	1	
Chem 352 - Lecture 9		
Photosynthesis		
Introduction	2	
The evolution of photosynthesis was a milestone for living system on earth		
 It allowed energy to be obtain from an extraterrestrial source. 		
 It lead to the creation of an oxygenated atmosphere along with a food source for non- photosynthesizing organisms. 		
Chem 352, Lecture 9: Photosynthesis 2		
Introduction	3	
There are two parts to photosynthesis		
* Light reactions		
 Shares much in common with the electron transport chain and ATP synthase. 		
* Dark reactions		
 Fixes atmospheric CO₂ and shares much in common with Gluconeogenesis and the Pentose Phosphate Pathway. 		
Chem 352, Lecture 9: Photosynthesis 3		
Introduction	4	
 The light reactions take place in complex structures called photosystems. 		
 Light energy is used to energetically excite electrons, and that energy is then used to make either ATP or reduced NADPH + H⁺. 		

_											
Т	n	+	r	^	h	ı	^	t	i	$\boldsymbol{\wedge}$	r

- The light reactions take place in complex structures called **photosystems**.
- There are two different types of photosystems, PSI and PSII
- Some organisms have one or the other and some have both.

5

The Light-gathering Pigments

Oxidation and reduction occurs on the tetrapyrrole ring.

Chem 352, Lecture 9: Photosynthesis 6

6

Light-Harvesting Pigments

- + Chlorophylls
- + Associated Pigments
- β -carotene
- xanthophylls
- Phycobilins
- et al.

Chem 352, Lecture 9: Photosynthesis 7

7-1

Light-Harvesting Pigments

Chem 352, Lecture 9: Photosynthesis

- + Chlorophylls
- + Associated Pigments
 - β-carotene
 - xanthophylls
- Phycobilins
- et al.

7-3

Light-Harvesting Pigments

+ Chlorophylls

Chem 352, Lecture 9: Photosynthesis 7

7-4

Light-Harvesting Pigments

- + Chlorophylls
- + Associated Pigments
- β-carotene
- xanthophylls
- Phycobilins
- et al.

Chem 352, Lecture 9: Photosynthesis 7

7-5

Light-Harvesting Pigments

Chem 352, Lecture 9: Photosynthesis 7

Light-Harvesting Pigments

- + Chlorophylls
- + Associated Pigments
- β -carotene
- xanthophylls
- Phycobilins
- et al.

Chem 352, Lecture 9: Photosynthesis 7

7-9

Light-Harvesting Pigments

Photosystems have a special pair of chlorophylls called the **special pair**.

- This is where light energy is used to remove a high energy electron from special pair.
- + This makes them a strong oxidizing agent.

8-1

8-3

8-4

Photosystem II (PSII)

Two related photosystems have evolved in the the last 2.8 billion years.

- + Photosystem II (PSII)
- Found in
- · Purple bacteria
- · Green filamentous bacteria
 - · both are strict anaerobes
- PSII is combined with cytochrome bc to create a proton gradient that is used to synthesize ATP.
 - · cytochrome bc is complex III from the electron transport chain.

Chem 352, Lecture 9: Photosynthesis 9

9-1

Photosystem	TT	(DCTT)	
Photosystem	11	(PSIII	

9-2

Photosystem II (PSII)

9-5

9-6

Photosystem II (PSII)

Two related photosystems have evolved in the the last 2.8 billion years.

- + Photosystem II (PSII)
- Found in
- · Purple bacteria
- · Green filamentous bacteria
 - · both are strict anaerobes
- PSII is combined with cytochrome bc to create a proton gradient that is used to synthesize ATP.
 - · cytochrome bc is complex III from the electron transport chain.

9	-	7

Photosystem II (PSII)

Two related photosystems have evolved in the the last 2.8 billion years.

+ Photosystem II (PSII)

Chem 352, Lecture 9: Photosynthesis

റ	0
	-0

Photosystem II (PSII)

Two related photosystems have evolved in the the last 2.8 billion years.

- + Photosystem II (PSII)
 - Found in
 - · Purple bacteria
 - · Green filamentous bacteria
 - · both are strict anaerobes
- + PSII is combined with cytochrome bc to create a proton gradient that is used to synthesize ATP.
 - · cytochrome bc is complex III from the electron transport chain.

Chem 352, Lecture 9: Photosynthesis 9

9-9

Photosystem I (PSI)

Two related photosystems have evolved in the the last 2 billion years.

- + Photosystem I (PSI)
- Found in
 - · Heliobacteria
 - · Green sulfur bacteria
- · Combines PSI with cytochrome bc
 - · cytochrome bc is complex III from the electron transport chain.
- · Creates either a proton gradient that is used to synthesize ATP.
- · or reduces NADP+ to NADPH + H+.

Chem 352, Lecture 9: Photosynthesis 10

10-1

Photosystem I (PSI)

Two related photosystems have evolved

Photosystem I (PSI)

Two related photosystems have evolved in the the last 2 billion years.

- + Photosystem I (PSI)
- Found in
- · Heliobacteria
- · Green sulfur bacteria
- Combines PSI with cytochrome bc
- cytochrome bc is complex III from the electron transport chain.
- Creates either a proton gradient that is used to synthesize ATP.
 - , or reduces NADP+ to NADPH + H+.

Chem 352, Lecture 9: Photosynthesis 10

Photosystem I (PSI)

10-4

10-3

Photosystem I (PSI)

Two related photosystems have evolved in the the last 2 billion years.

- + Photosystem I (PSI)
- Found in
 - · Heliobacteria
 - · Green sulfur bacteria
- · Combines PSI with cytochrome bc
 - · cytochrome bc is complex III from the electron transport chain.
- Creates either a proton gradient that is used to synthesize ATP.
- , or reduces NADP+ to NADPH + H+.

Chem 352, Lecture 9: Photosynthesis 10

10-5

Photosystem I (PSI)

Two related photosystems have evolved in the the last 2 billion years.

Table 15	.2 The photosystem I reactions
PSI:	2 P700 + 2 photons \longrightarrow 2 P700 $^{\oplus}$ + 2 e^{\ominus}
	$2 \operatorname{Fd}_{\operatorname{ox}} + 2 e^{\ominus} + \longrightarrow 2 \operatorname{Fd}_{\operatorname{red}}$
FNR:	$Fd_{red} + H^{\oplus} + FAD \Longrightarrow Fd_{ox} + FADH$ •
	$Fd_{red} + H^{\oplus} + FADH \longrightarrow Fd_{ox} + FADH_2$
	$FADH_2 + NADP^{\oplus} \Longrightarrow FAD + NADPH + H^{\oplus}$
Sum:	2 P700 + 2 photons + NADP $^{\oplus}$ + H $^{\oplus}$ \longrightarrow 2 P700 $^{\oplus}$ + NADPH

synthesize ATP.

· or reduces NADP+ to NADPH + H+.

Chem 352, Lecture 9: Photosynthesis 10

Photosystem I (PSI)

Two related photosystems have evolved in the the last 2 billion years.

- + Photosystem I (PSI)
- Found in
- · Heliobacteria
- · Green sulfur bacteria
- Combines PSI with cytochrome bc
- cytochrome bc is complex III from the electron transport chain.
- Creates either a proton gradient that is used to synthesize ATP.
- · or reduces NADP+ to NADPH + H+.

Chem 352, Lecture 9: Photosynthesis 10

The Evolution of Photosystems

Cyanobacteria coupled the two systems together.

- An oxygen evolving complex evolved to supply the electrons to PSII
- Cytochrome bf (instead of cytochrome bc) is used to reoxidize plastoquinone (instead of ubiquinone) and reduce the blue copper protein, plastocyanin, or cytochrome c
- Plastocyanin (or cytochrome c) then reduces PSI, which in turn reduces NADP+ to NADPH + H+.

Chem 352, Lecture 9: Photosynthesis 11

11-1

10-7

The Evolution of Photosystems

Chem 352, Lecture 9: Photosynthesis

11-2

The Evolution of Photosystems

Cyanobacteria coupled the two systems together.

- An oxygen evolving complex evolved to supply the electrons to PSII
- Cytochrome bf (instead of cytochrome bc) is used to reoxidize plastoquinone (instead of ubiquinone) and reduce the blue copper protein, plastocyanin, or cytochrome c
- Plastocyanin (or cytochrome c) then reduces PSI, which in turn reduces NADP+ to NADPH + H+.

11-3				

The Evolution of Photosystems

11-4

The Evolution of Photosystems

Cyanobacteria coupled the two systems together.

- An oxygen evolving complex evolved to supply the electrons to PSII
- Cytochrome bf (instead of cytochrome bc) is used to reoxidize plastoquinone (instead of ubiquinone) and reduce the blue copper protein, plastocyanin, or cytochrome c
- Plastocyanin (or cytochrome c) then reduces PSI,
 which in turn reduces NADP+ to NADPH + H+.

Chem 352, Lecture 9: Photosynthesis 11

11-5

The Evolution of Photosystems

Cyanobacteria coupled the two

PSII:	2 P680 + 2 photons \longrightarrow 2 P680 $⊕$ + 2 e $⊖$
	$PQ + 2 e^{\ominus} + 2 H^{\ominus}_{ln} \longrightarrow PQH_2$
OEC:	$H_2O \longrightarrow \frac{1}{2}O_2 + 2 H_{out}^{\oplus} + 2 e^{\Theta}$
	2 P680 $^{\oplus}$ + 2 e^{\ominus} → 2 P680
Cyt bf:	2 PQH $_2$ + 2 plastocyanin (Cu $^{\scriptsize\textcircled{\odot}}$) \longrightarrow 2 PQ + 2 plastocyanin (Cu $^{\scriptsize\textcircled{\oplus}}$) + 4 H $^{\scriptsize\textcircled{\odot}}$ _{out} + 2 $e^{\scriptsize\textcircled{\odot}}$
	$PQ + 2 H^{\oplus}_{in} + 2 e^{\ominus} \longrightarrow PQH_2$
PSI:	2 P700 + 2 photons \longrightarrow 2 P700 $^{\oplus}$ + 2 e^{\bigcirc}
	2 Fd _{ox} + 2 e [⊙] − → 2 Fd _{red}
	2 plastocyanin (Cu [⊕]) + 2 P700 [⊕] → 2 plastocyanin (Cu ²⁺) + 2 P700
FNR:	$2 \text{ Fd}_{\text{red}} + \text{H}^{\oplus} + \text{NADP}^{\oplus} \Longrightarrow 2 \text{ Fd}_{\text{ox}} + \text{NADPH}$
Sum:	$H_2O + 4 \text{ photons} + 4 \text{ H}_{\text{in}}^{\oplus} + \text{NADP}^{\oplus} + \text{H}^{\oplus} \longrightarrow \frac{1}{2}O_2 + 6 \text{ H}_{\text{out}}^{\oplus} + \text{NADPH}$

Chem 352, Lecture 9: Photosynthesis 11

11-6

The Evolution of Photosystems

Cyanobacteria coupled the two systems together.

- An oxygen evolving complex evolved to supply the electrons to PSII
- Cytochrome bf (instead of cytochrome bc) is used to reoxidize plastoquinone (instead of ubiquinone) and reduce the blue copper protein, plastocyanin, or cytochrome c
- Plastocyanin (or cytochrome c) then reduces PSI, which in turn reduces NADP+ to NADPH + H+.

Chem 352, Lecture 9: Photosynthesis 11

The Evolution of Photosystems

By coupling the two systems

- + Cyanobacteria are able to produces both ATP and reduced NADPH + H+.
- + Use water as as its source of electrons.

Chem 352, Lecture 9: Photosynthesis 12

12

Plant Photosynthesis

Plant photosynthesis takes place in organelles calls chloroplasts.

+ The chloroplasts found in photo-synthesizing eukaryotes are believed to have evolved from cyanobacteria, which established a symbiotic relationship with eukaryotes

Chem 352, Lecture 9: Photosynthesis 13

13-1

Plant Photosynthesis

Plant photosynthesis takes place in organelles calls chloroplasts.

+ The chloroplasts found in photo-synthesizing believed to have evolved from vhich established a symbiotic eukaryotes

Cvanobacterium

Chem 352, Lecture 9: Photosynthesis 13

13-2

Plant Photosynthesis

Plant photosynthesis takes place in organelles calls chloroplasts.

+ The chloroplasts found in photo-synthesizing

Cyanobacterium

Chloroplast

Chem 352, Lecture 9: Photosynthesis 13

Plant Photosynthesis

Plant photosynthesis takes place in organelles calls chloroplasts.

 The chloroplasts found in photo-synthesizing eukaryotes are believed to have evolved from cyanobacteria, which established a symbiotic relationship with eukaryotes

Chem 352, Lecture 9: Photosynthesis 13

\sim	1
. 1.	-4
	3.

14-1	
------	--

Plant Photosynthesis

·Chloroplasts have double membranes, like mitochondria.

Plant Photosynthesis

•Chloroplasts have double membranes, like mitochondria.

14-2

		\sim			•
ы	ant	Ph	ด†ดรง	yntho	ยรเร

·Chloroplasts have double membranes, like mitochondria.

Plant Photosynthesis

·Chloroplasts have double membranes,

14-4

Plant Photosynthesis

·Chloroplasts have double membranes, like mitochondria.

14-5

The Dark Reactions

- * The dark reactions of photosynthesis use the ATP and reduced NADPH + H+ from the light reactions to convert CO_2 and H_2O into glycolytic intermediates.
- * Called the Calvin Cycle

Chem 352, Lecture 9: Photosynthesis 15

15

The Dark Reactions

Parts of the Calvin Cycle resembles parts of both

- + Gluconeogenesis (Reduction)
- + Nonoxidative phase of the Pentose Phosphate Pathway (Regeneration)

16-1

The Dark Reactions Parts of the Calvin Cycle resembles parts of both Ribulose Carboxylation 3-Phosphoglycerate Regeneration Reduction 1,3-Bisphosphoglycerate NADP NADP®+ H®

Chem 352, Lecture 9: Photosynthesis 16

16-3

16-4

16-8

16-11

The Dark Reactions Parts of the Calvin Cycle resembles Parts of hoth Ribulose Carboxylation 3-Phosphoglycerate ATP ADP ADP Reduction 1,3-Bisphosphoglycerate Pi NADPH NADP®+ H® Chem 352, Lecture 9: Photosynthesis 16

16-12

s

Rubisco (Ribulose bisphoshpate carboxylase/oxygenase

- + 50% of soluble protein in leaves is rubisco
- + Very inefficient ($k_{cat} \approx 3 \text{ s}^{-1}$)
- Nearly every organic-based carbon on earth has passed through the active site of this enzyme.

17-1

The Dark Reactions

Chem 352, Lecture 9: Photosynthesis 17

17-3

17-4

The Dark Reactions

Rubisco (Ribulose bisphoshpate carboxylase/oxygenase

- + 50% of soluble protein in leaves is rubisco
- + Very inefficient ($k_{cat} \approx 3 \text{ s}^{-1}$)
- + Nearly every organic-based carbon on earth has passed through the active site of this enzyme.

Chem 352, Lecture 9: Photosynthesis 18

The Dark Reactions Chi,000 Ch

18-3

The Dark Reactions CH2OPO3[©] CH₂OPO₃[©] çoo⊝ =02H[⊕] 2-Phosphoglycolat с॑ — он Oxygenase Activity ç00⊝ CH2OPO3[©] ċ-он Ribulose ,5-bisphosphate ĊH₂OPO₃^② 3-Phosphoglycerate СН2ОРО3 Chem 352, Lecture 9: Photosynthesis 18

18-4

The Dark Reactions

Rubisco (Ribulose bisphoshpate carboxylase/oxygenase

- + The oxygenase activity is inefficient
- It consumes ATP and NADPH + H+
- It consumes O₂
- The metabolism of the 2-Phosphoglycerate leads to the release of CO_2
- * Is called **photorespiration**
- Some plants, called C₄ plants, can counteract the oxygenase activity by concentrating CO₂ in the leaf cells.

Chem 352, Lecture 9: Photosynthesis 19

The Dark Reactions

Rubisco (Ribulose bisphoshpate carboxylase/oxygenase

- + The oxygenase activity is inefficient
- It consumes ATP and NADPH + H+
- It consumes O_2
- The metabolism of the 2-Phosphoglycerate leads to the release of CO_2
- * Is called **photorespiration**
- * Some plants, called C_4 plants, can counteract the oxygenase activity by concentrating CO_2 in the leaf cells.

Chem 352, Lecture 9: Photosynthesis 19

19-3

The Dark Reactions

•Rubisco (Ribulose bisphoshpate carboxylase/oxygenase

- + The oxygenase activity is inefficient
- It consumes ATP and NADPH + H+
- · It consumes O2
- $^{\backprime}$ The metabolism of the 2-Phosphoglycerate leads to the release of CO2
- * Is called photorespiration
- Xerophilic plants, such as cactus and pineapples, reduce their H₂O loss during the day by storing up CO₂ during the night using the CAM pathway.

Chem 352, Lecture 9: Photosynthesis 20

20-1

The Dark Reactions ·Rubis carbox + The · I† · It · Th glycerate lea * Is co + Xero pine uring the ight day usin Chem 352, Lecture 9: Photosynthesis 20

20-3 The Dark Reactions ·Rubisco (Ribulose bisphoshpate carboxylase/oxygenase + The oxygenase activity is inefficient • It consumes ATP and NADPH + H+ → It consumes O₂ · The metabolism of the 2-Phosphoglycerate leads to the release of CO2 * Is called **photorespiration** + Xerophilic plants, such as cactus and pineapples, reduce their H2O loss during the day by storing up CO2 during the night using the CAM pathway. Chem 352, Lecture 9: Photosynthesis 20 21 Next Up ·Lecture 10 - Lipid Metabolism (Moran et al., Chapter 16)