x y –x –y

Although both the receiver and the magnetization shift phase on each step, the
phase difference between them remains constant.  Each step in the cycle thus
gives the same lineshape and so the signal adds on all four steps, which is just
what is required.

Suppose that we forget to advance the pulse phase; the outcome is quite
different

x–x

y

–y

pulse x x x x

receiver x y –x –y

Now the phase difference between the receiver and the magnetization is no
longer constant.  A different lineshape thus results from each step and it is clear
that adding all four together will lead to complete cancellation (steps 2 and 4
cancel, as do steps 1 and 3).  For the signal to add up it is clearly essential for
the receiver to follow the magnetization.

9.2.7 EXORCYLE

EXORCYLE is perhaps the original phase cycle.  It is a cycle used for 180°
pulses when they form part of a spin echo sequence.  The 180° pulse cycles
through the phases x, y, –x, –y and the receiver phase goes x, –x, x, –x.  The
diagram below illustrates the outcome of this sequence



9–8

x–x

y

y

–y

–y

90°(x) – 

180°(±x)  

180°(±y)  

τ

τ

τ

If the phase of the 180° pulse is +x or –x the echo forms along the y-axis,
whereas if the phase is ±y the echo forms on the –y axis.  Therefore, as the 180°
pulse is advanced by 90° (e.g. from x to y) the receiver must be advanced by
180° (e.g. from x to –x).  Of course, we could just as well cycle the receiver
phases y, –y, y, –y; all that matters is that they advance in steps of 180°.  We
will see later on how it is that this phase cycle cancels out the results of
imperfections in the 180° pulse.

9.2.8 Difference spectroscopy

Often a simple two step sequence suffices to cancel unwanted magnetization;
essentially this is a form of difference spectroscopy.  The idea is well illustrated
by the INEPT sequence, shown opposite.  The aim of the sequence is to transfer
magnetization from spin I to a coupled spin S.

With the phases and delays shown equilibrium magnetization of spin I, Iz, is
transferred to spin S, appearing as the operator Sx.  Equilibrium magnetization
of S, Sz, appears as Sy.  We wish to preserve only the signal that has been
transferred from I.

The procedure to achieve this is very simple.  If we change the phase of the
second I spin 90° pulse from y to –y the magnetization arising from transfer of
the I spin magnetization to S  becomes –Sx  i.e. it changes sign.  In contrast, the
signal arising from equilibrium S spin magnetization is unaffected simply
because the Sz operator is unaffected by the I spin pulses.  By repeating the
experiment twice, once with the phase of the second I spin 90° pulse set to y
and once with it set to –y, and then subtracting the two resulting signals, the
undesired signal is cancelled and the desired signal adds.  It is easily confirmed
that shifting the phase of the S spin 90° pulse does not achieve the desired
separation of the two signals as both are affected in the same way.

In practice the subtraction would be carried out by shifting the receiver by
180°, so the I spin pulse would go y, –y and the receiver phase go x, –x.  This is
a two step phase cycle which is probably best viewed as difference
spectroscopy.

This simple two step cycle is the basic element used in constructing the

I

S

y

2J
1

2J
1

Pulse sequence for INEPT.
Filled rectangles represent 90°
pulses and open rectangles
represent 180° pulses.  Unless
otherwise indicated, all pulses
are of phase x.
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phase cycling of many two- and three-dimensional heteronuclear experiments.

9.3 Coherence transfer pathways

Although we can make some progress in writing simple phase cycles by
considering the vector picture, a more general framework is needed in order to
cope with experiments which involve multiple-quantum coherence and related
phenomena.  We also need a theory which enables us to predict the degree to
which a phase cycle can discriminate against different classes of unwanted
signals.  A convenient and powerful way of doing both these things is to use the
coherence transfer pathway approach.

9.3.1 Coherence order

Coherences, of which transverse magnetization is one example, can be
classified according to a coherence order, p, which is an integer taking values 0,
± 1, ± 2 ...  Single quantum coherence has p  = ± 1, double has
p = ± 2 and so on; z-magnetization, "zz" terms and zero-quantum coherence
have p = 0.  This classification comes about by considering the phase which
different coherences acquire is response to a rotation about the z-axis.

A coherence of order p, represented by the density operator σ p( ) , evolves
under a z-rotation of angle φ according to

exp exp exp−( ) ( ) = −( )( ) ( )i i iφ σ φ φ σF F pz
p

z
p [2]

where Fz is the operator for the total z-component of the spin angular
momentum.  In words, a coherence of order p experiences a phase shift of –pφ.
Equation [2] is the definition of coherence order.

To see how this definition can be applied, consider the effect of a z-rotation
on transverse magnetization aligned along the x-axis.  Such a rotation is
identical in nature to that due to evolution under an offset, and using product
operators it can be written

exp exp cos sin−( ) ( ) = +i iφ φ φ φI I I I Iz x z x y [3]

The right hand sides of Eqs. [2] and [3] are not immediately comparable, but by
writing the sine and cosine terms as complex exponentials the comparison
becomes clearer.  Using

cos exp exp exp expφ φ φ φ φ φ= ( ) + −( )[ ] = ( ) − −( )[ ]1
2

1
2i i     in i iis

Eq. [3] becomes

exp exp

exp exp exp exp

exp exp

−( ) ( )
= ( ) + −( )[ ] + ( ) − −( )[ ]
= +[ ] ( ) + −[ ] −( )

i i

i i i i

i i

i

i i

φ φ

φ φ φ φ

φ φ

I I I

I I

I I I I

z x z

x y

x y x y

1
2

1
2

1
2

1 1
2

1

It is now clear that the first term corresponds to coherence order –1 and the
second to +1; in other words, Ix is an equal mixture of coherence orders ±1.

The cartesian product operators do not correspond to a single coherence
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order so it is more convenient to rewrite them in terms of the raising and
lowering operators, I+ and I–, defined as

I I I I I Ix y x y+ = + =i     i– –

from which it follows that
I I I I I Ix = +[ ] = −[ ]+ +

1
2

1
2– –    y i [4]

Under z-rotations the raising and lowering operators transform simply

  exp exp exp−( ) ( ) = ( )± ±i i iφ φ φI I I Iz z m

which, by comparison with Eq. [2] shows that I+ corresponds to coherence
order +1 and I– to –1.  So, from Eq. [4] we can see that Ix and Iy correspond to
mixtures of coherence orders +1 and –1.

As a second example consider the pure double quantum operator for two
coupled spins,

2 21 2 1 2I I I Ix y y x+

Rewriting this in terms of the raising and lowering operators gives

1
1 2 1 2i I I I I+ + − −−( )

The effect of a z-rotation on the term I I1 2
+ +  is found as follows:

exp exp exp exp

exp exp exp

exp exp exp

−( ) −( ) ( ) ( )
= −( ) −( ) ( )
= −( ) −( ) = −( )

+ +

+ +

+ + + +

i i i i

i i i

i i i

φ φ φ φ

φ φ φ

φ φ φ

I I I I I I

I I I I

I I I I

z z z z

z z

1 2 1 2 2 1

1 1 2 1

1 2 1 22

Thus, as the coherence experiences a phase shift of –2φ the coherence is
classified according to Eq. [2] as having p = 2.  It is easy to confirm that the
term I I1 2− −  has p = –2.  Thus the pure double quantum term, 2 21 2 1 2I I I Ix y y x+ , is
an equal mixture of coherence orders +2 and –2.

As this example indicates, it is possible to determine the order or orders of
any state by writing it in terms of raising and lowering operators and then
simply inspecting the number of such operators in each term.  A raising
operator contributes +1 to the coherence order whereas a lowering operator
contributes –1.  A z-operator, Iiz, has coherence order 0 as it is invariant to z-
rotations.

Coherences involving heteronuclei can be assigned both an overall order and
an order with respect to each nuclear species.  For example the term I S1 1+ –

 has
an overall order of 0, is order +1 for the I spins and –1 for the S spins.  The term
I I S z1 2 1+ +  is overall of order 2, is order 2 for the I spins and is order 0 for the S
spins.

9.3.2 Evolution under offsets

The evolution under an offset, Ω , is simply a z-rotation, so the raising and
lowering operators simply acquire a phase Ωt
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  exp exp exp−( ) ( ) = ( )± ±i i iΩ Ω ΩtI I tI t Iz z m

For products of these operators, the overall phase is the sum of the phases
acquired by each term

exp exp exp exp

exp

−( ) −( ) ( ) ( )
= −( )( )

− +

− +

i i i i

i

Ω Ω Ω Ω

Ω Ω

j jz i iz i j i iz j jz

i j i j

tI tI I I tI tI

t I I

It also follows that coherences of opposite sign acquire phases of opposite signs
under free evolution.  So the operator I1+I2+ (with p = 2) acquires a phase –(Ω1 +
Ω2)t i.e. it evolves at a frequency –(Ω1 + Ω2) whereas the operator I1–I2– (with p
= –2) acquires a phase (Ω1 + Ω2)t i.e. it evolves at a frequency (Ω1 + Ω2).  We
will see later on that this observation has important consequences for the
lineshapes in two-dimensional NMR.

The observation that coherences of different orders respond differently to
evolution under a z-rotation (e.g. an offset) lies at the heart of the way in which
gradient pulses can be used to separate different coherence orders.

9.3.3 Phase shifted pulses

In general, a radiofrequency pulse causes coherences to be transferred from one
order to one or more different orders; it is this spreading out of the coherence
which makes it necessary to select one transfer among many possibilities.  An
example of this spreading between coherence orders is the effect of a non-
selective pulse on antiphase magnetization, such as 2I1xI2z, which corresponds to
coherence orders ±1.  Some of the coherence may be transferred into double-
and zero-quantum coherence, some may be transferred into two-spin order and
some will remain unaffected.  The precise outcome depends on the phase and
flip angle of the pulse, but in general we can see that there are many
possibilities.

If we consider just one coherence, of order p , being transferred to a
coherence of order p' by a radiofrequency pulse we can derive a very general
result for the way in which the phase of the pulse affects the phase of the
coherence.  It is on this relationship that the phase cycling method is based.

We will write the initial state of order p as σ p( ) , and the final state of order p'
as σ p'( ) .  The effect of the radiofrequency pulse causing the transfer is
represented by the (unitary) transformation Uφ  where φ is the phase of the
pulse.  The initial and final states are related by the usual transformation

U Up p
0 0

1σ σ( ) ( )= +– ' terms of other orders [5]

which has been written for phase 0; the other terms will be dropped as we are
only interested in the transfer from p to p'.  The transformation brought about
by a radiofrequency pulse phase shifted by φ, Uφ, is related to that with the
phase set to zero, U0, in the following way

U F U Fz zφ φ φ= −( ) ( )exp expi i0 [6]
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Using this, the effect of the phase shifted pulse on the initial state σ p( )  can be
written

U U

F U F F U F

p

z z
p

z z

φ φσ

φ φ σ φ φ

( )

( )= −( ) ( ) −( ) ( )

–

–exp exp exp exp

1

0 0
1i i i i

[7]

The central three terms can be simplified by application of Eq. [2]

exp exp exp–i i iφ σ φ φ σF F U pz
p

z
p( ) −( ) = ( )( ) ( )

0
1

giving

U U p F U U Fp
z

p
zφ φσ φ φ σ φ( ) ( )= ( ) −( ) ( )– –exp exp exp1

0 0
1i i i

The central three terms can, from Eq. [5], be replaced by σ p'( )  to give

U U p F Fp
z

p
zφ φσ φ φ σ φ( ) ( )= ( ) −( ) ( )– 'exp exp exp1 i i i

Finally, Eq. [5] is applied again to give

U U p pp p
φ φσ φ φ σ( ) ( )= ( ) ( )– 'exp exp '1 i –i

Defining ∆p = (p' – p) as the change is coherence order, this simplifies to

U U pp p
φ φσ φ σ( ) ( )= ( )– 'exp –1 i∆ [8]

Equation [8] says that if the phase of a pulse which is causing a change in
coherence order of ∆p is shifted by φ the coherence will acquire a phase label
(–∆p φ).  It is this property which enables us to separate different changes in
coherence order from one another by altering the phase of the pulse.

In the discussion so far it has been assumed that Uφ represents a single pulse.
However, any sequence of pulses and delays can be represented by a single
unitary transformation, so Eq. [8] applies equally well to the effect of phase
shifting all of the pulses in such a sequence.  We will see that this property is
often of use in writing phase cycles.

If a series of phase shifted pulses (or pulse sandwiches) are applied a phase
(–∆p φ) is acquired from each.  The total phase is found by adding up these
individual contributions.  In an NMR experiment this total phase affects the
signal which is recorded at the end of the sequence, even though the phase shift
may have been acquired earlier in the pulse sequence.  These phase shifts are,
so to speak, carried forward.

9.3.4 Coherence transfer pathways diagrams

In designing a multiple-pulse NMR experiment the intention is to have specific
orders of coherence present at various points in the sequence.  One way of
indicating this is to use a coherence transfer pathway (CTP) diagram along
with the timing diagram for the pulse sequence.  An example of shown below,
which gives the pulse sequence and CTP for the DQF COSY experiment.
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t1 t2

2
1
0

–1
–2

p

∆p=±1 ±1,±3
+1,–3

The solid lines under the sequence represent the coherence orders required
during  each part of the sequence; note that it is only the pulses which cause a
change in the coherence order.  In addition, the values of ∆p are shown for each
pulse.  In this example, as is commonly the case, more than one order of
coherence is present at a particular time.  Each pulse is required to cause
different changes to the coherence order – for example the second pulse is
required to bring about no less than four values of ∆p.  Again, this is a common
feature of pulse sequences.

It is important to realise that the CTP specified with the pulse sequence is
just the desired pathway.  We would need to establish separately (for example
using a product operator calculation) that the pulse sequence is indeed capable
of generating the coherences specified in the CTP.  Also, the spin system which
we apply the sequence to has to be capable of supporting the coherences.  For
example, if there are no couplings, then no double quantum will be generated
and thus selection of the above pathway will result in a null spectrum.

The coherence transfer pathway must start with p = 0 as this is the order to
which equilibrium magnetization (z-magnetization) belongs.  In addition, the
pathway has to end with |p| = 1 as it is only single quantum coherence that is
observable.  If we use quadrature detection (section 9.2.2) it turns out that only
one of p = ±1 is observable; we will follow the usual convention of assuming
that p = –1 is the detectable signal.

9.4 Lineshapes and frequency discrimination

9.4.1 Phase and amplitude modulation

The selection of a particular CTP has important consequences for lineshapes
and frequency discrimination in two-dimensional NMR.  These topics are
illustrated using the NOESY experiment as an example; the pulse sequence and
CTP is illustrated opposite.

If we imagine starting with Iz, then at the end of t1 the operators present are

− +cos sinΩ Ωt I t Iy x1 1

The term in Iy is rotated onto the z-axis and we will assume that only this term
survives.  Finally, the z-magnetization is made observable by the last pulse (for
convenience set to phase –y) giving the observable term present at t2 = 0 as

cosΩt Ix1

As was noted in section 9.3.1, Ix is in fact a mixture of coherence orders
p = ±1, something which is made evident by writing the operator in terms of I+

t1 t2

1
0

–1

τm

–y
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and I–

1
2 1cosΩt I I+ −+( )

Of these operators, only I– leads to an observable signal, as this corresponds to
p = –1.  Allowing I– to evolve in t2 gives

1
2 1 2cos expΩ Ωt t Ii( ) −

The final detected signal can be written as

S t t t tC i1 2
1
2 1 2, cos exp( ) = ( )Ω Ω

This signal is said to be amplitude modulated in t1; it is so called because the
evolution during t1 gives rise, via the cosine term, to a modulation of the
amplitude of the observed signal.

The situation changes if we select a different pathway, as shown opposite.
Here, only coherence order –1 is preserved during t1.  At the start of t1 the
operator present is –Iy which can be written

− −( )+ −
1
2i I I

Now, in accordance with the CTP, we select only the I– term.  During t1 this
evolves to give

1
2 1i iexp Ωt I( ) −

Following through the rest of the pulse sequence as before gives the following
observable signal

S t t t tP i i1 2
1
4 1 2, exp exp( ) = ( ) ( )Ω Ω

This signal is said to be phase modulated in t1; it is so called because the
evolution during t1 gives rise, via exponential term, to a modulation of the
phase of the observed signal. If we had chosen to select p = +1 during t1 the
signal would have been

S t t t tN –i i1 2
1
4 1 2, exp exp( ) = ( ) ( )Ω Ω

which is also phase modulated, except in the opposite sense.  Note that in either
case the phase modulated signal is one half of the size of the amplitude
modulated signal, because only one of the two pathways has been selected.

Although these results have been derived for the NOESY sequence, they are
in fact general for any two-dimensional experiment.  Summarising, we find

• If a single coherence order is present during t1 the result is phase
modulation in t1.  The phase modulation can be of the form exp(iΩt1) or
exp(–iΩt1) depending on the sign of the coherence order present.

• If both coherence orders ±p are selected during t1, the result is amplitude
modulation in t1; selecting both orders in this way is called preserving
symmetrical pathways.

9.4.2 Frequency discrimination

The amplitude modulated signal contains no information about the sign of Ω,

t1 t2

1
0

–1

τm

–y
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simply because cos(Ωt1) = cos(–Ωt1).  As a consequence, Fourier
transformation of the time domain signal will result in each peak appearing
twice in the two-dimensional spectrum, once at F1 = +Ω and once at F1 = –Ω.
As was commented on above, we usually place the transmitter in the middle of
the spectrum so that there are peaks with both positive and negative offsets.  If,
as a result of recording an amplitude modulated signal, all of these appear
twice, the spectrum will hopelessly confused.  A spectrum arising from an
amplitude modulated signal is said to lack frequency discrimination in F1.

On the other hand, the phase modulated signal is sensitive to the sign of the
offset and so information about the sign of Ω in the F1 dimension is contained
in the signal.  Fourier transformation of the signal SP(t1,t2) gives a peak at F1 =
+Ω, F2 = Ω, whereas Fourier transformation of the signal SN(t1,t2) gives a peak
at F1 = –Ω, F2 = Ω.  Both spectra are said to be frequency discriminated as the
sign of the modulation frequency in t1 is determined; in contrast to amplitude
modulated spectra, each peak will only appear once.

The spectrum from SP(t1,t2) is called the P-type (P for positive) or echo
spectrum; a diagonal peak appears with the same sign of offset in each
dimension.  The spectrum from SN(t1,t2) is called the N-type (N for negative) or
anti-echo spectrum; a diagonal peak appears with opposite signs in the two
dimensions.

It might appear that in order to achieve frequency discrimination we should
deliberately select a CTP which leads to a P– or an N-type spectrum.  However,
such spectra show a very unfavourable lineshape, as discussed in the next
section.

9.4.3 Lineshapes

In section 9.2.4 we saw that Fourier transformation of the signal

S t t t T( ) = ( ) −( )exp expiΩ 2

gave a spectrum whose real part is an absorption lorentzian and whose
imaginary part is a dispersion lorentzian:

S A Dω ω ω( ) = ( ) + ( )i

We will use the shorthand that A2 represents an absorption mode lineshape at F2

= Ω  and D2 represents a dispersion mode lineshape at the same frequency.
Likewise, A1+ represents an absorption mode lineshape at F1 = +Ω and D1+

represents the corresponding dispersion lineshape.  A1– and D1– represent the
corresponding lines at F1 = –Ω.

The time domain signal for the P-type spectrum can be written as

S t t t t t T t TP i i1 2
1
4 1 2 1 2 2 2, exp exp exp exp( ) = ( ) ( ) −( ) −( )Ω Ω

where the damping factors have been included as before.  Fourier
transformation with respect to t2 gives

S t F t t T A DP i i1 2
1
4 1 1 2 2 2, exp exp( ) = ( ) −( ) +[ ]Ω
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and then further transformation with respect to t1 gives

S F F A D A DP i i1 2
1
4 1 1 2 2,( ) = +[ ] +[ ]+ +

The real part of this spectrum is

Re ,S F F A A D DP 1 2
1
4 1 2 1 2( ){ } = −[ ]+ +

The quantity in the square brackets on the right represents a phase-twist
lineshape at F1 = +Ω, F2 = Ω

Perspective view and contour plot of the phase-twist lineshape.  Negative contours are shown dashed.

This lineshape is an inextricable mixture of absorption and dispersion, and it is
very undesirable for high-resolution NMR.  So, although a phase modulated
signal gives us frequency discrimination, which is desirable, it also results in a
phase-twist lineshape, which is not.

The time domain signal for the amplitude modulated data set can be written
as

S t t t t t T t TC i1 2
1
2 1 2 1 2 2 2, cos exp exp exp( ) = ( ) ( ) −( ) −( )Ω Ω

Fourier transformation with respect to t2 gives

S t F t t T A DC i1 2
1
2 1 1 2 2 2, cos exp( ) = ( ) −( ) +[ ]Ω

which can be rewritten as

S t F t t t T A DC i i i1 2
1
4 1 1 1 2 2 2, exp exp exp( ) = ( ) + −( )[ ] −( ) +[ ]Ω Ω

Fourier transformation with respect to t1 gives, in the real part of the spectrum

Re , – – –S F F A A D D A A D DC +1 2
1
4 1 2 1 2

1
4 1 2 1 2( ){ } = [ ] + [ ]+ −

This corresponds to two phase-twist lineshapes, one at F1 = +Ω, F2 = Ω and the
other at F1 = –Ω, F2 = Ω; the lack of frequency discrimination is evident.
Further, the undesirable phase-twist lineshape is again present.

The lineshape can be restored to the absorption mode by discarding the
imaginary part of the time domain signal after the transformation with respect
to t2, i.e. by taking the real part

Re , cos expS t F t t T AC 1 2
1
2 1 1 2 2( ){ } = ( ) −( )Ω

Subsequent transformation with respect to t1 gives, in the real part



9–17

1
4 1 2

1
4 1 2A A A A+ −+

which is two double absorption mode lineshapes.  Frequency discrimination is
lacking, but the lineshape is now much more desirable.  The spectra with the
two phase-twist and two absorption mode lines are shown below on the left and
right, respectively.

0

F1

F2

0

F1

F2

9.4.4  Frequency discrimination with retention of absorption mode
lineshapes

For practical purposes it is essential to be able to achieve frequency
discrimination and at the same time retain the absorption mode lineshape.
There are a number of ways of doing this.

9.4.4.1 States-Haberkorn-Ruben (SHR) method

The key to this method is the ability to record a cosine modulated data set and a
sine modulated data set.  The latter can be achieved simply by changing the
phase of appropriate pulses.  For example, in the case of the NOESY
experiment, all that is required to generate the sine data set is to shift the phase
of the first 90° pulse by 90° (in fact in the NOESY sequence the pulse needs to
shift from x to –y).  The two data sets have to kept separate.

The cosine data set is transformed with respect to t1 and the imaginary part
discarded to give

Re , cos expS t F t t T AC 1 2
1
2 1 1 2 2( ){ } = ( ) −( )Ω [9]

The same operation is performed on the sine modulated data set

S t t t t t T t TS i1 2
1
2 1 2 1 2 2 2, sin exp exp exp( ) = ( ) ( ) −( ) −( )Ω Ω

Re , sin expS t F t t T AS 1 2
1
2 1 1 2 2( ){ } = ( ) −( )Ω [10]

A new complex data set is now formed by using the signal from Eq. [9] as the
real part and that from Eq. [10] as the imaginary part

S t F S t F S t F

t t T A

SHR C Si

i

1 2 1 2 1 2

1
2 1 1 2 2

, Re , Re ,

exp exp

( ) = ( ){ } + ( ){ }
= ( ) −( )Ω

Fourier transformation with respect to t1 gives, in the real part of the spectrum

Re ,S F F A ASHR 1 2
1
2 1 2( ){ } = +

This is the desired frequency discriminated spectrum with a pure absorption
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lineshape.

As commented on above, in NOESY all that is required to change from
cosine to sine modulation is to shift the phase of the first pulse by 90°.  The
general recipe is to shift the phase of all the pulses that precede t1 by 90°/|p1|,
where p1 is the coherence order present during t1.  So, for a double quantum
spectrum, the phase shift needs to be 45°.  The origin of this rule is that, taken
together, the pulses which precede t1 give rise to a pathway with ∆p = p1.

In heteronuclear experiments it is not usually necessary to shift the phase of
all the pulses which precede t1; an analysis of the sequence usually shows that
shifting the phase of the pulse which generates the transverse magnetization
which evolves during t1 is sufficient.

9.4.4.2 Echo anti-echo method

We will see in later sections that when we use gradient pulses for coherence
selection the natural outcome is P- or N-type data sets.  Individually, each of
these gives a frequency discriminated spectrum, but with the phase-twist
lineshape.  We will show in this section how an absorption mode lineshape can
be obtained provided both the P- and the N-type data sets are available.

As before, we write the two data sets as

S t t t t t T t T

S t t t t t T t T

P

N

i i

i i

1 2
1
4 1 2 1 2 2 2

1 2
1
4 1 2 1 2 2 2

, exp exp exp exp

, exp exp exp exp

( ) = ( ) ( ) −( ) −( )
( ) = −( ) ( ) −( ) −( )

Ω Ω

Ω Ω

We then form the two combinations

S t t S t t S t t

t t t T t T

S t t S t t S t t

t t t T

C P N

S i P N

i

i

1 2 1 2 1 2

1
2 1 2 1 2 2 2

1 2
1

1 2 1 2

1
2 1 2 1 2

, , ,

cos exp exp exp

, , ,

sin exp exp

( ) = ( ) + ( )
= ( ) ( ) −( ) −( )

( ) = ( ) + ( )[ ]
= ( ) ( ) −

Ω Ω

Ω Ω (( ) −( )exp t T2 2

These cosine and sine modulated data sets can be used as inputs to the SHR
method described in the previous section.

An alternative is to Fourier transform the two data sets with respect to t2 to
give

S t F t t T A D

S t F t t T A D

P

N

i i

i i

1 2
1
4 1 1 2 2 2

1 2
1
4 1 1 2 2 2

, exp exp

, exp – exp

( ) = ( ) −( ) +[ ]
( ) = ( ) −( ) +[ ]

Ω

Ω

We then take the complex conjugate of SN(t1,F2) and add it to SP(t1,F2)

S t F t t T A D

S t F S t F S t F

t t T A

N

N P

i i

i

1 2
1
4 1 1 2 2 2

1 2 1 2 1 2

1
2 1 1 2 2

, * exp exp

, , * ,

exp exp

( ) = ( ) −( ) −[ ]
( ) = ( ) + ( )

= ( ) −( )
+

Ω

Ω

Transformation of this signal gives
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S F F A D A+ + +( ) = +[ ]1 2
1
2 1 1 2, i

which is frequency discriminated and has, in the real part, the required double
absorption lineshape.

9.4.4.3 Marion-Wüthrich or TPPI method

The idea behind the TPPI (time proportional phase incrementation) or
Marion–Wüthrich (MW) method is to arrange things so that all of the peaks
have positive offsets.  Then, frequency discrimination is not required as there is
no ambiguity.

One simple way to make all offsets positive is to set the receiver carrier
frequency deliberately at the edge of the spectrum.  Simple though this is, it is
not really a very practical method as the resulting spectrum would be very
inefficient in its use of data space and in addition off-resonance effects
associated with the pulses in the sequence will be accentuated.

In the TPPI method the carrier can still be set in the middle of the spectrum,
but it is made to appear that all the frequencies are positive by phase shifting
some of the pulses in the sequence in concert with the incrementation of t1.

It was noted above that shifting the phase of the first pulse in the NOESY
sequence from x to –y caused the modulation to change from cos(Ωt1) to
sin(Ωt1).  One way of expressing this is to say that shifting the pulse causes a
phase shift φ in the signal modulation, which can be written cos(Ωt1 + φ).
Using the usual trigonometric expansions this can be written

cos cos cos sin sinΩ Ω Ωt t t1 1 1+( ) = −φ φ φ
If the phase shift, φ, is –π/2 radians the result is

cos cos cos sin sin

sin

Ω Ω Ω
Ω

t t t

t
1 1 1

1

2 2 2+( ) = −( ) − −( )
=

π π π

This is exactly the result we found before.

In the TPPI procedure, the phase φ is made proportional to t1 i.e. each time t1

is incremented, so is the phase.  We will suppose that

φ ωt t1 1( ) = add

The constant of proportion between the time dependent phase, φ(t1), and t1 has
been written ω add; ω add has the dimensions of rad s– 1 i.e. it is a frequency.
Following the same approach as before, the time-domain function with the
inclusion of this incrementing phase is thus

cos cos

cos

Ω Ω

Ω

t t t t

t

1 1 1 1

1

+ ( )( ) = +( )
= +( )

φ ω

ω
add

add

In words, the effect of incrementing the phase in concert with t1 is to add a
frequency ωadd  to all of the offsets in the spectrum.  The TPPI method utilizes
this in the following way.

In one-dimensional pulse-Fourier transform NMR the free induction signal is
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sampled at regular intervals ∆.  After transformation the resulting spectrum
displays correctly peaks with offsets in the range –(SW/2) to +(SW/2) where SW
is the spectral width which is given by 1/∆ (this comes about from the Nyquist
theorem of data sampling).  Frequencies outside this range are not represented
correctly.

Suppose that the required frequency range in the F1 dimension is from
–(SW1/2) to +(SW1/2).  To make it appear that all the peaks have a positive
offset, it will be necessary to add (SW1/2) to all the frequencies.  Then the peaks
will be in the range 0 to (SW1).

As the maximum frequency is now (SW1) rather than (SW1/2) the sampling
interval, ∆1, will have to be halved i.e. ∆1 = 1/(2SW1) in order that the range of
frequencies present are represented properly.

The phase increment is ωaddt1 , but t1 can be written as n∆ 1 for the nth
increment of t1.  The required value for ωadd  is 2π(SW1/2) , where the 2π is to
convert from frequency (the units of SW1) to rad s–1, the units of ωadd .  Putting
all of this together ωaddt1  can be expressed, for the nth increment as

ω π

π

π

additionalt
SW

n

SW
n

SW

n

1
1

1

1

1

2
2

2
2

1

2

2

= 



( )

= 










=

∆

In words this means that each time t1 is incremented, the phase of the signal
should also be incremented by 90°, for example by incrementing the phase of
one of the pulses.

A data set from an experiment to which TPPI has been applied is simply
amplitude modulated in t1 and so can be processed according to the method
described above for cosine modulated data so as to obtain absorption mode
lineshapes.  As the spectrum is symmetrical about F1 = 0, it is usual to use a
modified Fourier transform routine which saves effort and space by only
calculating the positive frequency part of the spectrum.

9.4.4.4 States-TPPI

When the SHR method is used, axial peaks (arising from magnetization which
has not evolved during t1) appear at F1 = 0; such peaks can be a nuisance as
they may obscure other wanted peaks.  We will see below (section 9.5.6) that
axial peaks can be suppressed with the aid of phase cycling, all be it at the cost
of doubling the length of the phase cycle.

The States-TPPI method does not suppress these axial peaks, but moves
them to the edge of the spectrum so that they are less likely to obscure wanted
peaks.  All that is involved is that, each time t1 is incremented, both the phase of
the pulse which precedes t1 and the receiver phase are advanced by 180° i.e. the

t1 = 0

t2
x

t1 = ∆
t2

y

t1 = 2∆
t2

–x

t1 = 3∆
t2

–y

t1 = 4∆
t1

t2
x

Illustration of the TPPI method.
Each t ime that t1 i s
incremented, so is the phase of
the pulse preceding t1.
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pulse goes x, –x and the receiver goes x, –x.

For non-axial peaks, the two phase shifts cancel one another out, and so have
no effect.  However, magnetization which gives rise to axial peaks does not
experience the first phase shift, but does experience the receiver phase shift.
The sign alternation in concert with t1 incrementation adds a frequency of SW1/2
to each peak, thus shifting it to the edge of the spectrum.  Note that in States-
TPPI the spectral range in the F1 dimension is –(SW1/2) to +(SW1/2) and the
sampling interval is 1/2SW1, just as in the SHR method.

The nice feature of States-TPPI is that is moves the axial peaks out of the
way without lengthening the phase cycle.  It is therefore convenient to use in
complex three- and four-dimensional spectra were phase cycling is at a
premium.

9.5 Phase cycling

In this section we will start out by considering in detail how to write a phase
cycle to select a particular value of ∆p and then use this discussion to lead on to
the formulation of general principles for constructing phase cycles.  These will
then be used to construct appropriate cycles for a number of common
experiments.

9.5.1 Selection of a single pathway

To focus on the issue at hand let us consider the case of transferring from
coherence order +2 to order –1.  Such a transfer has ∆p = (–1 – (2) ) = –3.  Let
us imagine that the pulse causing this transformation is cycled around the four
cardinal phases (x, y, –x, –y, i.e. 0°, 90°, 180°, 270°) and draw up a table of the
phase shift that will be experienced by the transferred coherence.  This is
simply computed as – ∆p φ, in this case = – (–3)φ = 3φ.

step pulse phase phase shift experienced by
transfer with ∆p = –3

equivalent phase

1 0 0 0

2 90 270 270

3 180 540 180

4 270 810 90

The fourth column, labelled "equivalent phase", is just the phase shift
experienced by the coherence, column three, reduced to be in the range 0 to
360° by subtracting multiples of 360° (e.g. for step 3 we subtracted 360° and
for step 4 we subtracted 720°).

If we wished to select ∆p = –3 we would simply shift the phase of the
receiver in order to match the phase that the coherence has acquired; these are
the phases shown in the last column.  If we did this, then each step of the cycle
would give an observed signal of the same phase and so they four contributions
would all add up.  This is precisely the same thing as we did when considering
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the CYCLOPS sequence in section 9.2.6; in both cases the receiver phase
follows the phase of the desired magnetization or coherence.

We now need to see if this four step phase cycle eliminates the signals from
other pathways.  As an example, let us consider a pathway with
∆p = 2, which might arise from the transfer from coherence order –1 to +1.
Again we draw up a table to show the phase experienced by a pathway with ∆p
= 2, that is computed as – (2)φ

step pulse
phase

phase shift experienced by
transfer with ∆p = 2

equivalent
phase

rx. phase to
select ∆p = –3

difference

1 0 0 0 0 0

2 90 –180 180 270 270 – 180 = 90

3 180 –360 0 180 180 – 0 = 180

4 270 –540 180 90 90 – 180 = –90

As before, the equivalent phase is simply the phase in column 3 reduced to the
range 0 to 360°.  The fifth column shows the receiver (abbreviated to rx.)
phases determined above for selection of the transfer with ∆p  = –3.  The
question we have to ask is whether or not these phase shifts will lead to
cancellation of the transfer with ∆p = 2.  To do this we compute the difference
between the receiver phase, column 5, and the phase shift experienced by the
transfer with ∆p = 2, column 4.  The results are shown in column 6, labelled
"difference".  Looking at this difference column we can see that step 1 will
cancel with step 3 as the 180° phase shift between them means that the two
signals have opposite sign.  Likewise step 2 will cancel with step 4 as there is a
180° phase shift between them.  We conclude, therefore, that this four step
cycle cancels the signal arising from a pathway with
∆p = 2.

An alternative way of viewing the cancellation is to represent the results of
the "difference" column by vectors pointing at the indicated angles.  This is
shown below; it is clear that the opposed vectors cancel one another.

step 1 2 3 4

difference 0°

0°

90° 180° 270°

Next we consider the coherence transfer with ∆p = +1.  Again, we draw up
the table and calculate the phase shifts experience by this transfer, which are
given by – (+1)φ = –φ.
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step pulse
phase

phase shift experienced
by transfer with ∆p = +1

equivalent
phase

rx. phase to
select ∆p = –3

difference

1 0 0 0 0 0

2 90 –90 270 270 270 – 270 = 0

3 180 –180 180 180 180 – 180 = 0

4 270 –270 90 90 90 – 90 = 0

Here we see quite different behaviour.  The equivalent phases, that is the phase
shifts experienced by the transfer with ∆p = 1, match exactly the receiver
phases determined for ∆p = –3, thus the phases in the "difference" column are
all zero.  We conclude that the four step cycle selects transfers both with ∆p =
–3 and +1.

Some more work with tables such as these will reveal that this four step
cycle suppresses contributions from changes in coherence order of –2, –1 and 0.
It selects ∆p = –3 and 1.  It also selects changes in coherence order of 5, 9, 13
and so on.  This latter sequence is easy to understand.  A pathway with ∆p = 1
experiences a phase shift of –90° when the pulse is shifted in phase by 90°; the
equivalent phase is thus 270°.  A pathway with ∆p = 5 would experience a
phase shift of –5 × 90° = –450° which corresponds to an equivalent phase of
270°.  Thus the phase shifts experienced for ∆p = 1 and 5 are identical and it is
clear that a cycle which selects one will select the other.  The same goes for the
series ∆p = 9, 13 ...

The extension to negative values of ∆p is also easy to see.  A pathway with
∆p = –3 experiences a phase shift of 270° when the pulse is shifted in phase by
90°.  A transfer with ∆p = +1 experiences a phase of –90° which corresponds to
an equivalent phase of 270°.  Thus both pathways experience the same phase
shifts and a cycle which selects one will select the other.  The pattern is clear,
this four step cycle will select a pathway with ∆p = –3, as it was designed to,
and also it will select any pathway with ∆p = –3 + 4n where n = ±1, ±2, ±3 ...

9.5.2 General Rules

The discussion in the previous section can be generalised in the following way.
Consider a phase cycle in which the phase of a pulse takes N evenly spaced
steps covering the range 0 to 2π radians.  The phases, φk, are

φk = 2πk/N where k = 0, 1, 2 ... (N – 1).

To select a change in coherence order, ∆p , the receiver phase is set to
–∆p × φk for each step and the resulting signals are summed.  This cycle will, in
addition to selecting the specified change in coherence order, also select
pathways with changes in coherence order (∆ p ± n N ) where
n = ±1, ±2 ..

The way in which phase cycling selects a series of values of ∆p which are
related by a harmonic condition is closely related to the phenomenon of aliasing
in Fourier transformation.  Indeed, the whole process of phase cycling can be
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seen as the computation of a discrete Fourier transformation with respect to the
pulse phase; in this case the Fourier co-domains are phase and coherence order.

The fact that a phase cycle inevitably selects more than one change in
coherence order is not necessarily a problem.  We may actually wish to select
more than one pathway, and examples of this will be given below in relation to
specific two-dimensional experiments.  Even if we only require one value of ∆p
we may be able to discount the values selected at the same time as being
improbable or insignificant.  In a system of m coupled spins one-half, the
maximum order of coherence that can be generated is m, thus in a two spin
system we need not worry about whether or not a phase cycle will discriminate
between double quantum and six quantum coherences as the latter simply
cannot be present.  Even in more extended spin systems the likelihood of
generating high-order coherences is rather small and so we may be able to
discount them for all practical purposes.  If a high level of discrimination
between orders is needed, then the solution is simply to use a phase cycle which
has more steps i.e. in which the phases move in smaller increments.  For
example a six step cycle will discriminate between ∆p = +2 and +6, whereas a
four step cycle will not.

9.5.3 Refocusing Pulses

A 180° pulse simply changes the sign of the coherence order.  This is easily
demonstrated by considering the effect of such a pulse on the operators I+ and
I–.  For example:

I I I I I Ix y
I

x y
x

+ ≡ +( )  → ( ) ≡i iπ – –

corresponds to p = +1 → p = –1.  In a more complex product of operators, each
raising and lowering operator is affected in this way so overall the coherence
order changes sign.

We can now derive the EXORCYLE phase cycle using this property.
Consider a 180° pulse acting on single quantum coherence, for which the CTP
is shown opposite.  For the pathway starting with p = 1 the effect of the 180°
pulse is to cause a change with ∆p = –2.  The table shows a four-step cycle to
select this change

Step phase of
180° pulse

phase shift experienced by
transfer with ∆p = –2

Equivalent phase
= rx. phase

1 0 0 0

2 90 180 180

3 180 360 0

4 270 540 180

The phase cycle is thus 0, 90°, 180°, 270° for the 180° pulse and
0° 180° 0° 180° for the receiver; this is precisely the set of phases deduced
before for EXORCYCLE in section 9.2.7.

1
0

–1

180°

A 180° pulse simply changes
the sign of the coherence order.
The EXORCYLE phase cycling
selects both of the pathways
shown.
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As the cycle has four steps, a pathway with ∆p = +2 is also selected; this is
the pathway which starts with p = –1 and is transferred to p = +1.  Therefore,
the four steps of EXORCYLE select both of the pathways shown in the diagram
above.

A two step cycle, consisting of 0°, 180° for the 180° pulse and 0°, 0° for the
receiver, can easily be shown to select all even values of ∆p.  This reduced form
of EXORCYCLE is sometimes used when it is necessary to minimise the
number of steps in a phase cycle.  An eight step cycle, in which the 180° pulse
is advanced in steps of 45°, can be used to select the refocusing of double-
quantum coherence  in  which  the  t ransfer  i s  f rom
p = +2 to –2 (i.e. ∆p = –4) or vice versa.

9.5.4 Combining phase cycles

Suppose that we wish to select the pathway shown opposite; for the first pulse
∆p is 1 and for the second it is –2.  We can construct a four-step cycle for each
pulse, but to select the overall pathway shown these two cycles have to be
completed independently of one another.  This means that there will be a total
of sixteen steps.  The table shows how the appropriate receiver cycling can be
determined

Step phase of 1st
pulse

phase for
∆p = 1

phase of 2nd
pulse

phase for
∆p = –2

total
phase

equivalent phase =
rx. phase

1 0 0 0 0 0 0

2 90 –90 0 0 –90 270

3 180 –180 0 0 –180 180

4 270 –270 0 0 –270 90

5 0 0 90 180 180 180

6 90 –90 90 180 90 90

7 180 –180 90 180 0 0

8 270 –270 90 180 –90 270

9 0 0 180 360 360 0

10 90 –90 180 360 270 270

11 180 –180 180 360 180 180

12 270 –270 180 360 90 90

13 0 0 270 540 540 180

14 90 –90 270 540 450 90

15 180 –180 270 540 360 0

16 270 –270 270 540 270 270

In the first four steps the phase of the second pulse is held constant and the
phase of the first pulse simply goes through the four steps 0° 90° 180° 270°.  As
we are selecting ∆p = 1 for this pulse, the receiver phases are simply 0°, 270°,
180°, 90°.

Steps 5 to 8 are a repeat of steps 1–4 except that the phase of the second
pulse has been moved by 90°.  As ∆p for the second pulse is –2, the required

1
0

–1
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pathway experiences a phase shift of 180° and so the receiver phase must be
advanced by this much.  So, the receiver phases for steps 5–8 are just 180°
ahead of those for steps 1–4.

In the same way for steps 9–12 the first pulse again goes through the same
four steps, and the phase of the second pulse is advanced to 180°.  Therefore,
compared to steps 1–4 the receiver phases in steps 9–12 need to be advanced by
– (–2) × 180° = 360° = 0°.  Likewise, the receiver phases for steps 13–16 are
advanced by – (–2) × 270° = 540° = 180°.

Another way of looking at this is to consider each step individually.  For
example, compared to step 1, in step 14 the first pulse has been advanced by
90° so the phase from the first pulse is – (1) × 90° = –90°.  The second pulse
has been advanced by 270° so the phase from this is – (–2) × 270° = 540°.  The
total phase shift of the required pathway is thus –90 + 540 = 450° which is an
equivalent phase of 90°.  This is the receiver phase shown in the final column.

The key to devising these sequences is to simply work out the two four-step
cycles independently and then merge them together rather than trying to work
on the whole cycle.  One writes down the first four steps, and then duplicates
this four times as the second pulse is shifted.  We would find the same steps, in
a different sequence, if the phase of the second pulse is shifted in the first four
steps.

We can see that the total size of a phase cycle grows at an alarming rate.
With four phases for each pulse the number of steps grows as 4l where l is the
number of pulses in the sequence.  A three-pulse sequence such as NOESY or
DQF COSY would therefore involve a 64 step cycle.  Such long cycles put a
lower limit on the total time of an experiment and we may end up having to run
an experiment for a long time not to achieve the desired signal-to-noise ratio
but simply to complete the phase cycle.

Fortunately, there are several "tricks" which we can use in order to shorten
the length of a phase cycle.  To appreciate whether or not one of these tricks
can be used in a particular sequence we need to understand in some detail what
the sequence is actually doing and what the likely problems are going to be.

9.5.5 Tricks

9.5.5.1 The first pulse

All pulse sequences start with equilibrium magnetization, which has coherence
order 0.  It can easily be shown that when a pulse is applied to equilibrium
magnetization the only coherence orders that can be generated are ±1.  If
retaining both of these orders is acceptable (which it often is), it is therefore not
necessary to phase cycle the first pulse in a sequence.

There are two additional points to make here.  If the spins have not relaxed
completely by the start of the sequence the initial magnetization will not be at
equilibrium.  Then, the above simplification does not apply.  Secondly, the first
pulse of a sequence is often cycled in order to suppress axial peaks in two-
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dimensional spectra.  This is considered in more detail in section 9.5.6.

9.5.5.2 Grouping pulses together

The sequence shown opposite can be used to generate multiple quantum
coherence from equilibrium magnetization; during the spin echo anti-phase
magnetization develops and the final pulse transfers this into multiple quantum
coherence.  Let us suppose that we wish to generate double quantum, with p =
±2, as show by the CTP opposite.

As has already been noted, the first pulse can only generate p = ±1 and the
180° pulse only causes a change in the sign of the coherence order.  The only
pulse we need to be concerned with is the final one which we want to generate
only double quantum.  We could try to devise a phase cycle for the last pulse
alone or we could simply group all three pulses together and imagine that, as a
group, they achieve the transformation p = 0 to p = ±2 i.e. ∆p = ±2.  The phase
cycle would simply be for the three pulses together to go 0°, 90°, 180°, 270°,
with the receiver going 0°, 180°, 0°, 180°.

It has to be recognised that by cycling a group of pulses together we are only
selecting an overall transformation; the coherence orders present within the
group of pulses are not being selected.  It is up to the designer of the experiment
to decide whether or not this degree of selection is sufficient.

The four step cycle mentioned above also selects ∆p = ±6; again, we would
have to decide whether or not such high orders of coherence were likely to be
present in the spin system.  Finally, we note that the ∆p values for the final
pulse are ±1, ±3; it would not be possible to devise a four step cycle which
selects all of these pathways.

9.5.5.3 The last pulse

We noted above that only coherence order –1 is observable.  So, although the
final pulse of a sequence may cause transfer to many different orders of
coherence, only transfers to p = –1 will result in observable signals.  Thus,  if
we have already selected, in an unambiguous way, a particular set of coherence
orders present just before the last pulse, no further cycling of this pulse is
needed.

9.5.5.4 Example – DQF COSY

A good example of the applications of these ideas is in devising a phase cycle
for DQF COSY, whose pulse sequence and CTP is shown below.

t1 t2

2
1
0

–1
–2

p

∆p=±1 ±1,±3
+1,–3

Note that we have retained symmetrical pathways in t1 so that absorption mode

2
1
0

–1
–2

Pulse sequence for generating
double-quantum coherence.
Note that the 180° pulse simply
causes a change in the sign of
the coherence order.
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lineshapes can be obtained.  Also, both in generating the double quantum
coherence, and in reconverting it to observable magnetization, all possible
pathways have been retained.  If we do not do this, signal intensity is lost.

One way of viewing this sequence is to group the first two pulses together
and view them as achieving the transformation 0 → ±2 i.e.
∆p = ±2.  This is exactly the problem considered in section 9.5.5.2, where we
saw that a suitable four step cycle is for the first two pulses to go 0°, 90°, 180°,
270° and the receiver to go 0°, 180°, 0°, 180°.  This unambiguously selects p =
±2 just before the last pulse, so phase cycling of the last pulse is not required
(see section 9.5.5.3).

An alternative view is to say that as only p = –1 is observable, selecting the
transformation ∆p = +1 and –3 on the last pulse will be equivalent to selecting p
= ±2 during the period just before the last pulse.  Since the first pulse can only
generate p = ±1 (present during t1), the selection of ∆p = +1 and –3 on the last
pulse is sufficient to define the CTP completely.

A four step cycle to select ∆p = +1 involves the pulse going 0°, 90°, 180°,
270° and the receiver going 0°, 270°, 180°, 90°.  As this cycle has four steps is
automatically also selects ∆p = –3, just as required.

The first of these cycles also selects ∆p = ±6 for the first two pulses i.e.
filtration through six-quantum coherence; normally, we can safely ignore the
possibility of such high-order coherences.  The second of the cycles also selects
∆p = +5 and ∆p = –7 on the last pulse; again, these transfers involve such high
orders of multiple quantum that they can be ignored.

9.5.6 Axial peak suppression

Peaks are sometimes seen in two-dimensional spectra at co-ordinates F1 = 0 and
F2 = frequencies corresponding to the usual peaks in the spectrum.  The
interpretation of the appearance of these peaks is that they arise from
magnetization which has not evolved during t1 and so has not acquired a
frequency label.

A common source of axial peaks is magnetization which recovers due to
longitudinal relaxation during t1.  Subsequent pulses make this magnetization
observable, but it has no frequency label and so appears at
F1 = 0.  Another source of axial peaks is when, due to pulse imperfections, not
all of the original equilibrium magnetization is moved into the transverse plane
by the first pulse.  The residual longitudinal magnetization can be made
observable by subsequent pulses and hence give rise to axial peaks.

A simple way of suppressing axial peaks is to select the pathway ∆p = ±1 on
the first pulse; this ensures that all signals arise from the first pulse.  A two-step
cycle in which the first pulse goes 0°, 180° and the receiver goes 0°, 180°
selects ∆p = ±1.  It may be that the other phase cycling used in the sequence
will also reject axial peaks so that it is not necessary to add an explicit axial
peak suppression steps.  Adding a two-step cycle for axial peak suppression
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doubles the length of the phase cycle.

9.5.7 Shifting the whole sequence – CYCLOPS

If we group all of the pulses in the sequence together and regard them as a unit
they simply achieve the transformation from equilibrium magnetization, p = 0,
to observable magnetization, p = –1.  They could be cycled as a group to select
this pathway with ∆p = –1, that is the pulses going 0°, 90°, 180°, 270° and the
receiver going 0°, 90°, 180°, 270°.  This is simple the CYCLOPS phase cycle
described in section 9.2.6.

If time permits we sometimes add CYCLOPS-style cycling to all of the
pulses in the sequence so as to suppress some artefacts associated with
imperfections in the receiver.  Adding such cycling does, of course, extend the
phase cycle by a factor of four.

This view of the whole sequence as causing the transformation ∆p = –1 also
enables us to interchange receiver and pulse phase shifts.  For example, suppose
that a particular step in a phase cycle requires a receiver phase shift θ.  The
same effect can be achieved by shifting all of the pulses by –θ and leaving the
receiver phase unaltered.  The reason this works is that all of the pulses taken
together achieve the transformation ∆p = –1, so shifting their phases by –θ shift
the signal by – (–θ) = θ, which is exactly the effect of shifting the receiver by θ.
This kind of approach is sometimes helpful if hardware limitations mean that
small angle phase-shifts are only available for the pulses.

9.5.8 Equivalent cycles

For even a relatively simple sequence such as DQF COSY there are a number
of different ways of writing the phase cycle.  Superficially these can look very
different, but it may be possible to show that they really are the same.

For example, consider the DQF COSY phase cycle proposed in section
9.5.5.4 where we cycle just the last pulse

step 1st pulse 2nd pulse 3rd pulse receiver

1 0 0 0 0

2 0 0 90 270

3 0 0 180 180

4 0 0 270 90

Suppose we decide that we do not want to shift the receiver phase, but want to
keep it fixed at phase zero.  As described above, this means that we need to
subtract the receiver phase from all of the pulses.  So, for example, in step 2 we
subtract 270° from the pulse phases to give –270°, –270° and –180° for the
phases of the first three pulses, respectively; reducing these to the usual range
gives phases 90°, 90° and 180°.  Doing the same for the other steps gives a
rather strange looking phase cycle, but one which works in just the same way.

step 1st pulse 2nd pulse 3rd pulse receiver
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1 0 0 0 0

2 90 90 180 0

3 180 180 0 0

4 270 270 180 0

We can play one more trick with this phase cycle.  As the third pulse is required
to achieve the transformation ∆p = –3 or +1 we can alter its phase by 180° and
compensate for this by shifting the receiver by 180° also.  Doing this for steps 2
and 4 only gives

step 1st pulse 2nd pulse 3rd pulse receiver

1 0 0 0 0

2 90 90 0 180

3 180 180 0 0

4 270 270 0 180

This is exactly the cycle proposed in section 9.5.5.4.

9.5.9 Further examples

In this section we will use a shorthand to indicate the phases of the pulses and
the receiver.  Rather than specifying the phase in degrees, the phases are
expressed as multiples of 90°.  So, EXORCYCLE becomes 0 1 2 3 for the
180° pulse and 0 2 0 2 for the receiver.

9.5.9.1 Double quantum spectroscopy

A simple sequence for double quantum spectroscopy is shown below

t1 t2

2
1
0

–1
–2

τ τ

Note that both pathways with p = ±1 during the spin echo and with p = ±2
during t1 are retained.  There are a number of possible phase cycles for this
experiment and, not surprisingly, they are essentially the same as those for DQF
COSY.  If we regard the first three pulses as a unit, then they are required to
achieve the overall transformation ∆p = ±2, which is the same as that for the
first two pulses in the DQF COSY sequence.  Thus the same cycle can be used
with these three pulses going 0 1 2 3 and the receiver going 0 2 0 2.
Alternatively the final pulse can be cycled 0 1 2 3 with the receiver going 0 3
2 1, as in section 9.5.5.4.

Both of these phase cycles can be extended by EXORCYCLE phase cycling
of the 180° pulse, resulting in a total of 16 steps.

9.5.9.2 NOESY

The pulse sequence for NOESY (with retention of absorption mode lineshapes)
is shown below
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t1 t2

1
0

–1

τmix

If we group the first two pulses together they are required to achieve the
transformation ∆p = 0 and this leads to a four step cycle in which the pulses go
0 1 2 3 and the receiver remains fixed as 0 0 0 0.  In this experiment axial
peaks arise due to z-magnetization recovering during the mixing time, and this
cycle will not suppress these contributions.  Thus we need to add axial peak
suppression, which is conveniently done by adding the simple cycle 0 2 on the
first pulse and the receiver.  The final 8 step cycle is 1st pulse: 0 1 2 3  2 3
0 1, 2nd pulse: 0 1 2 3  0 1 2 3, 3rd pulse fixed, receiver: 0 0 0 0  2 2
2 2.

An alternative is to cycle the last pulse to select the pathway ∆p = –1, giving
the cycle 0 1 2 3 for the pulse and 0 1 2 3 for the receiver.  Once again, this
does not discriminate against z-magnetization which recovers during the mixing
time, so a two step phase cycle to select axial peaks needs to be added.

9.5.9.3 Heteronuclear Experiments

 The phase cycling for most heteronuclear experiments tends to be rather trivial
in that the usual requirement is simply to select that component which has been
transferred from one nucleus to another.  We have already seen in section 9.2.8
that this is achieved by a 0 2 phase cycle on one of the pulses causing the
transfer accompanied by the same on the receiver i.e. a difference experiment.
The choice of which pulse to cycle depends more on practical considerations
than with any fundamental theoretical considerations.

The pulse sequence for HMQC, along with the CTP, is shown below

t2

1
0

–1

t1

1
0

–1

∆ ∆
I

S

pI

pS

Note that separate coherence orders are assigned to the I and S  spins.
Observable signals on the I spin must have pI = –1 and pS = 0 (any other value
of pS would correspond to a heteronuclear multiple quantum coherence).  Given
this constraint, and the fact that the I spin 180° pulse simply inverts the sign of
pI, the only possible pathway on the I spins is that shown.

The S spin coherence order only changes when pulses are applied to those
spins.  The first 90° S spin pulse generates pS = ±1, just as before.  As by this
point pI = +1, the resulting coherences have pS = +1, pI = –1 (heteronuclear
zero-quantum) and pS = +1, pI = +1 (heteronuclear double-quantum).  The I spin
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180° pulse interconverts these midway during t1, and finally the last S spin
pulse returns both pathways to pS = 0.  A detailed analysis of the sequence
shows that retention of both of these pathways results in amplitude modulation
in t1 (provided that homonuclear couplings between I spins are not resolved in
the F1 dimension).

Usually, the I spins are protons and the S spins some low-abundance
heteronucleus, such as 13C.  The key thing that we need to achieve is to suppress
the signals arising from vast majority of I spins which are not coupled to S
spins.  This is achieved by cycling a pulse which affects the phase of the
required coherence but which does not affect that of the unwanted coherence.
The obvious targets are the two S spin 90° pulses, each of which is required to
give the transformation ∆pS = ±1.  A two step cycle with either of these pulses
going 0 2 and the receiver doing the same will select this pathway and, by
difference, suppress any I spin magnetization which has not been passed into
multiple quantum coherence.

It is also common to add EXORCYCLE phase cycling to the I spin 180°
pulse, giving a cycle with eight steps overall.

9.5.10 General points about phase cycling

Phase cycling as a method suffers from two major practical problems.  The first
is that the need to complete the cycle imposes a minimum time on the
experiment.  In two- and higher-dimensional experiments this minimum time
can become excessively long, far longer than would be needed to achieve the
desired signal-to-noise ratio.  In such cases the only way of reducing the
experiment time is to record fewer increments which has the undesirable
consequence of reducing the limiting resolution in the indirect dimensions.

The second problem is that phase cycling always relies on recording all
possible contributions and then cancelling out the unwanted ones by combining
subsequent signals.  If the spectrum has high dynamic range, or if spectrometer
stability is a problem, this cancellation is less than perfect.  The result is
unwanted peaks and t1-noise appearing in the spectrum.  These problems
become acute when dealing with proton detected heteronuclear experiments on
natural abundance samples, or in trying to record spectra with intense solvent
resonances.

Both of these problems are alleviated to a large extent by moving to an
alternative method of selection, the use of field gradient pulses, which is the
subject of the next section.  However, as we shall see, this alternative method is
not without its own difficulties.

9.6 Selection with field gradient pulses

9.6.1 Introduction

Like phase cycling, field gradient pulses can be used to select particular
coherence transfer pathways.  During a pulsed field gradient the applied
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magnetic field is made spatially inhomogeneous for a short time.  As a result,
transverse magnetization and other coherences dephase across the sample and
are apparently lost.  However, this loss can be reversed by the application of a
subsequent gradient which undoes the dephasing process and thus restores the
magnetization or coherence.  The crucial property of the dephasing process is
that it proceeds at a different rate for different coherences.  For example,
double-quantum coherence dephases twice as fast as single-quantum coherence.
Thus, by applying gradient pulses of different strengths or durations it is
possible to refocus coherences which have, for example, been changed from
single- to double-quantum by a radiofrequency pulse.

Gradient pulses are introduced into the pulse sequence in such a way that
only the wanted signals are observed in each experiment.  Thus, in contrast to
phase cycling, there is no reliance on subtraction of unwanted signals, and it
can thus be expected that the level of t1-noise will be much reduced.  Again in
contrast to phase cycling, no repetitions of the experiment are needed, enabling
the overall duration of the experiment to be set strictly in accord with the
required resolution and signal-to-noise ratio.

The properties of gradient pulses and the way in which they can be used to
select coherence transfer pathways have been known since the earliest days of
multiple-pulse NMR.  However, in the past their wide application has been
limited by technical problems which made it difficult to use such pulses in
high-resolution NMR.  The problem is that switching on the gradient pulse
induces currents in any nearby conductors, such as the probe housing and
magnet bore tube.  These induced currents, called eddy currents, themselves
generate magnetic fields which perturb the NMR spectrum.  Typically, the eddy
currents are large enough to disrupt severely the spectrum and can last many
hundreds of milliseconds.  It is thus impossible to observe a high-resolution
spectrum immediately after the application of a gradient pulse.  Similar
problems have beset NMR imaging experiments and have led to the
development of shielded gradient coils which do not produce significant
magnetic fields outside the sample volume and thus minimise the generation of
eddy currents.  The use of this technology in high-resolution NMR probes has
made it possible to observe spectra within tens of microseconds of applying a
gradient pulse.  With such apparatus, the use of field gradient pulses in high
resolution NMR is quite straightforward, a fact first realised and demonstrated
by Hurd whose work has pioneered this whole area.

9.6.2 Dephasing caused by gradients

A field gradient pulse is a period during which the B0 field is made spatially
inhomogeneous; for example an extra coil can be introduced into the sample
probe and a current passed through the coil in order to produce a field which
varies linearly in the z-direction.  We can imagine the sample being divided into
thin discs which, as a consequence of the gradient, all experience different
magnetic fields and thus have different Larmor frequencies.  At the beginning
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of the gradient pulse the vectors representing transverse magnetization in all
these discs are aligned, but after some time each vector has precessed through a
different angle because of the variation in Larmor frequency.  After sufficient
time the vectors are disposed in such a way that the net magnetization of the
sample (obtained by adding together all the vectors) is zero.  The gradient pulse
is said to have dephased the magnetization.

It is most convenient to view this dephasing process as being due to the
generation by the gradient pulse of a spatially dependent phase.  Suppose that
the magnetic field produced by the gradient pulse, Bg, varies linearly along the
z-axis according to

B Gzg =

where G is the gradient strength expressed in, for example, T m–1 or G cm–1; the
origin of the z-axis is taken to be in the centre of the sample.  At any particular
position in the sample the Larmor frequency, ωL(z), depends on the applied
magnetic field, B0, and Bg

ω γ γL 0 g 0= +( ) = +( )B B B Gz   ,

where γ is the gyromagnetic ratio.  After the gradient has been applied for time
t, the phase at any position in the sample, Φ(z), is given by Φ z B Gz t( ) = +( )γ 0 .
The first part of this phase is just that due to the usual Larmor precession in the
absence of a field gradient.  Since this is constant across the sample it will be
ignored from now on (which is formally the same result as viewing the
magnetization in a frame of reference rotating at γB0).  The remaining term γGzt
is the spatially dependent phase induced by the gradient pulse.

If a gradient pulse is applied to pure x-magnetization, the following
evolution takes place at a particular position in the sample

I Gzt I Gzt Ix
GztI

x y
zγ γ γ → ( ) + ( )cos sin   .

The total x-magnetization in the sample, Mx, is found by adding up the
magnetization from each of the thin discs, which is equivalent to the integral

Mx t( ) = 1
rmax

cos γGzt( ) dz
– 1

2 rmax

1
2 rmax

∫

where it has been assumed that the sample extends over a region ± 1
2 rmax .

Evaluating the integral gives an expression for the decay of x-magnetization
during a gradient pulse

M t
Gr t

Gr tx ( ) = ( )sin 1
2

1
2

γ
γ

max

max

[11]

The plot below shows Mx(t) as a function of time
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The black line shows the decay of magnetization due to the action of a gradient pulse.  The grey line is an
approximation, valid at long times, for the envelope of the decay.

Note that the oscillations in the decaying magnetization are imposed on an
overall decay which, for long times, is given by 2/(γGtrmax).  Equation [11]
embodies the obvious points that the stronger the gradient (the larger G) the
faster the magnetization decays and that magnetization from nuclei with higher
gyromagnetic ratios decays faster.  It also allows a quantitative assessment of
the gradient strengths required: the magnetization will have decayed to a
fraction α of its initial value after a time of the order of 2 γ αG rmax( )  (the
relation is strictly valid for α << 1).  For example, if it is assumed that rmax is 1
cm, then a 2 ms gradient pulse of strength 0.37 T m–1 (37 G cm–1) will reduce
proton magnetization by a factor of 1000.  Gradients of such strength are
readily obtainable using modern shielded gradient coils that can be built into
high resolution NMR probes

This discussion now needs to be generalised for the case of a field gradient
pulse whose amplitude is not constant in time, and for the case of dephasing a
general coherence of order p.  The former modification is of importance as for
instrumental reasons the amplitude envelope of the gradient is often shaped to a
smooth function.  In general after applying a gradient pulse of duration τ  the
spatially dependent phase, Φ(r,τ) is given by

Φ r sp B r,τ γ τ( ) = ( )g [12]

The proportionality to the coherence order comes about due to the fact that the
phase acquired as a result of a z-rotation of a coherence of order p through an
angle φ is pφ, (see Eqn. [2] in section 9.3.1).  In  Eqn. [12] s is a shape factor: if
the envelope of the gradient pulse is defined by the function A(t), where
A t( ) ≤ 1, s is defined as the area under A(t)

s A t t= ( )∫1

0
τ

τ

d

The shape factor takes a particular value for a certain shape of gradient,
regardless of its duration.  A gradient applied in the opposite sense, that is with
the magnetic field decreasing as the z-coordinate increases rather than vice
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versa, is described by reversing the sign of s.  The overall amplitude of the
gradient is encoded within Bg.

In the case that the coherence involves more than one nuclear species, Eqn.
[12] is modified to take account of the different gyromagnetic ratio for each
spin, γi, and the (possibly) different order of coherence with respect to each
nuclear species, pi:

Φ r sB r pi i
i

,τ τ γ( ) = ( ) ∑g

From now on we take the dependence of Φ on r and τ, and of Bg on r as being
implicit.

9.6.3 Selection by refocusing

The method by which a particular coherence transfer pathway is selected using
field gradients is illustrated opposite.  The first gradient pulse encodes a
spatially dependent phase, Φ1 and the second a phase Φ2 where

Φ Φ1 1 1 1 2 2 2 2= =s p B s p Bγ τ γ τg,1 g,2and   .

After the second gradient the net phase is (Φ1 + Φ2).  To select the pathway
involving transfer from coherence order p1 to coherence order p2, this net phase
should be zero; in other words the dephasing induced by the first gradient pulse
is undone by the second.  The condition (Φ1 + Φ2) = 0 can be rearranged to

s B

s B

p

p
1 1

2 2

2

1

g,1

g,2

τ
τ

= –

  . [13]

For example, if p1 = +2 and p2 = –1, refocusing can be achieved by making the
second gradient either twice as long (τ 2 = 2τ1), or twice as strong
(Bg,2 = 2Bg,1) as the first; this assumes that the two gradients have identical
shape factors.  Other pathways remain dephased; for example, assuming that we
have chosen to make the second gradient twice as strong and the same duration
as the first, a pathway with p1 = +3 to p2 = –1 experiences a net phase

Φ Φ1 2 1 1 13+ = =sB sB sBg,1 g,2 g,1τ τ τ–   .

Provided that this spatially dependent phase is sufficiently large, according the
criteria set out in the previous section, the coherence arising from this pathway
remains dephased and is not observed.  To refocus a pathway in which there is
no sign change in the coherence orders, for example, p1 = –2 to p2 = –1, the
second gradient needs to be applied in the opposite sense to the first; in terms of
Eqn. [13] this is expressed by having s2 = –s1.

The procedure can easily be extended to select a more complex coherence
transfer pathway by applying further gradient pulses as the coherence is
transferred by further pulses, as illustrated opposite.  The condition for
refocusing is again that the net phase acquired by the required pathway be zero,
which can be written formally as

p1

p2

RF

g
1τ 2τ

Illustration of the use of a pair
of gradients to select a single
pathway.  The radiofrequency
pulses are on the line marked
"RF" and the field gradient
pulses are denoted by shaded
rectangles on the line marked
"g".

RF

g
1τ 3τ 4τ2τ
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s p Bi i i i
i

γ τg,i∑ = 0   .

With more than two gradients in the sequence, there are many ways in which a
given pathway can be selected.  For example, the second gradient may be used
to refocus the first part of the required pathway, leaving the third and fourth to
refocus another part.  Alternatively, the pathway may be consistently dephased
and the magnetization only refocused by the final gradient, just before
acquisition.

At this point it is useful to contrast the selection achieved using gradient
pulses with that achieved using phase cycling.  From Eqn. [13] it is clear that a
particular pair of gradient pulses selects a particular ratio of coherence orders;
in the above example any two coherence orders in the ratio –2 : 1 or 2 : –1 will
be refocused.  This selection according to ratio of coherence orders is in
contrast to the case of phase cycling in which a phase cycle consisting of N
steps of 2π/N radians selects a particular change in coherence order ∆p = p2 –
p1, and further pathways which have ∆p = (p2 – p1) ± mN, where m = 0, 1, 2 ...

It is straightforward to devise a series of gradient pulses which will select a
single coherence transfer pathway.  It cannot be assumed, however, that such a
sequence of gradient pulses will reject all other pathways i.e. leave coherence
from all other pathways dephased at the end of the sequence.  Such assurance
can only be given be analysing the fate of all other possible coherence transfer
pathways under the particular gradient sequence proposed.  In complex pulse
sequences there may also be several different ways in which gradient pulses can
be included in order to achieve selection of the desired pathway.  Assessing
which of these alternatives is the best, in the light of the requirement of
suppression of unwanted pathways and the effects of pulse imperfections may
be a complex task.

9.6.3.1 Selection of multiple pathways

As we have seen earlier, it is not unusual to want to select two or more
pathways simultaneously, for example either to maximise the signal intensity or
to retain absorption-mode lineshapes.  A good example of this is the double-
quantum filter pulse sequence element, shown opposite.
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The ideal pathway, shown in (a), preserves coherence orders p = ± 2 during the
inter-pulse delay.  Gradients can be used to select the pathway –2 to –1 or +2 to
–1, shown in (b) and (c) respectively.  However, no combination of gradients
can be found which will select simultaneously both of these pathways.  In
contrast, it is easy to devise a phase cycle which selects both of these pathways
(section 9.5.5.4).  Thus, selection with gradients will in this case result in a loss
of half of the available signal when compared to an experiment of equal length
which uses selection by phase cycling.  Such a loss in signal is, unfortunately, a
very common feature when gradients are used for pathway selection.

9.6.3.2 Selection versus suppression

Coherence order zero, comprising z-magnetization, zz-terms and homonuclear
zero-quantum coherence, does not accrue any phase during a gradient pulse.
Thus, it can be separated from all other orders simply by applying a single
gradient.  In a sense, however, this is not a gradient selection process; rather it
is a suppression of all other coherences.  A gradient used in this way is often
called a purge gradient.  In contrast to experiments where selection is achieved,
there is no inherent sensitivity loss when gradients are used for suppression.
We will see examples below of cases where this suppression approach is very
useful.

9.6.3.3 Gradients on other axes

The simplest experimental arrangement generates a gradient in which the
magnetic field varies in the z direction, however it is also possible to generate
gradients in which the field varies along x or y.  Clearly, the spatially dependent
phase generated by a gradient applied in one direction cannot be refocused by a
gradient applied in a different direction.  In sequences where more than one pair
of gradients are used, it may be convenient to apply further gradients in
different directions to the first pair, so as to avoid the possibility of accidentally
refocusing unwanted coherence transfer pathways.  Likewise, a gradient which
is used to destroy all coherences can be applied in a different direction to
gradients used for pathway selection.

9.6.4 Refocusing and inversion pulses

Refocusing and inversion pulses play an important role in multiple-pulse NMR
experiments and so the interaction between such pulses and field gradient
pulses will be explored in some detail.  As has been noted above in section
9.5.3, a perfect refocusing pulse simply changes the sign of the order of any
coherences present, p → –p.  If the pulse is imperfect, there will be transfer to
coherence orders other than –p.

A perfect inversion pulse simply inverts z-magnetization or, more generally,
all z-operators: Iz → –Iz.  If the pulse is imperfect, it will generate transverse
magnetization or other coherences.  Inversion pulses are used extensively in
heteronuclear experiments to control the evolution of heteronuclear couplings.
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We start out the discussion by considering the refocusing of coherences,
illustrated opposite.  The net phase, Φ, at the end of such a sequence is

Φ Ω Ω= + + +( ) ( ' ) 'p psp B sp Bδ γ τ δ γ τg g

where Ω p( )  is the frequency with which coherence of order p evolves in the
absence of a gradient; note that Ω Ω−( ) ( )= −p p .  The net phase is zero if, and
only if, p' = –p.  With sufficiently strong gradients all other pathways remain
dephased and the gradient sequence thus selects the refocused component.  As
is expected for a spin echo, the underlying evolution of the coherence (as would
occur in the absence of a gradient) is also refocused by the selection of the
pathway shown.  Any transverse magnetization which an imperfect refocusing
pulse might create is also dephased.

Placing equal gradients either side of a refocusing pulse therefore selects the
coherence transfer pathway associated with a perfect refocusing pulse.  This
selection works for all coherence orders so, in contrast to the discussion in
section 9.6.3.1, there is no loss of signal.  Such a pair of gradients are often
described as being used to "clean up" a refocusing pulse, referring to their role
in eliminating unwanted pathways.

We cannot use gradients to select the pathway associated with an inversion
pulse as p = 0 both before and after the pulse.  However, we can apply a
gradient after the pulse to dephase any magnetization which might be created
by an imperfect pulse.  Taking the process a step further, we can apply a
gradient both before and after the pulse, with the two gradients in opposite
directions.  The argument here is that this results in the maximum dephasing of
unwanted coherences – both those present before the pulse and those that might
be generated by the pulse.  Again, this sequence is often described as being
used to "clean up" an inversion pulse.

In heteronuclear experiments an inversion pulse applied to one nucleus is
used to refocus the evolution of a coupling to another nucleus.  For example, in
the sequence shown opposite the centrally placed S spin 180° pulse refocuses
the IS coupling over the period 2δ.  The pair of gradients shown have no net
effect on I spin coherences as the dephasing due to the first gradient is exactly
reversed by the second.  The gradient sequence can be thought of as "cleaning
up" the S spin inversion pulse.

9.6.4.1 Phase errors due to gradient pulses

For the desired pathway, the spatially dependent phase created by a gradient
pulse is refocused by a subsequent gradient pulse.  However, the underlying
evolution of offsets (chemical shifts) and couplings is not refocused, and phase
errors will accumulate due to the evolution of these terms.  Since gradient
pulses are typically of a few milliseconds duration, these phase errors are
substantial.

p

p'

RF

g τ τ

180°

δ δ

Gradient sequence used to
"clean up" a refocusing pulse.
Note that the two gradients are
of equal area.  The refocused
pathway has p' = –p.

RF

g τ
τ

180°

Gradient sequence used to
"clean up" an inversion pulse.
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S

g τ

δ δ

τ

180°

In a heteronuclear experiment
(separate pulses shown on the
I and S spins) a 180° pulse on
the S spin refocuses the I S
coupling over the period 2δ.
The gradient pulses shown are
used to "clean up" the inversion
pulse.
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In multi-dimensional NMR the uncompensated evolution of offsets during
gradient pulses has disastrous effects on the spectra.  This is illustrated here for
the DQF COSY experiment, for which a pulse sequence using the gradient
pulses is shown opposite.  The problem with this sequence is that the double
quantum coherence will evolve during delay τ1.  Normally, the delay between
the last two pulses would be a few microseconds at most, during which the
evolution is negligible.  However, once we need to apply a gradient the delay
will need to be of the order of milliseconds and significant evolution takes
place.  The same considerations apply to the second gradient.

We can investigate the effect of this evolution by analysing the result for a
two-spin system.  In the calculation, it will be assumed that only the indicated
pathway survives and that the spatially dependent part of the evolution due to
the gradients can be ignored as ultimately it is refocused.  The coherence with
order of + 2 present during τ1 evolves according to

I I I I iI Iz z

1 2 1 2 1 2 1
1 1 1 2 1 2

+ +
+

+ + → +( )( )Ω Ω Ω Ωτ τ τexp –   ,

where Ω1 and Ω2 are the offsets of spins 1 and 2, respectively.  After the final
90° pulse and the second gradient the observable terms on spin 1 are

i
2 1 2 1 1 2 1 2 1 2 1 22 2exp – cos sini I I I Ix z y zΩ Ω Ω Ω+( )( ) +[ ]τ τ τ [14]

where it has been assumed that τ2 is sufficiently short that evolution of the
coupling can be ignored.  It is clearly seen from Eqn. [14] that, due to the
evolution during τ2, the multiplet observed in the F2 dimension will be a
mixture of dispersion and absorption anti-phase contributions.  In addition,
there is an overall phase shift due to the evolution during τ1.  The phase
correction needed to restore this multiplet to absorption depends on both the
frequency in F2 and the double-quantum frequency during the first gradient.
Thus, no single linear frequency dependent phase correction could phase
correct a spectrum containing many multiplets.  The need to control these phase
errors is plain.

The general way to minimise these problems is to associate each gradient
with a refocusing pulse, as shown opposite.  In sequence (a) the gradient is
placed in one of the delays of a spin echo; the evolution of the offset during the
first delay τ is refocused during the second delay τ.  So, overall there are no
phase errors due to the evolution of the offset.

An alternative is the sequence (b).  Here, as in (a), the offset is refocused
over the whole sequence.  The first gradient results in the usually spatially
dependent phase and then the 180° pulse changes the sign of the coherence
order.  As the second gradient is opposite to the first, it causes further
dephasing; effectively, it is as if a gradient of length 2τ is applied.  Sequence
(b) will give the same dephasing effect as (a) if each gradient in (b) is of
duration τ/2; the overall sequence will then be of duration τ.  If losses due to
relaxation are a problem, then clearly sequence (b) is to be preferred as it takes
less time than (a).
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Simple pulse sequence for
DQF COSY with gradient
selection and retention of
symmetrical pathways in t1.
The second gradient is twice
the area of the first.
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The sequence below shows the gradient-selected DQF COSY pulse sequence
modified by the inclusion of extra 180° pulses to remove phase errors.  Note
that although the extra 180° pulses are effective at refocusing offsets, they do
not refocus the evolution of homonuclear couplings.  It is essential, therefore, to
keep the gradient pulses as short as is feasible.

g

RF
t1

1τ

1τ 1τ

2τ

2τ 2τ

In many pulse sequences there are already periods during which the
evolution of offsets is refocused.  The evolution of offsets during a gradient
pulse placed within such a period will therefore also be refocused, making it
unnecessary to include extra refocusing pulses.  Likewise, a gradient may be
placed during a "constant time" evolution period of a multi-dimensional pulse
sequence without introducing phase errors in the corresponding dimension; the
gradient simply becomes part of the constant time period.  This approach is
especially useful in three- and four-dimensional experiments used to record
spectra of 15N, 13C labelled proteins.

9.6.5 Sensitivity

The use of gradients for coherence selection has consequences for the signal-to-
noise ratio of the spectrum when it is compared to a similar spectrum recorded
using phase cycling.  If a gradient is used to suppress all coherences other than
p  = 0, i . e . it is used simply to remove all coherences, leaving just z-
magnetization or zz terms, there is no inherent loss of sensitivity when
compared to a corresponding phase cycled experiment.  If, however, the
gradient is used to select a particular order of coherence the signal which is
subsequently refocused will almost always be half the intensity of that which
can be observed in a phase cycled experiment.  This factor comes about simply
because it is likely that the phase cycled experiment will be able to retain two
symmetrical pathways, whereas the gradient selection method will only be able
to refocus one of these.

The foregoing discussion applies to the case of a selection gradient placed in
a fixed delay of a pulse sequence.  The matter is different if the gradient is
placed within the incrementable time of a multi-dimensional experiment, e.g. in
t1 of a two-dimensional experiment.  To understand the effect that such a
gradient has on the sensitivity of the experiment it is necessary to be rather
careful in making the comparison between the gradient selected and phase
cycled experiments.  In the case of the latter experiments we need to include the
SHR or TPPI method in order to achieve frequency discrimination with
absorption mode lineshapes.  If a gradient is used in t1 we will need to record
separate P- and N-type spectra so that they can be recombined to  give an
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absorption mode spectrum.  We must also ensure that the two spectra we are
comparing have the same limiting resolution in the t1 dimension, that is they
achieve the same maximum value of t1 and, of course, the total experiment time
must be the same.

The detailed argument which is needed to analyse this problem is beyond the
scope of this lecture; it is given in detail in J. Magn. Reson Ser. A, 111, 70-76
(1994)†.  The conclusion is that the signal-to-noise ratio of an absorption mode
spectrum generated by recombining P- and N-type gradient selected spectra is
lower, by a factor 1 2  , than the corresponding phase cycled spectrum with
SHR or TPPI data processing.

The potential reduction in sensitivity which results from selection with
gradients may be more than compensated for by an improvement in the quality
of the spectra obtained in this way.  Often, the factor which limits whether or
not a cross peak can be seen is not the thermal noise level by the presence of
other kinds of "noise" associated with imperfect cancellation etc.

9.6.6 Diffusion

The process of refocusing a coherence which has been dephased by a gradient
pulse is inhibited if the spins move either during or between the defocusing and
refocusing gradients.  Such movement alters the magnetic field experienced by
the spins so that the phase acquired during the refocusing gradient is not exactly
opposite to that acquired during the defocusing gradient.

In liquids there is a translational diffusion of both solute and solvent which
causes such movement at a rate which is fast enough to cause significant effects
on NMR experiments using gradient pulses.  As diffusion is a random process
we expect to see a smooth attenuation of the intensity of the refocused signal as
the diffusion contribution increases.  These effects have been known and
exploited to measure diffusion constants since the very earliest days of NMR.

The effect of diffusion on the signal intensity from the simple echo sequence
shown opposite is relatively simple to analyse and captures all of the essential
points.  Note that the two gradient pulses can be placed anywhere in the
intervals δ either side of the 180° pulse.  For a single uncoupled resonance, the
intensity of the observed signal, S, expressed as a fraction of the signal intensity
in the absence of a gradient, S0 is given by

S

S
G D

0

2 2 2

3
= − −











exp γ τ τ∆ [15]

where D is the diffusion constant, ∆ is the time between the start of the two
gradient pulses and τ is the duration of the gradient pulses; relaxation has been
ignored.  For a given pair of gradient pulses it is diffusion during the interval
between the two pulses, ∆, which determines the attenuation of the echo.  The

                                                
† There is an error in this paper: in Fig. 1(b) the penultimate S spin 90° pulse should be phase y

and the final S spin 90° pulse is not required.
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stronger the gradient the more rapidly the phase varies across the sample and
thus the more rapidly the echo will be attenuated.  This is the physical
interpretation of the term γ τ2 2 2G  in Eqn. [15].

Diffusion constants generally decrease as the molecular mass increases. A
small molecule, such as water, will diffuse up to twenty times faster than a
protein with molecular weight 20,000.  The table shows the loss in intensity due
to diffusion for typical gradient pulse pair of 2 ms duration and of strength 10 G
cm–1 for a small, medium and large sized molecule; data is given for ∆ = 2 ms
and ∆ = 100 ms.  It is seen that even for the most rapidly diffusing molecules
the loss of intensity is rather small for ∆ = 2 ms, but becomes significant for
longer delays.  For large molecules, the effect is small in all cases.

Fraction of transverse magnetization refocused after a spin echo with gradient refocusinga

∆/ms small moleculeb medium sized moleculec macro moleculed

2 0.99 1.00 1.00

100 0.55 0.88 0.97

a Calculated for the pulse sequence shown above for two gradients of strength 10 G cm–1 and
duration, τ, 2 ms; relaxation is ignored.  b Diffusion constant, D, taken as that for water, which
is 2.1 × 10–9 m2 s–1 at ambient temperatures.  c Diffusion constant taken as 0.46 × 10–9 m2 s–1.  d

Diffusion constant taken as 0.12 × 10–9 m2 s–1.

9.6.6.1 Minimisation of Diffusion Losses

The foregoing discussion makes it clear that in order to minimise intensity
losses due to diffusion the product of the strength and durations of the gradient
pulses, G2 2τ , should be kept as small as is consistent with achieving the
required level of suppression.  In addition, a gradient pulse pair should be
separated by the shortest time, ∆ , within the limits imposed by the pulse
sequence.  This condition applies to gradient pairs the first of which is
responsible for dephasing, and the second for rephasing.  Once the coherence is
rephased the time that elapses before further gradient pairs is irrelevant from
the point of view of diffusion losses.

In two-dimensional NMR, diffusion can lead to line broadening in the F1

dimension if t1 intervenes between a gradient pair.  Consider the two alternative
pulse sequences for recording a simple COSY spectrum shown opposite.  In (a)
the gradient pair are separated by the very short time of the final pulse, thus
keeping the diffusion induced losses to an absolute minimum.  In (b) the two
gradients are separated by the incrementable time t1; as this increases the losses
due to diffusion will also increase, resulting in an extra decay of the signal in t1.
The extra line broadening due to this decay can be estimated from Eqn. [15],
with ∆ = t1, as γ τ π2 2 2G D  Hz.  For a pair of 2 ms gradients of strength 10 G
cm–1 this amounts ≈ 2 Hz in the case of a small molecule.

This effect by which diffusion causes an extra line broadening in the F1

dimension is usually described as diffusion weighting.  Generally it is possible
to avoid it by careful placing of the gradients.  For example, the sequences (a)

g
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t1 t2

g
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t1 t2
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and (b) are in every other respect equivalent, thus there is no reason not to
chose (a).  It should be emphasised that diffusion weighting occurs only when t1

intervenes between the dephasing and refocusing gradients.

9.6.7 Some examples of gradient selection

9.6.7.1 Introduction

Reference has already been made to the two general advantages of using
gradient pulses for coherence selection, namely the possibility of a general
improvement in the quality of spectra and the removal of the requirement of
completing a phase cycle for each increment of a multi-dimensional
experiment.  This latter point is particularly significant when dealing with
three- and four-dimensional experiments.

The use of gradients results in very significant improvement in the quality of
proton-detected heteronuclear experiments, especially when unlabelled samples
are used.  In such experiments, gradient selection results in much lower
dynamic range in the free induction decay as compared to phase cycled
experiments.

As has been discussed above, special care needs to be taken in experiments
which use gradient selection in order to retain absorption mode lineshapes.

In the following sections the use of gradient selection in several different
experiments will be described.  The gradient pulses used in these sequences will
be denoted G1, G2 etc. where Gi implies a gradient of duration τi, strength Bg,i

and shape factor si.  There is always the choice of altering the duration, strength
or, conceivably, shape factor in order to establish refocusing.  Thus, for brevity
we shall from now on write the spatially dependent phase produced by gradient
Gi acting on coherence of order p as γpGi  in the homonuclear case or

γ j j i
j

p G∑
in the heteronuclear case; the sum is over all types of nucleus.

9.6.7.2 Double-quantum Filtered COSY

g

RF

(a) (b)

t1

G1 G2

1τ 2τ

2
1
0

–1
–2

g

RF
t1

G1 G2

1τ

2
1
0

–1
–2

This experiment has already been discussed in detail in previous sections;
sequence (a) is essentially that described already and is suitable for recording
absorption mode spectra.  The refocusing condition is G2 = 2G1; frequency
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discrimination in the F1 dimension is achieved by the SHR or TPPI procedures.
Multiple quantum filters through higher orders can be implemented in the same
manner.

In sequence (b) the final spin echo is not required as data acquisition is
started immediately after the final radiofrequency pulse; phase errors which
would accumulate during the second gradient pulse are thus avoided.  Of
course, the signal only rephases towards the end of the final gradient, so there is
little signal to be observed.  However, the crucial point is that, as the
magnetization is all in antiphase at the start of t2, the signal grows from zero at
a rate determined by the size the couplings on the spectrum.  Provided that the
gradient pulse is much shorter that 1/J, where J is a typical proton-proton
coupling constant, the part of the signal missed during the gradient pulse is not
significant and the spectrum is not perturbed greatly.  An alternative procedure
is to start to acquire the data after the final gradient, and then to right shift the
free induction decay, bringing in zeroes from the left, by a time equal to the
duration of the gradient.

9.6.7.3 HMQC
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There are several ways of implementing gradient selection into the HMQC
experiment, one of which, which leads to absorption mode spectra, is shown
above.  The centrally placed I spin 180° pulse results in no net dephasing of the
I spin part of the heteronuclear multiple quantum coherence by the two
gradients G1 i.e. the dephasing of the I spin coherence caused by the first is
undone by the second.  However, the S spin coherence experiences a net
dephasing due to these two gradients and this coherence is subsequently
refocused by G2.  Two 180° S spin pulses together with the delays τ1 refocus
shift evolution during the two gradients G1.  The centrally placed 180° I spin
pulse refocuses chemical shift evolution of the I spins during the delays ∆ and
all of the gradient pulses (the last gradient is contained within the final delay,
∆).  The refocusing condition is

  m2 01 2γ γs IG G− =

where the + and – signs refer to the P- and N-type spectra respectively.  The
switch between recording these two types of spectra is made simply by
reversing the sense of G2.  The P- and N-type spectra are recorded separately
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and then combined in the manner described in section 9.4.4.2 to give a
frequency discriminated absorption mode spectrum.

In the case that I and S are proton and carbon-13 respectively, the gradients
G1 and G 2 are in the ratio 2:±1.  Proton magnetization not involved in
heteronuclear multiple quantum coherence, i.e. magnetization from protons not
coupled to carbon-13, is refocused after the second gradient G1 but is then
dephased by the final gradient G2.  Provided that the gradient is strong enough
these unwanted signals, and the t1-noise associated with them, will be
suppressed.

9.6.7.4 HSQC
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The sequence above shows the simplest way of implementing gradients into the
HSQC experiment.  An analysis using product operators shows that at point a
the required signal is present as the operator 2IzSz whereas the undesired signal
(from I spins not coupled to S spins) is present as Iy.  Thus, a field gradient
applied at point a will dephase the unwanted magnetization and leave the
wanted term unaffected.  This is an example of using gradients not for
selection, but for suppression of unwanted magnetization (see section 9.6.3.2).

The main practical difficulty with this approach is that the unwanted
magnetization is only along y at point a provided all of the pulses are perfect; if
the pulses are imperfect there will be some z-magnetization present which will
not be eliminated by the gradient.  In the case of observing proton-13C or
proton-15N HSQC spectra from natural abundance samples, the magnetization
from uncoupled protons is very much larger than the wanted magnetization, so
even very small imperfections in the pulses can give rise to unacceptably large
residual signals.  However, for globally labelled samples the degree of
suppression is often sufficient and such an approach is used successfully in
many three- and four-dimensional experiments applied to globally 13C and 15N
labelled proteins.

The key to obtaining the best suppression of the uncoupled magnetization is
to apply a gradient when transverse magnetization is present on the S spin.  An
example of the HSQC experiment utilising such a principle is shown below
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HSQC pulse sequence with gradient selection.  The CTP for an N-type spectrum is shown by the full line
and for the P-type spectrum by the dashed line.

Here, G1 dephases the S spin magnetization present at the end of t1 and, after
transfer to the I spins, G2 refocuses the signal.  An extra 180° pulse to S in
conjunction with the extra delay τ1 ensures that phase errors which accumulate
during G1 are refocused; G2 is contained within the final spin echo which is part
of the usual HSQC sequence.  The refocusing condition is

  mγ γS IG G1 2 0− =

where the –  and + signs refer to the N- and P-type spectra respectively.  As
before, an absorption mode spectrum is obtained by combining the N- and P-
type spectra, which can be selected simply by reversing the sense of G2.

9.7 Zero-quantum dephasing and purge pulses

Both z-magnetization and homonuclear zero-quantum coherence have
coherence order 0, and thus neither are dephased by the application of a
gradient pulse.  Selection of coherence order zero is achieved simply by
applying a gradient pulse which is long enough to dephase all other coherences;
no refocusing is used.  In the vast majority of experiments it is the z-
magnetization which is required and the zero-quantum coherence that is
selected at the same time is something of a nuisance.

A number of methods have been developed to suppress contributions to the
spectrum from zero-quantum coherence.  Most of these utilise the property that
zero-quantum coherence evolves in time, whereas z-magnetization does not.
Thus, if several experiments in which the zero-quantum has been allowed to
evolve for different times are co-added, cancellation of zero-quantum
contributions to the spectrum will occur.  Like phase cycling, such a method is
time consuming and relies on a difference procedure.  However, it has been
shown that if a field gradient is combined with a period of spin-locking the
coherences which give rise to these zero-quantum coherences can be dephased.
Such a process is conveniently considered as a modified purging pulse.

9.7.1 Purging pulses

A purging pulse consists of a relatively long period of spin-locking, taken here
to be applied along the x-axis.  Magnetization not aligned along x will precess
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about the spin-locking field and, because this field is inevitably
inhomogeneous, such magnetization will dephase.  The effect is thus to purge
all magnetization except that aligned along x.  However, in a coupled spin
system certain anti-phase states aligned perpendicular to the spin-lock axis are
also preserved.  For a two spin system (with spins k and l), the operators
preserved under spin-locking are Ikx, Ilx and the anti-phase state 2 2I I I Iky lz kz ly− .
Thus, in a coupled spin system, the purging effect of the spin-locking pulse is
less than perfect.

The reason why these anti-phase terms are preserved can best be seen by
transforming to a tilted co-ordinate system whose z-axis is aligned with the
effective field seen by each spin.  For the case of a strong B1 field placed close
to resonance the effective field seen by each spin is along x, and so the
operators are transformed to the tilted frame simply by rotating them by –90°
about y

I I I I

I I I I I I I I

kx

I

kz lx

I

lz

ky lz kz ly

I I

ky lx kx ly

ky ly

ky ly

− −

− +( )
 →  →

−  → −

π π

π

2 2

2
2 2 2 2

T T

T T T T

          

Operators in the tilted frame are denoted with a superscript T.  In this frame the
x-magnetization has become z, and as this is parallel with the effective field, it
clearly does not dephase.  The anti-phase magnetization along y has become

2 2I I I Iky lx kx ly
T T T T−

which is recognised as zero-quantum coherence in the tilted frame.  Like zero-
quantum coherence in the normal frame, this coherence does not dephase in a
strong spin-locking field.  There is thus a connection between the inability of a
field gradient to dephase zero-quantum coherence and the preservation of
certain anti-phase terms during a purging pulse.

Zero-quantum coherence in the tilted frame evolves with time at a frequency,
ΩZQ

T , given by

Ω Ω ΩZQ
T = +( ) − +( )k l

2
1
2 2

1
2ω ω

where Ωi is the offset from the transmitter of spin i and ω1 is the B1 field
strength.  If a field gradient is applied during the spin-locking period the zero
quantum frequency is modified to

Ω Ω ΩZQ
T

g gr B r B rk l( ) = + ( ){ } +( ) − + ( ){ } +( )γ ω γ ω
2

1
2 2

1
2

This frequency can, under certain circumstances, become spatially dependent
and thus the zero-quantum coherence in the tilted frame will dephase.  This is in
contrast to the case of zero-quantum coherence in the laboratory frame which is
not dephased by a gradient pulse.

The principles of this dephasing procedure are discussed in detail elsewhere
(J. Magn. Reson. Ser. A 105, 167-183 (1993) ).  Here, we note the following
features.   (a) The optimum dephasing is obtained when the extra offset induced
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by the gradient at the edges of the sample, γBg(rmax), is of the order of ω1.  (b)
The rate of dephasing is proportional to the zero-quantum frequency in the
absence of a gradient, (Ωk – Ωl).  (c) The gradient must be switched on and off
adiabatically.  (d) The zero-quantum coherences may also be dephased using
the inherent inhomogeneity of the radio-frequency field produced by typical
NMR probes, but in such a case the optimum dephasing rate is obtained by spin
locking off-resonance so that

tan–
,

1
1 54ω Ωk l( ) ≈ °.

(e)  Dephasing in an inhomogeneous B1 field can be accelerated by the use of
special composite pulse sequences.

The combination of spin-locking with a gradient pulse allows the
implementation of essentially perfect purging pulses.  Such a pulse could be
used in a two-dimensional TOCSY experiment whose pulse sequence is shown
below as (a).

t1 τm

g
GAGA GA G2

y

t2t1
t2

DIPSI
(a) (b)

Pulse sequences using purging pulses which comprise a period of spin locking with a magnetic field
gradient.  The field gradient must be switched on and off in an adiabatic manner.

In this experiment, the period of isotropic mixing transfers in-phase
magnetization (say along x) between coupled spins, giving rise to cross-peaks
which are absorptive and in-phase in both dimensions.  However, the mixing
sequence also both transfers and generates anti-phase magnetization along y,
which gives rise to undesirable dispersive anti-phase contributions in the
spectrum.  In sequence (a) these anti-phase contributions are eliminated by the
use of a purging pulse as described here.  Of course, at the same time all
magnetization other than x is also eliminated, giving a near perfect TOCSY
spectrum without the need for phase cycling or other difference measures.

These purging pulses can be used to generate pure z-magnetization without
contamination from zero-quantum coherence by following them with a 90°(y)
pulse, as is shown in the NOESY sequence (b).  Zero-quantum coherences
present during the mixing time of a NOESY experiment give rise to
troublesome dispersive contributions in the spectra, which can be eliminated by
the use of this sequence.


