Chem 452 - Lecture 2 Protein Structure 110923

Proteins are the workhorses of a living cell and involve themselves in nearly all of the activities that take place in a cell. Their wide range of structures are manifested by the wide range of 3-dimensional structures that they are able to possess. Proteins are linear polymers of amino acids, whose sequence is determined by the sequence of DNA base pairs in their corresponding gene. The connection between this linear sequence of amino acids for a protein and its 3-dimensional structure will be the focus of this lecture.

equence is determined by the sequence of DNA base pairs in heir corresponding gene. The connection between this linear equence of amino acids for a protein and its 3-dimensional tructure will be the focus of this lecture.	
Protein Primary Structure]
 The amino acids combine to form polymers of amino acids. Polymers of amino acids are called polypeptides 	
$\begin{array}{c} H \stackrel{R_1}{\longrightarrow} H_2 \stackrel{R_2}{\longrightarrow} H_3 \stackrel{R_2}{\longrightarrow} H_3 \stackrel{R_1}{\longrightarrow} H_2 \stackrel{R_2}{\longrightarrow} H_3 \stackrel{R_1}{\longrightarrow} H_2 \stackrel{R_2}{\longrightarrow} H_2 H_2 \stackrel{R_2}{$	

Question

Chem 452, Lecture 2 - Protein Structure 2

- Based on the number of amino acid residues it contains A) how would you classify the oligopeptide shown below?
 - B) What is the predicted mass for this oligopeptide?

il contains	
e shown	
gopeptide?	

Question

- Based on the number of amino acid residues it containsA) how would you classify the oligopeptide shown below?
 - B) What is the predicted mass for this oligopeptide?

Protein Primary Structure	
 Protein Sequencing The first protein to be sequenced was insulin Frederick Sanger (1953) Nobel Prize in Chemistry, 1958 	
A chain Giy-lie-Val-Giu-Giu-Gyz-Gyz-Ala-Ser-Val-Gyz-Ser-Leu-Tyr-Giy-Leu-Giu-Ann Tyr-Cyz-Ann 10 5 5 6 7 8 chain Phe-Val-Asn-Gin-His-Leu-Cys-Giy-Ser-His-Leu-Val-Giu-Ala-Leu-Tyr-Leu-Val-Gyz-Giy-Phe-Phe-Tyr-Thr-Pro-Lyz-Ala 5 10 15 20 25 30	
Human Insulin	
Chem 452, Lecture 2 - Protein Structure 5	

Protein Primary Structure	
 Polypeptides are conformationally flexible. 	
+ Rotation is possible about the ϕ and ψ bonds.	
$ \begin{array}{c} $	
Chem 452, Lecture 2 - Protein Structure 6	

Protein Primary Structure

- + Rotation about the peptide (w) bond is restricted to 0° and 180°.
 - + The ω bond behaves like a double bond + cis (0°) or trans (180°)

Chem 452, Lecture 2 - Protein Structure 7

- * cis (0°) or trans (180°)
- trans is the sterically more favorable configuration

Protein Primary Structure

- Rotation about the peptide (ω) bond is restricted to 0° and 180°.
- + The ω bond behaves like a double bond + cis (0°) or trans (180°)
- * For peptide bonds involving proline, both **cis** and **trans** configurations are possible.

Protein Primary Structure

 Ramachandran determined the sterically most favorable combinations of φ and ψ angles.

Protein Tertiary Structure	
 What effect does the polar backbone have on folding? 	
H ^R H, H ^R	
H Ö H R Ö	
Chem 452, Lecture 2 - Protein Structure 12	

+	The first 3-dimensional structure of a protein
	were published in the late 1950's by John
	Kendrew (myoglobin) and Max Perutz
	(hemoglobin).
	-

Chem 452, Lecture 2 - Protein Structure 13

Protein Tertiary Structure

 The first 3-dimensional structure of a protein were published in the late 1950's by John Kendrew (myoglobin) and Max Perutz (hemoglobin).

tructure of a protein e 1950's by John Max Perutz

Protein Tertiary Structure	
 The first 3-dimensional structure of a protein were published in the late 1950's by John 	
Kendrew (myoglobin) and Max Perutz	
(hemoglobin).	
1 Interior or folded proteins is packed	
non-polar amino acid	
side chains.	
1 1146	
Beta chain of hemoglobin	
Chem 452, Lecture 2 - Protein Structur	14

Protein Secondary Structure

+ Looking at the sterically favorable ϕ and ψ angles.

	<u> </u>

Protein Secondary Structure

+ Looking at the sterically favorable ϕ and ψ angles.

Chem 452, Lecture 2 - Protein Structure 18

Protein Secondary Structure

β-sheet region
 Can also have mixed parallel and antiparallel
 β-sheets

Protein Secondary Structure	
+β-sheet region	
(A)	
(B) (C)	
Chem 452, Lecture 2 - Protein Structure 22	

Protein Seconda	iry Structure	
 The amino acid residence protein, generally addition combinations of φ a 	lues in a folded, globular lopt these favorable nd ψ angles.	
	p1	
Ribonu	Clease A Chem 452, Lecture 2 - Protein Structure 23	

Chem 452, Lecture 2 - Protein Structure 24

Protein Secondary Structure

+ Proteins vary in their $\alpha-helix$ and $\beta-$ sheet content.

Ferritin (1aew)

Fibrous Proteins	
 Some fibrous proteins lack tertiary but have quaternary structure. 	
(A)	
(B)	
α -helical coiled coils	
Chem 452, Lecture 2 - Protein Structure 26	

Fibrous Proteins	
 Some fibrous proteins lack tertiary but have quaternary structure 	
(A) (B) (B) (C)-belical coiled coils	
Chem 452, Lecture 2 - Protein Structure 26	

Fibrous Proteins

* Some fibrous proteins lack tertiary but have quaternary structure.

Fibrous Proteins

* Some fibrous proteins lack tertiary but have quaternary structure.

Collagen (polyproline triple helix) CHEM 452, Lecture 2 - Protein Structure 27

Fibrous Proteins

+ Some fibrous proteins lack tertiary but have quaternary structure.

Collagen (polyproline triple helix)

Chem	452,	Lecture	2 -	Protein	Structure	27	

Fibrous Proteins

+ Some fibrous proteins lack tertiary but have quaternary structure.

Collagen (polyproline triple helix) Chem 452, Lecture 2 - Protein Structure 28

Fibrous Proteins

+ Some fibrous proteins lack tertiary but have quaternary structure.

Collagen (polyproline triple helix) Chem 452, Lecture 2 - Protein Structure 28

Protein Tertiary Structure • The 3-dimensional fold of a single polypeptide (A) Herre group (B) Herre gr	
Chem 452, Lecture 2 - Protein Structure 29	
Protein Tertiary Structure	

+ Polypeptides fold to remove hydrophobic amino acid side chains from exposure to water.

surface

Protein Tertiary Structure

* Formation of secondary structure allows for the polar backbone to be buried as well.

Chem 452, Lecture 2 - Protein Structure 31

Protein Tertiary Structure

+ Most of the amino acid residues have ϕ and ψ angles in the sterically favorable regions

Ribonuclease A Chem 452, Lecture 2 - Protein Structure 32

Protein Quaternary Structure

* Some proteins have multiple polypeptides (subunits).

Chem 452, Lecture 2 - Protein Structure 35

Protein Quaternary Structure	
 Quaternary structures are stabilized by the same interactions that 	
 Non-covalent interactions involving primarily the amino acid side chains. 	
Chem 452, Lecture 2 - Protein Structure 36	

Protein Quaternary Structure	
 Some tertiary structures have multiple folding domains, which give 	
them the appearance of having quaternary structure	
CD4 protein Chem 452, Lecture 2 - Protein Structure 37	

Hierarchy of	Protein Structure	
+ Primary	1 Alexandre	
+ Secondary		
+ Tertiary	A CALLER AND A CALLER	
+ Quaternary		
	Phosphofructokinase I	
	Chem 452, Lecture 2 - Protein Structure 38	

Next up	
 Protein folding and misfolding. 	
Chem 452, Lecture 2 - Protein Structure 39	