Chem 352 - Lecture 9
Photosynthesis

Introduction

The evolution of photosynthesis was a
milestone for living system on earth

+ It allowed energy to be obtain from an
extraterrestrial source.

+ It lead to the creation of an oxygenated
atmosphere along with a food source for non-
photosynthesizing organisms.
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Introduction
There are two parts fo photosynthesis

* Light reactions

» Shares much in common with the electron
transport chain and ATP synthase.

+ Dark reactions

» Fixes atmospheric CO2 and shares much in
common with Gluconeogenesis and the
Pentose Phosphate Pathway.
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Introduction

+ The light reactions take place in complex
structures called photosystems.

+ Light energy is used to energetically excite
electrons, and that energy is then used to
make either ATP or reduced NADPH + H*.
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Introduction

+ The light reactions take place in complex
structures called photosystems.

+ There are two different types of
photosystems, PSI and PSII

» Some organisms have one or the other and
some have both.
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Light-Harvesting Pigments
+ Chlorophylls
+ Associated Pigments
e 3-carotene
» xanthophylls
 Phycobilins

e et al

Chem 352, Lecture 9: Photosynthesis 7

7-1

Light-Harvesting Pigments
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Light-Harvesting Pigments
+ Chlorophylls
+ Associated Pigments
* B-carotene
 xanthophylls
 Phycobilins

o et al
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Light-Harvesting Pigments
+ Chlorophylls
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Light-Harvesting Pigments
+ Chlorophylls
+ Associated Pigments
e 3-carotene
+ xanthophylls
 Phycobilins

e et al
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Light-Harvesting Pigments

+ Chlorophvlls

Absorbance —>

700

Wavelength (nm)
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Light-Harvesting Pigments
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Light-Harvesting Pigments
+ Chlorophvlls
2
2
Wavelength (nm)
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Light-Harvesting Pigments
+ Chlorophylls
+ Associated Pigments
e 3-carotene
+ xanthophylls
 Phycobilins
e et al
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Light-Harvesting Pigments

Photosystems have a special pair of
chlorophylls called the special pair.

+ This is where light energy is used fo remove
a high energy electron from special pair.

+ This makes them a strong oxidizing agent.
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Light-Harvesting Pigments
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Light-Harvesting Pigments
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Light-Harvesting Pigments
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Photosystem II (PSII)

Two related photosystems have evolved in
the the last 2.8 billion years.

+ Photosystem II (PSII)
« Found in
» Purple bacteria
» Green filamentous bacteria
- both are strict anaerobes
+ PSII is combined with cytochrome bc to create a
proton gradient that is used fo synthesize ATP.
» cytochrome bc is complex III from the electron
transport chain.
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Photosystem II (PSII)
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Photosystem II (PSII)
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Photosystem II (PSII)

Two related photosystems have evolved in

the the last 2.8 billion years.

+ Photosystem II (PSII)
« Found in
» Purple bacteria
» Green filamentous bacteria
- both are strict anaerobes
+ PSII is combined with cytochrome bc to create a
proton gradient that is used fo synthesize ATP.
» cytochrome bc is complex III from the electron
transport chain.
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Photosystem II (PSII)
Two related photosystems have evolved in
the the last 2.8 billion years.

+ Photosystem II (PSII)

« Found in

Table 15.1 Photosystem Il reactions
Psll: 2 P870 + 2 photons —> 2 P8709 + 2 ¢©
Q+2e° +2HY, — QH,
Cyt bey: 2QH; + 2cytc(Fe®) — 2Q + 2cytc (FeD) + 4 HByy + 29
Q+2¢e° +2HY, — QH,
Psil: 2cytc(Fe@) + 2P8709 — 2 cyt ¢ (Fe®) + 2 PB70
Sum: 2 photons + 4 HE,, — 4 HE,,
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Photosystem II (PSII)
Two related photosystems have evolved in
the the last 2.8 billion years.
+ Photosystem II (PSII)
« Found in
» Purple bacteria
» Green filamentous bacteria
- both are strict anaerobes
+ PSII is combined with cytochrome bc to create a
proton gradient that is used fo synthesize ATP.
» cytochrome bc is complex III from the electron
transport chain.
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Photosystem I (PSI)
Two related photosystems have evolved
in the the last 2 billion years.
+ Photosystem I (PSI)
« Found in
» Heliobacteria
» Green sulfur bacteria
« Combines PSI with cytochrome bc
» cytochrome bc is complex III from the
electron transport chain.
* Creates either a proton gradient that is used to
synthesize ATP.
» or reduces NADP* to NADPH + H*.
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10-2

Photosystem I (PSI)

Two related photosystems have evolved
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Photosystem I (PSI)

Two related photosystems have evolved
in the the last 2 billion years.

+ Photosystem I (PSI)

- Found in
» Heliobacteria
» Green sulfur bacteria

« Combines PSI with cytochrome bc
» cytochrome bc is complex III from the

electron transport chain.

« Creates either a proton gradient that is used to
synthesize ATP.
» or reduces NADP* fo NADPH + H*.
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Photosystem I (PSI)
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Photosystem I (PSI)

Two related photosystems have evolved
in the the last 2 billion years.

+ Photosystem I (PSI)

« Found in
» Heliobacteria
» Green sulfur bacteria

« Combines PSI with cytochrome bc
» cytochrome bc is complex III from the

electron transport chain.

* Creates either a proton gradient that is used to
synthesize ATP.
» or reduces NADP* to NADPH + H*.
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Photosystem I (PSI)

Two related photosystems have evolved
in the the last 2 billion years.

Table 15.2 The photosystem | reactions

PSI: 2 P700 + 2 photons — 2 P700® + 2 €@
2Fdoy + 269 + — 2Fdpeg
FNR: Fdeg + H® + FAD = Fdoy + FADH-

Fdreq + H® + FADH: == Fdoy + FADH,
FADH, + NADP® = FAD + NADPH + H®

Sum: 2 P700 + 2 photons + NADP® + H® — 2 P700® + NADPH

synthesize ATP.
» or reduces NADP* to NADPH + H*.
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Photosystem I (PSI)

Two related photosystems have evolved
in the the last 2 billion years.

+ Photosystem I (PSI)

- Found in
» Heliobacteria
» Green sulfur bacteria

« Combines PSI with cytochrome bc
» cytochrome bc is complex III from the

electron transport chain.

« Creates either a proton gradient that is used to
synthesize ATP.
» or reduces NADP* fo NADPH + H*.
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The Evolution of Photosystems

Cyanobacteria coupled the two
systems together.

+ An oxygen evolving complex evolved to supply the
electrons to PSII

+ Cytochrome bf (instead of cytochrome bc) is used
fo reoxidize plastoquinone (instead of ubiquinone)
and reduce the blue copper protein, plastocyanin,
or cytochrome ¢

+ Plastocyanin (or cytochrome c) then reduces PSI,
which in turn reduces NADP* to NADPH + H*.
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The Evolution of Photosystems
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The Evolution of Photosystems

Cyanobacteria coupled the two
systems together.
+ An oxygen evolving complex evolved to supply the
electrons to PSII

+ Cytochrome bf (instead of cytochrome bc) is used
to reoxidize plastoquinone (instead of ubiquinone)
and reduce the blue copper protein, plastocyanin,
or cytochrome ¢

+ Plastocyanin (or cytochrome c) then reduces PSI,
which in turn reduces NADP* to NADPH + H*.
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The Evolution of Photosystems
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The Evolution of Photosystems

Cyanobacteria coupled the two
systems together.

+ An oxygen evolving complex evolved to supply the
electrons to PSII

+ Cytochrome bf (instead of cytochrome bc) is used
fo reoxidize plastoquinone (instead of ubiquinone)
and reduce the blue copper protein, plastocyanin,
or cytochrome ¢

+ Plastocyanin (or cytochrome c) then reduces PSI,
which in turn reduces NADP* to NADPH + H*.
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The Evolution of Photosystems

Cyanobacteria coupled the two

Table 15.3 The photosynthesis reactions in species with hoth photosystems

Psll: 2P680 + 2 photons — 2 P680® + 2 €O
PQ + 2 + 2 HE, —> PQH,
OEC: H)0 — 30, + 2HE, + 2¢®
2P680 + 2 62 —> 2 P680
Cyt bf: 2 PQH;, + 2 plastocyanin (Cu®) — 2 PQ + 2 plastocyanin (Cu®) + 4 Hq, + 2 ¢©
PQ + 2HE, + 22 —> PQH
PSI: 2P700 + 2 photons —> 2 P700€ + 2 ¢
2Fdgy + 269 — 2 Fdrey
2 plastocyanin (Cu®) + 2 P700® — 2 plastocyanin (Cu?*) + 2 P700
FNR: 2 Fdgeg + H® + NADP® == 2 Fd,, + NADPH

Sum:  H,O + 4 photons + 4 HE, + NADP® + H® — 10O, + 6 H®,,, + NADPH
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The Evolution of Photosystems

Cyanobacteria coupled the two
systems together.

+ An oxygen evolving complex evolved to supply the
electrons to PSII

+ Cytochrome bf (instead of cytochrome bc) is used
to reoxidize plastoquinone (instead of ubiquinone)
and reduce the blue copper protein, plastocyanin,
or cytochrome ¢

+ Plastocyanin (or cytochrome c) then reduces PSI,
which in turn reduces NADP* to NADPH + H*.
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The Evolution of Photosystems
By coupling the two systems

+ Cyanobacteria are able fo produces both ATP
and reduced NADPH + H*.

+ Use water as as its source of electrons.
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Plant Photosynthesis

Plant photosynthesis takes place in
organelles calls chloroplasts.

+ The chloroplasts found in photo-synthesizing
eukaryotes are believed to have evolved from
cyanobacteria, which established a symbiotic
relationship with eukaryotes
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Plant Photosynthesis

Plant photosynthesis takes place in
organelles calls chloroplasts.

+ The chloroplasts found in photo-synthesizing

 membranes elieved to have evolved from
gﬂi// Vhich established a symbiotic
eukaryotes
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Plant Photosynthesis

Plant photosynthesis takes place in
organelles calls chloroplasts.

+ The chloroplasts found in photo-synthesizing
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Plant Photosynthesis

Plant photosynthesis takes place in
organelles calls chloroplasts.
+ The chloroplasts found in photo-synthesizing
eukaryotes are believed to have evolved from

cyanobacteria, which established a symbiotic
relationship with eukaryotes
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Plant Photosynthesis

-Chloroplasts have double membranes,
like mitochondria.

Intermembrane  Outer
space

/memhrane Inner

membrane

Lumen

Stromal
Thylakoid  Granal lamellae
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Plant Photosynthesis

-Chloroplasts have double membranes,
like mitochondria.

umen
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Plant Photosynthesis

*Chloroplasts have double membranes,
like mitochondria.

Intermembrane  Outer
space

membrane |pper
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Plant Photosynthesis

‘Chloroplasts have double membranes,
l

Photosystem Il
Photosystem |
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Plant Photosynthesis

-Chloroplasts have double membranes,
like mitochondria.

Intermembrane  Outer
space membrane |pper
= membrane

Stroma
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The Dark Reactions

* The dark reactions of photosynthesis use the
ATP and reduced NADPH + H* from the light
reactions to convert CO2 and Hz0 into
glycolytic intermediates.

*+ Called the Calvin Cycle
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The Dark Reactions

Parts of the Calvin Cycle resembles
parts of both

+ Gluconeogenesis (Reduction)

+ Nonoxidative phase of the Pentose Phosphate
Pathway (Regeneration)
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The Dark Reactions

Parts of the Calvin Cycle resembles
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The Dark Reactions

Rubisco (Ribulose bisphoshpate
carboxylase/oxygenase
+ 50% of soluble protein in leaves is rubisco
+ Very inefficient (Keat = 3 s7%)

+ Nearly every organic-based carbon on earth
has passed through the active site of this
enzyme.
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The Dark Reactions

Rubisco (Ribulose bisphoshpate
carboxylase/oxygenase

+ 50% of soluble protein in leaves is rubisco

+ Very inefficient (Keat = 3 s7%)

+ Nearly every organic-based carbon on earth
has passed through the active site of this

enzyme.
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The Dark Reactions

Rubisco (Ribulose bisphoshpate

carboxylase/oxygenase

+ The oxygenase activity is inefficient
« It consumes ATP and NADPH + H*
e It consumes O:
» The metabolism of the 2-Phosphoglycerate

leads to the release of CO:

*+ Is called photorespiration

+ Some plants, called C, plants, can counteract
the oxygenase activity by concentrating CO-
in the leaf cells.
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The Dark Reactions

Rubisco (Ribulose bisphoshpate

carboxylase/oxygenase

+ The oxygenase activity is inefficient
« It consumes ATP and NADPH + H*
» It consumes O:
* The metabolism of the 2-Phosphoglycerate

leads to the release of CO:

* Is called photorespiration

+ Some plants, called C, plants, can counteract
the oxygenase activity by concentrating CO2
in the leaf cells.
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The Dark Reactions

‘Rubisco (Ribulose bisphoshpate

carboxylase/oxygenase

+ The oxygenase activity is inefficient
» It consumes ATP and NADPH + H*
» It consumes O:
» The metabolism of the 2-Phosphoglycerate

leads to the release of CO.

* Is called photorespiration

+ Xerophilic plants, such as cactus and
pineapples, reduce their Hz20 loss during the
day by storing up CO: during the night
using the CAM pathway.
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The Dark Reactions

‘Rubisco (Ribulose bisphoshpate

carboxylase/oxygenase

+ The oxygenase activity is inefficient
» It consumes ATP and NADPH + H*
» It consumes O:
» The metabolism of the 2-Phosphoglycerate

leads to the release of CO.

* Is called photorespiration

+ Xerophilic plants, such as cactus and
pineapples, reduce their Hz20 loss during the
day by storing up CO: during the night
using the CAM pathway.
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Next Up

‘Lecture 10 - Lipid Metabolism
(Moran et al., Chapter 16)
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