Lactura 12 Enilogua	
Lecture 12 - Epilogue Metabolism: Basic Concepts and Design	
Preview for Chem 454	
T (1 ('	
Introduction	
2	
]
Introduction	
Questions you will focus on in Chem 454:	
2	
2	
Introduction	
Introduction Questions you will focus on in Chem 454: How does a cell extract energy and reducing	
Introduction Questions you will focus on in Chem 454:	
Introduction Questions you will focus on in Chem 454: How does a cell extract energy and reducing	
Introduction Questions you will focus on in Chem 454: How does a cell extract energy and reducing	
Introduction Questions you will focus on in Chem 454: How does a cell extract energy and reducing	

Introduction Questions you will focus on in Chem 454: • How does a cell extract energy and reducing power from its environment (catabolism)? • How does a cell synthesize the molecules it needs (anabolism)?	
1	
Introduction	
Questions you will focus on in Chem 454:	
How does a cell extract energy and reducing power from its environment (catabolism)?	
How does a cell synthesize the molecules it needs (anabolism)?	
How are these processes integrated and regulated?	
, -34	
•	
Introduction	
Living organisms require an input of free energy to meet a variety of needs:	
This free energy is required for	
Mechanical work (Lecture 11)	
 Active transport of molecules and ions (Lecture 9) 	
•Synthesis of biomolecules (Chapters 24-26)	
3	
Introduction	
The source of this free energy varies	
▶ Phototrophs	
Use energy from the sun to convert energy-poor molecules into energy rich molecules (Chapters 19 $\&$ 20)	
► Chemotrophs	
Obtain energy by oxidizing the energy-rich molecules made by the phototrophs (Chapters 15-18)	

Introduction

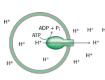
- Reduced molecules are energy-rich
- Oxidized molecules are energy-poor

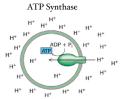
most energy —				least energy
H H H Methane	H H H Methanol	H C H Formaldehyde	H C OH Formic acid	Carbon dioxide
$\Delta G^{\circ}_{\text{oxidation}}$ -196 (kcal mol ⁻¹)	-168	-125	-68	0
$\Delta G^{\circ}_{\text{oxidation}}$ -820	-703	-523	-285	0

Introduction

We have also seen how free energy can be stored as an unequal distribution of ions across a biological membrane.

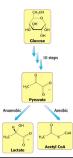
The free energy that is stored in an ion gradient can be used to

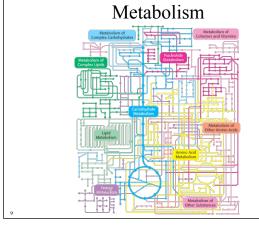

- Make ATP by a process called oxidative phosphorylation (Lecture 11 & Chapter 18)
- Transport ions and metabolites across membranes (Active transport (Lecture 9)
- •Nerve transmission (The action potential) (Lecture 9)


Introductions

Ion gradients:

- Ion gradients an be produced by pumps that use ATP hydrolysis as a source of free energy (Lecture 9)
- $\bullet \;\;$ lon gradients can be use, in turn, to synthesize ATP from ADP and $P_{i.}$


Active Transport



Metabolism

Metabolism is composed of many coupled, interconnected reactions

Metabolism

Classes of metabolic pathways:

▶Catabolic pathways

Those that convert energy into biologically useful forms

▶Anabolic pathways

Those that require an input of energy

Metabolism

Classes of metabolic pathways:

▶Catabolic pathways

Those that convert energy into biologically useful forms

Fuels (carbohydrates, fats) \longrightarrow CO₂ + H₂O + useful energy

 \blacktriangleright Anabolic pathways

Those that require an input of energy

Metabolism

Classes of metabolic pathways:

▶Catabolic pathways

Those that convert energy into biologically useful forms

Fuels (carbohydrates, fats) \longrightarrow CO₂ + H₂O + useful energy

▶Anabolic pathways

Those that require an input of energy

Metabolism

Basic concepts of metabolism include:

- Thermodynamically unfavorable reactions can be driven by favorable reactions.
- •ATP (NTP) is the universal currency of free energy.
- ATP hydrolysis drives metabolism by shifting the equilibrium constant of coupled reactions.
- There is a structural basis for the high phosphoryl transfer potential of ATP.
- The phosphoryl transfer potential is an important form of cellular energy transformation.

Thermodynamics

Thermodynamically unfavorable reactions can be driven by favorable reactions.

Free energy change for a reactions:

$$A + B \to C + D$$

$$\Delta G = \Delta G^{0} + RT \ln \left(\frac{[C][D]}{[A][B]} \right)$$

Thermodyamics

Coupling unfavorable reactions with favorable ones

$$A \leftarrow B + C \qquad \Delta G^{o'} = +5 \ kcal \ mol^{-1}$$

$$B \rightarrow D \qquad \Delta G^{o'} = -8 \ kcal \ mol^{-1}$$

$$A \rightarrow C + D \qquad \Delta G^{o'} = -3 \ kcal \ mol^{-1}$$

ATP

ATP is the universal currency of free energy

ATP	
Hydrolysis of ATP:	
ATP + H₂O → ADP +	$P_i \qquad \Delta G^{o'} = -7.3 \text{ kcal mol}^{-1}$
475 440 5 445	$PP_i \qquad \Delta G^{o'} = -10.9 \ kcal \ mol^{-1}$
ATP + H ₂ O → AMP +	PP _i ΔG = -10.9 κcarmor
15	
ATP Hydro	olysis
ATP hydrolysis drives metab equilibrium of coupled reac	oolism by shifting the
16	
ATP Hydro	olvsis
Phosphoryl transfer is a comr	
coupling	
Molecular motors (LectureMuscle contraction (Lecture	
► lon pumps (Lecture 9)	116 J W 11 <i>)</i>
,	
17	
Phosphoryl 7	Transfer
Structural basis for high trans	sfer potential
Compare:	
ATP + H_2O \longrightarrow ADP + P_1 Glycerol 3-phosphate + H_2O \longrightarrow Glycerol 3-phosphate	$\Delta G^{\circ\prime} = -7.3 \; kcal \; mol^{-1}$ erol + P _i $\Delta G^{\circ\prime} = -2.2 \; kcal \; mol^{-1}$

Phosphoryl Transfer

Phosphate ester vs Phosphate anhydride

Phosphoryl Transfer

Stabilization of orthophosphate

- ▶ resonance stabilization
- ▶ electrostatic repulsion
- ▶ hydration

Stabilization of Orthophosphate

Resonance stabilization

Orthophosphate

Pyrophosphate

Phosphoryl Transfer and Energy Transfer

There are other molecules with favorable phosphoryl transferase energies

Phosphoryl Transfer

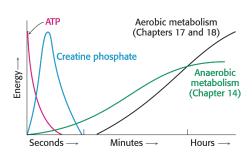
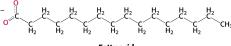

In terms of energy for phosphoryl transfer, ATP is intermediate:

TABLE 14.1 Standard free energies of hydrolysis of some phosphorylated

Compound	$kcal mol^{-1}$	kJ mol ^{−1}
Phosphoenolpyruvate	-14.8	-61.9
1,3-Bisphosphoglycerate	-11.8	-49.4
Creatine phosphate	-10.3	-43.1
ATP (to ADP)	- 7.3	-30.5
Glucose 1-phosphate	- 5.0	-20.9
Pyrophosphate	- 4.6	-19.3
Glucose 6-phosphate	- 3.3	-13.8
Glycerol 3-phosphate	- 2.2	- 9.2

Phosphoryl Transfer

Creatine phosphate is used to generate ATP in the short term:


Cellular Energy

The oxidation of Carbon fuels is an important source of cellular energy

most energy —				least energy
H H H Methane	OH H H Methanol	H C H Formaldehyde	H OH Formic acid	Carbon dioxide
$\frac{\Delta G^{\circ}_{\text{oxidation}}}{(\text{kcal mol}^{-1})}$ -196	-168	-125	-68	0
$\Delta G^{\circ}_{\text{oxidation}}$ -820	-703	-523	-285	0

Cellular Energy

The oxidation of Carbon fuels is an important source of cellular energy

Fatty acid

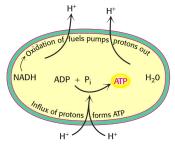
Glucose

Cellular Energy

- The synthesis of high phosphoryl transfer potential compounds are used to couple carbon oxidation to ATP synthesis.
- Ion gradients across membranes also provide an important form of cellular energy that can be used to synthesize ATP.
- The extraction of energy from foodstuffs occurs in stages.

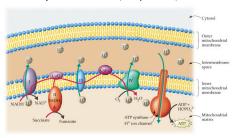
Coupling oxidation to ATP synthesis

The synthesis of high phosphoryl transfer potential compounds are used to couple carbon oxidation to ATP synthesis.

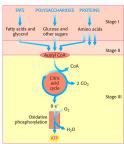

▶Example from glycolysis:

Coupling oxidation to ATP synthesis

In the next step ATP is harvested from the high energy phosphate intermediate.


Ion Gradients

 Ion gradients across membranes also provide an important form of cellular energy that can be used to synthesize ATP.


Cellular Energy

• Ion gradients across membranes also provide an important form of cellular energy that can be used to synthesize ATP. (Chapter 18)

Cellular Energy

Extraction of energy from foodstuffs is carried out in stages:

Ocidative Deprivation H ₂ O	
₩	
Recurring Motifs in Metabolism	
 Activated carriers exemplify the modular design and economy of metabolism. 	
 Key reactions are reiterated throughout metabolism. 	
 Metabolic processes are regulated in three principle way. 	
Activated Carriers	
ATP is an activated carrier of phosphate groups	
Other examples include:	
 Activated carriers of electrons in oxidation reactions (NADH, FADH₂, FMNH₂, et al.) 	
▶Activated carriers of electrons in reductive biosynthesis (NADPH, FADH ₂ , FMNH ₂ , et al.)	
Activated carriers of two-carbon fragments (Acetyl-CoA)	

Activated carriers of electrons in catabolism NAD (Nicotinamide Adenine Dinucleotide) NH2 OHO OH NH2 NH2 OR

Activated carriers of electrons in catabolism FAD (Flavin Adenine Dinucleotide)

Activated carriers of electrons in catabolism

Reduction of isoalloxazine ring of FAD

	osynthesis Reactive site
hosphate)	O HO OH H NH2 O HO OR

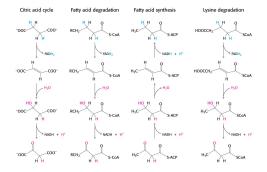
Activated carriers of acyl groups Coenzyme A is a carrier of Acyl groups

Activated Carriers

Other common activated carriers:

ABLE 14.2 Some activated carriers in n	netabolism	
Carrier molecule in activated form	Group carried	Vitamin precursor
ATP	Phosphoryl	
NADH and NADPH	Electrons	Nicotinate (niacin)
FADH ₂	Electrons	Riboflavin (vitamin B ₂)
FMNH ₂	Electrons	Riboflavin (vitamin B ₂)
Coenzyme A	Acyl	Pantothenate
Lipoamide	Acyl	
Thiamine pyrophosphate	Aldehyde	Thiamine (vitamin B ₁)
Biotin	CO_2	Biotin
Tetrahydrofolate	One-carbon units	Folate
S-Adenosylmethionine	Methyl	
Uridine diphosphate glucose	Glucose	
Cytidine diphosphate diacylglycerol	Phosphatidate	
Nucleoside triphosphates	Nucleotides	

ote: Many of the activated carriers are coenzymes that are derived from water-solubl


Key Reactions

• There are six basic reactions in metabolism:

TABI	TABLE 14.3 Types of chemical reactions in metabolism			
-	Гуре of reaction	Description		
(Oxidation-reduction	Electron transfer		
I	Ligation requiring ATP cleavage	Formation of covalent bonds (i.e., carbon–carbon bonds)		
I	somerization	Rearrangement of atoms to form isomers		
(Group transfer	Transfer of a functional group from one molecule to another		
1	Hydrolytic	Cleavage of bonds by the addition of water		
1	Addition or removal of functional groups	Addition of functional groups to double bonds or their removal to form double bonds		

Key Reactions

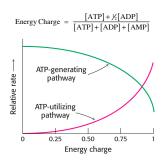
Metabolic motifs

Metabolic Regulation

Metabolic processes are regulated in different ways:

- •Enzyme levels
- •Enzyme activity (Lecture 6)
- Accessibility of substrates to the enzyme (Compartmentalization)

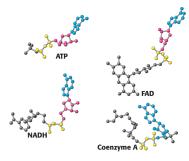
Metabolic Regulation


Degradative and biosynthesis pathways are usually distinct

- Compartmentalization
- Allosteric regulation

44

Metabolic Regulation


• The energy charge

45

Evolution of Metabolic Pathways

The structures of ATP, CoEnzyme A NADH and FADH₂ belie their "RNA world" origin.

