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Detection of C60 and C70 in a Young
Planetary Nebula
Jan Cami,1,2* Jeronimo Bernard-Salas,3,4 Els Peeters,1,2 Sarah Elizabeth Malek1

In recent decades, a number of molecules and diverse dust features have been identified by astronomical
observations in various environments. Most of the dust that determines the physical and chemical
characteristics of the interstellar medium is formed in the outflows of asymptotic giant branch stars and is
further processed when these objects become planetary nebulae. We studied the environment of Tc 1,
a peculiar planetary nebula whose infrared spectrum shows emission from cold and neutral C60 and C70.
The two molecules amount to a few percent of the available cosmic carbon in this region. This finding
indicates that if the conditions are right, fullerenes can and do form efficiently in space.

Interstellar dust makes up only a small frac-
tion of the matter in our galaxy, but it plays
a crucial role in the physics and chemistry of

the interstellar medium (ISM) and star-forming
regions (1). The bulk of this dust is created in the
outflows of old, low-mass asymptotic giant branch
(AGB) stars; such outflows are slow (5 to 20 km/s)
but massive (10−8 to 10−4 solar masses per year)

(2–4). Once most of the envelope is ejected, the
AGB phase ends and the stellar core—a hot white
dwarf—becomes gradually more exposed.When
this white dwarf ionizes the stellar ejecta, they
become visible as a planetary nebula (PN).

Chemical reactions and nucleation in the AGB
outflows transform the atomic gas into molecules
and dust grains. For carbon-rich AGB stars (some-
times called carbon stars), this results in a large
variety of carbonaceous compounds; to date, more
than 60 individual molecular species and a hand-
ful of dust minerals have been identified in these
outflows (5), including benzene, polyynes, and
cyanopolyynes up to about 13 atoms in size (6, 7).

These environments are also thought to be
the birthplace for large aromatic species such as

polycyclic aromatic hydrocarbons (PAHs) and
fullerenes (8, 9), a class of large carbonaceous
molecules that were discovered in laboratory ex-
periments aimed at understanding the chemistry
in carbon stars (10). Fullerenes have unique phys-
ical and chemical properties, and the detection of
fullerenes and the identification of their forma-
tion site are therefore considered a priority in the
field of interstellar organic chemistry (11). How-
ever, astronomical searches for fullerenes in inter-
stellar and circumstellar media have not resulted
in conclusive evidence (12–14). Themost promis-
ing case to date is the detection of two diffuse
interstellar bands (DIBs) in the near-infrared (15)
whose wavelengths are close to laboratory spectra
of Cþ

60 in solid matrices (16); this finding awaits
confirmation from comparison to a cold, gas-
phase spectrum.

Here, we report on the detection of the full-
erenes C60 and C70 in the circumstellar environ-
ment of Tc 1. Tc 1 is a young, low-excitation PN
where the white dwarf is still enshrouded by the
dense stellar ejecta. At optical wavelengths, Tc
1 shows Ha emission up to ~50 arc sec away
from the central star, but the PN also has a much
smaller (~9 arc sec) and more compact core that
was observedwith the Infrared Spectrograph (IRS)
(17) onboard the Spitzer Space Telescope (18).
This inner region turns out to be carbon-rich,
hydrogen-poor, and dusty.

The Spitzer IRS spectrum of Tc 1 (Fig. 1) (19)
shows numerous narrow forbidden emission
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lines that are characteristic for the low-density
gas environment of PNe. The infrared continuum
is due to emission from circumstellar dust. For
carbon-rich environments, this dust is typically
amorphous carbon, which results in a featureless
continuum. Other common dust components re-
veal their presence through emission bands.

The spectra of most carbon-rich PNe are gen-
erally dominated by strong emission features due
to PAHs. These features are completely absent in
the spectrum of Tc 1. In addition, there is no trace
of even the simplest H-containing molecules
(such as HCN and C2H2) that are often observed
in carbon-rich proto-PNe. The Spitzer IRS spectrum
does show a few weak hydrogen recombination
lines, but these most likely originate from the
halo material farther out, where Ha emission is
also observed. Instead, the spectrum is dominated
by the prominent C60 bands at 7.0 (20), 8.5, 17.4,
and 18.9 mm, and furthermore exhibits weaker
features that are due to C70 (Fig. 1).

Emission processes result in band intensities
that are proportional to the Einstein A coefficients
for spontaneous emission and to the population of
the excited states. We scaled the experimentally
obtained relative absorption coefficients for the
C60 bands (1, 0.48, 0.45, and 0.378 for the bands at
18.9, 17.4, 8.5, and 7.0mm, respectively) (21, 22) to
absolute values by adopting a value of 25 km/mol
for the band at 8.5 mm (23) and converted them
to Einstein A coefficients. Using these, we cal-
culated the population distribution over the ex-
cited vibrational states from the total emitted power
in each of the C60 bands and found them to be
consistent with thermal emission, in which case
they are fully determined by a single parameter—
the excitation temperature—which we derived to
be ~330 K (19). The relative intensities of the in-
frared C60 bands in Tc 1 thus match what is ex-

pected for thermal emission at 330 K when using
experimentally obtained absorption coefficients.

It is well established from laboratory experi-
ments that the peak wavelengths and bandwidths
are temperature-dependent (24). The peak wave-
lengths in Tc 1 agree, within uncertainty, with
those found in laboratory experiments obtained at
temperatures comparable to our derived excita-
tion temperature (19, 25). We measured widths
(full width at half maximum) of ~10 cm−1 for the
bands at 18.9 and 17.4 mm, which agrees with
laboratory results (24–26); the bands at 7.0 and
8.5 mm are unresolved (19). We performed a sim-
ilar analysis for the C70 bands using appropriate
laboratory results (24, 27, 28) and obtained an
excitation temperature of ~180 K (19).

For comparison, we used the derived excita-
tion temperatures to construct thermal emission
models for both molecules (Fig. 1). The corre-
spondence between the laboratory-based emis-
sion model and the observations supports the
identification of these bands with fullerenes. The
absence of the corresponding spectral features of
fullerene cations or anions (e.g., 7.1 and 7.5 mm
for Cþ

60) implies that the fullerenes are in the
neutral state. All infrared active bands of both
species are fully accounted for in Tc 1; no other
clear spectral features remain unidentified in the
spectrum (19). The environment of Tc 1 thus re-
sults in a unique dust composition, but not in a
wide variety of dust components.

Our results suggest that the emission does not
originate from free molecules in the gas phase,
but from molecular carriers attached to solid ma-
terial. With an effective temperature for the cen-
tral object of ~30,000 K, the radiation field peaks
for photon energies in the range 6 to 10 eV, which
would result in excitation temperatures of 800 to
1000 K for large gas-phase species. The much

lower temperatures derived for the fullerenes thus
imply that these species are in direct contact with
a much cooler material. In this environment, the
most likely solid material is the surface of the
abundant carbonaceous grains present in the out-
flow. These solids are in radiative equilibrium
with the stellar radiation field, and thus their
temperature is determined by the distance from
the central object. If the fullerenes are in direct
contact with this material, they must be at the
same temperature and display a thermal popula-
tion distribution over the excited vibrational states,
such as we observe in Tc 1. The difference in
temperature between C60 and C70 then implies
different spatial locations, with C60 located closer
to the illuminating source than C70. This could
happen if C70 forms from C60 as it moves out.

The presence of only neutral fullerenes is in
agreement with an origin on grain surfaces, in
which case charge effects on individual mole-
cules are unimportant. In contrast, gaseous C60

would be largely in cationic form in this environ-
ment. Some observational support for an origin
in the solid state is also provided by the broad and
generally symmetric (Gaussian) band profiles. For
gas-phase species, vibrational anharmonicities
(and possibly ro-vibrational structure) would
result in asymmetric bands. Only a small fraction
of such gaseous material could be hidden in the
observed bands. The absence of gas-phase spe-
cies is puzzling and could indicate that the
fullerenes form on (or from) the dust grains and
never fully evaporate.

On Earth, fullerenes can be synthesized by
vaporizing graphite in a hydrogen-poor atmo-
sphere that contains helium as a buffer gas. The
fullerene formation process is very efficient, and
C60 is by far the dominant and most stable spe-
cies among the large cluster population formed in

A B

Fig. 1. The Spitzer IRS spectrum of Tc 1. (A) The entire range, 5 to 37 mm. (B)
Continuum-subtracted spectrum between 5 and 23 mm, where known for-
bidden emission lines are masked (19). We fitted a cubic spline to spectral
ranges devoid of features to determine the dust continuum (red dashed line).
The broad plateau between 11 and 13 mm is attributed to emission from SiC
dust (34, 35), and the well-known broad feature longward of 23 mm is be-
lieved to be due to MgS (36). Red arrows mark the wavelengths of all infrared
active modes for C60; blue arrows denote those of the four strongest, isolated

C70 bands. The red and blue curves below the data are thermal emission
models for all infrared active bands of C60 and C70 at temperatures of 330 K
and 180 K, respectively (19). We convolved the bands with a Gaussian profile
(s = 2.55 cm−1 for all C70 bands, s = 4.5 cm−1 for the C60 bands in the SH/LH
module, and s = 10 cm−1 for those in the SL module). Apparent weak emis-
sion bumps near 14.4, 16.2, 20.5, and 20.9 mm are artifacts. The nature of
the weak feature near 22.3 mm is unclear because it appears differently in
both nods.
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these experiments, followed by C70 (10, 25).
However, fullerene formation is inhibited by the
presence of hydrogen (29, 30). The circumstellar
environment of Tc 1 seems to be the astrophys-
ical analog of such a laboratory setup. The dust is
clearly carbonaceous—as is also expected from
the overabundance of C in the gas phase, with a
C/O ratio of ~3.2 (31)—but the absence of any
H-containing species indicates that the dust envi-
ronment must be very H-poor. About 5.8 × 10−8

solar masses of pure C60 and ~4.7 × 10−8 solar
masses of C70 are required to reproduce the
emission bands. The Spitzer IRS observations are
sensitive to dust only at temperatures of at least
~100 K, and given the measured expansion ve-
locity of 20 km/s (32), this corresponds to mass
loss from only the past 100 years. At the mea-
sured carbon abundance (31) and adopting a
mass loss rate of 10−4 solar masses per year, this
means that each of the fullerene species repre-
sents at least ~1.5% of the available carbon. This
is roughly consistent with abundance estimates
from the two DIBs associated with Cþ

60 (15) and
matches the fraction of graphite that is converted
into fullerenes in laboratory experiments (25).
Fullerenes can also be created by photochemical
processing of hydrogenated amorphous carbon
(33). However, such processes generally also
result in large amounts of PAHs, which are ab-
sent in Tc 1. The role of photochemistry in the
fullerene formation process in Tc 1 is thus unclear.

The unusual circumstellar environment of Tc
1 indicates that it must have ejected its entire
hydrogen envelope at least a few thousand years
ago, exposing the helium intershell material. Pre-
sumably, a late thermal pulse then caused the
ejection of this material, which nowmakes up the
warm, dusty, and hydrogen-poor PN core where
fullerenes are abundant. Tc 1 is thus not neces-

sarily an unusual object, although we evidently
have observed it during a short (and possibly
unusual) phase. The presence or absence of hy-
drogen in this type of carbon-rich environment
then clearly determines whether the chemical
pathways favor the formation of PAH molecules
or fullerenes as large aromatic species.Within the
context of carbon-rich PNe, the PAH route is gen-
erally dominant; only those objects that complete-
ly remove their hydrogen envelope and undergo
a late thermal pulse can then create the hydrogen-
poor environment where fullerenes flourish.
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Real-Time Dynamics of Single Vortex
Lines and Vortex Dipoles in a
Bose-Einstein Condensate
D. V. Freilich,* D. M. Bianchi,† A. M. Kaufman,‡ T. K. Langin, D. S. Hall§

Understanding the behavior of quantized vortices is essential to gaining insight into diverse superfluid
phenomena, from critical-current densities in superconductors to quantum turbulence in superfluids.
We observe the real-time dynamics of quantized vortices in trapped dilute-gas Bose-Einstein condensates
by repeatedly imaging the vortex cores. The precession frequency of a single vortex is measured by
explicitly observing its time dependence and is found to be in good agreement with theory. We further
characterize the dynamics of vortex dipoles in two distinct configurations: (i) an asymmetric configuration,
in which the vortex trajectories are dynamic and nontrivial, and (ii) a stable, symmetric configuration,
in which the dipole is stationary.

Quantized vortices are topological defects
that carry angular momentum and are
among the most conspicuous character-

istics of a superfluid (1, 2). Although superfluid
phenomena have been recognized for more than

a century, it is only in the past few decades that
the motion of quantized vortex lines has been
detected in real time through magnetic resonance
techniques, including the precession of a single
vortex line (3), the propagation of vortices from a

rotating superfluid into a nonrotating superfluid
(4, 5), and the phase transition of vortex lines into
vortex sheets (6). The dynamical behavior of quan-
tized vortex lines has also been imaged directly in
real time in superfluid helium (7) and type II
superconductors (8). These studies have yielded
a wealth of information about how vortices in-
fluence superfluid behavior through their pin-
ning, transport, and reconnection properties.

Dilute-gas Bose-Einstein condensates (BECs)
(9–11) are a natural choice for fundamental studies
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