Chem 352 - Lecture 2 Water

Question for the Day: What physical characteristics of a water molecule allows a groundhog to walk across a lake at this time of the year?

Question for the Day: How does the pH of a solution influence charge/charge interactions between biological molecules?

Water

- Water makes up 60% to 90% of the mass of living cells.
 - Since the other components of the cell have no choice but to interact with water, a deeper understanding of the physical and chemical properties of water is key to understanding the structures and functions of all the other molecules that make up a living cell.
- In this lecture we will also take consideration of non-covalent interactions.

Tilly diddit i Top di Tildo di Tildiai
Question:
Explain why the H-O-H bond angle for water is 104.5°

				•			
()	11	0	C.	Þ١		n	•
Q	u	C	3	ı	U	,	•

List the physical interactions that one water molecule can have with another.

Physical F
•Hydrogen

radius (Å) Water **Element Hydrogen** 1.2 Carbon 1.7

In additi water ca other mo bonding.

	<u>Nitrogen</u>	1.55
4	<u>Oxygen</u>	1.52
	<u>Fluorine</u>	1.47
l	<u>Phosphorus</u>	1.8
	<u>Sulfur</u>	1.8
	<u>Chlorine</u>	1.75
1	Copper	1.4

nteractions, itself, and drogen

- ·Hydrogen bonding has a big effect on the structure physical properties of water.
 - Studying the 3-dimensional structure of water is very difficult.
 - One of our chemistry department graduates, Prof. Rich Saykally, has made a distinguished career of it.

·Much of our basic understanding of liquid water is inferred from what we know about solid water (ice).

·Water has unusual physical properties for a molecule of its size and mass.

Physical Properties of Water	
Property	Value
Molar mass	18.015
Molar Volume	55.5 moles/liter
Boiling Point (BP)	100°C at 1 atm
Freezing point (FP)	0°C at 1 atm
Triple point	273.16 K at 4.6 torr
Surface Tension	73 dynes/cm at 20°C
Vapor pressure	0.0212 atm at 20°C
Heat of vaporization	40.63 kJ/mol
Heat of Fusion	6.013 kJ/mol
Heat Capacity (cp)	4.22 kJ/kg.K
Dielectric Constant	78.54 at 25°C
Viscosity	1.002 centipoise at 20°C
Density	1 g/cc
Density maxima	4°C
Specific heat	4180 J kg-1 K-1 (T=293373 K)

·Water has unusual physical properties for a molecule of its size and mass.

Name	Formula	Mw (daltons)	Melting Point (°C)	Heat of Fusion (J/g)	Boiling Point (°C)
Water	H₂O	18	0	335	100
Hydrogen Sulfide	H₂S	34	-85.5	69.9	-60.7
Hydrogen Selenide	H₂Se	81	-50.4	31	-41.5

- ·Water is a good solvent for solutes that share water's physical properties.
 - + "Like dissolves like"

·The water-like hydroxyl groups make organic molecules more soluble

TABLE 2. alcohols i		f short-chain		
Alcohol	Structure	Solubility in water (mol/100 g H ₂ O at 20°C) ^a		
Methanol	CH₃OH	∞		
Ethanol	CH ₃ CH ₂ OH	∞		
Propanol	$CH_3(CH_2)_2OH$	∞		
Butanol	$CH_3(CH_2)_3OH$	0.11		
Pentanol	$CH_3(CH_2)_4OH$	0.030		
Hexanol	$CH_3(CH_2)_5OH$	0.0058		
Heptanol	$CH_3(CH_2)_6OH$	0.0008		
^a Infinity (∞) indicates that there is no limit to the solubility of the alcohol in water.				

Chem 352, Lecture 2 - Water 13

·Osmotic pressure

·Water is not a good solvent for all

Molecules that contain both a hydrophobic and a hydrophilic component, are said to be amphipathic.

- ·Summary of intermolecular interactions:
 - Bonding Interactions

metals bonding to nonmetals

nonmetals bonding to nonmetals

metals bonding to metals

Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Bonding Ionic		Cation-anion	400-4000	NaCl
Covalent	•••	Nuclei-shared e pair	150-1100	н—н
Metallic	+ + +	Cations—delocalized electrons	75–1000	Fe

- ·Noncovalent (Nonbonding) can be broadly catalogued into 4 types,
 - * Charge-Charge
 - * Hydrogen bonding
 - * Dipole/Dipole
 - + vander Waals
- They help to stabilize the structures that form.

Most of the stabilizing noncovalent interactions are electrostatic,

Most of the noncovalent interactions are electrostatic

Including:

- + Charge/charge
- + Dipole/dipole

While dipole/dipole interactions can be either attractive or repulsive, they will tend to arrange themselves to produce and attractive interaction.

Most of the noncovalent interactions

- + vander Waals interactions include
 - dipole/induced dipole
 - induced/induced dipole (London Dispersion)
 - · electron repulsion

Interaction	Distance dependence	Typical Energy {kJ/mol}	Comment
Ion/ion	1/ <i>r</i>	± 250	In a vacuum
Ion/ion	1/ <i>r</i>	± 3.1	In water
Ion/dipole	$1/r^2$	± 15	
Dipole/Dipole	$1/r^3$	± 2	Between stationary polar molecules
Dipole/Dipole	$1/r^6$	-0.3	Between rotating polar molecules
London (Dispersion)	$1/r^6$	-2	Between all types of molecules
Compare to C–C bond		-348	Covalent bond

 $RT = (8.314 \times 10^{-3} \text{ kJ/mol} \cdot \text{K})(310 \text{ K}) = 2.5 \text{ kJ/mol}$

- ·Summary of intermolecular interactions:
 - Bonding Interactions

Force	Model	Basis of Attraction	Energy (kJ/mol)	Example
Bonding				
Ionic	+ +	Cation-anion	400-4000	NaCl
Covalent	0.0	Nuclei-shared e pair	150-1100	н—н
Metallic	+ + +	Cations—delocalized electrons	75–1000	Fe

- ·Summary of intermolecular interactions:
 - Noncovalent (Nonbonding) Interactions

vander Waals

Review

Question:

What is the vander Waals radius of an atom and how is it defined?

- ·Water is a nucleophile
 - hydrolysis reactions

·Water can self-ionize

* Kw, the ion product for water

This can be thought of as an extension of the hydrogen bonding interaction

$$K_w = \left[H_3 O^+ \right] \left[O H^- \right]$$
$$K_w = 1.0 \times 10^{-14} \text{ M}^2$$

TABLE 2.3 Relation of $[H^{\oplus}]$ and $[OH^{\ominus}]$ to pH					
pН	[H [⊕]] (M)	[OH [⊖]] (M)			
0	1	10^{-14}			
01	10^{-1}	10^{-13}			
02	10^{-2}	10^{-12}			
03	10^{-3}	10^{-11}			
04	10^{-4}	10^{-10}			
05	10^{-5}	10^{-9}			
6	10^{-6}	10^{-8}			
07	10^{-7}	10^{-7}			
08	10^{-8}	10^{-6}			
09	10^{-9}	10^{-5}			
10	10^{-10}	10^{-4}			
11	10^{-11}	10^{-3}			
12	10^{-12}	10^{-2}			

 10^{-13}

 10^{-1}

·The pH Scale

```
pH = -\log([H^+]) (Arrhenius definition)

pH = -\log([H_3O^+]) (Brønsted-Lowry definition)
```


Virtual Laboratory

Definitions of Acids and Bases

- Operational Definition
 - Acids, when dissolved in water cause the pH to go down from pH7
 - Bases, when dissolved in water cause the pH to go up from pH7

$$pH = -log([H+])$$

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14} M^2$$

For pure water, $[H^+] = [OH^-] = 1.0 \times 10^{-7} M$

Definitions of Acids and Bases

- * Arrhenius Definition
 - Acids, when dissolved in water release H+ ions.
 - Bases, when dissolved in water release [OH-] ions.

$$K_W = [H^+][OH^-] = 1.0 \times 10^{-14} M^2$$

$$\begin{bmatrix} H^{-} \end{bmatrix} = \frac{K_{w}}{OH^{-}} = \frac{\left(1.0 \times 10^{-14} \text{ M}^{2}\right)}{OH^{-}}$$

Definitions of Acids and Bases

- * Brønsted-Lowrey Definition
 - Acids, donate a proton (H+ ion) from a base.
 - Bases, accept a proton (H+ ion) from an acid.

- pH of a strong acid or a strong base
 - When a strong acid is dissolved in water it completely dissociates its H+ ions.
 - When a strong base is dissoved in water, it completely dissociates it OH- ions.

- pH of a strong acid and a strong base
- + Neutralization of an acid by a base

- pH of a strong acid and a strong base
- + Neutralization of an acid by a base
- + Titration curve for a strong acid.

Neutralization of an acid with a base (pH titration)

 Titrations can be used to determine the unknown concentration of an acid

- pH of a strong acid and a strong base
- + Neutralization of an acid by a base
- + Titration curve for a strong acid.
- + Titration curve for a weak acid.

* Titration curve for a weak acid

- pH of a strong acid and a strong base
- + Neutralization of an acid by a base
- + Titration curve for a strong acid.
- + Titration curve for a weak acid.
- + Calculating the pH of a weak acid solution.

- ·pH of a weak acid solution
 - + 0.01 M acetic acid

$$[H^+] \approx \sqrt{K_a C}$$

$$pH \approx \frac{1}{2} (pK_a - \log(C))$$

* Titration curve for a weak acid

TABLE 2.4 Dissociation constants and pK_a values of weak acids in aqueous solutions at 25°C

Acid	$K_{\mathbf{a}}(\mathbf{M})$	pK _a
HCOOH (Formic acid)	1.77×10^{-4}	3.8
CH ₃ COOH (Acetic acid)	1.76×10^{-5}	4.8
CH ₃ CHOHCOOH (Lactic acid)	1.37×10^{-4}	3.9
H ₃ PO ₄ (Phosphoric acid)	7.52×10^{-3}	2.2
H ₂ PO ₄ [⊖] (Dihydrogen phosphate ion)	6.23×10^{-8}	7.2
HPO ₄ (Monohydrogen phosphate ion)	2.20×10^{-13}	12.7
H ₂ CO ₃ (Carbonic acid)	4.30×10^{-7}	6.4
HCO ₃ [○] (Bicarbonate ion)	5.61×10^{-11}	10.2
NH ₄ ⊕ (Ammonium ion)	5.62×10^{-10}	9.2
CH ₃ NH ₃ ⊕ (Methylammonium ion)	2.70×10^{-11}	10.7

- + pH of a strong acid and a strong base
- Neutralization of an acid by a base
- + Titration curve for a strong acid.
- + Titration curve for a weak acid.
- + Calculating the pH of a weak acid solution.
- + The Henderson-Hasselbalch Equation and Buffers

·Henderson-Hasselbalch Equation

HA + H₂O
$$\rightarrow$$
 A⁻ + H₃O⁺

$$K_a = \frac{\left[A^{-}\right]\left[H_3O^{+}\right]}{\left[HA\right]}$$

$$pH = pK_a + \log\left(\frac{A^-}{HA}\right)$$

·Titration curve for a weak acid

Problem:

For a lactic acid buffer (pKa = 3.9)

- A. What is the concentration of a buffer that contains 0.25 M lactic acid (CH₃CH(OH)COOH) and 0.15 M lactate (CH₃CH(OH)COO-)?
- B. What is the pH of this buffer?

Titration curve for a polyprotic acid

Problem: (Check your work with Marvin)

Many phosphorylated sugars (phosphate esters of sugars) are metabolic intermediates. the two ionizable -OH groups of the phosphate group of the monophosphate ester of ribose (ribose 5-phosphate) have pKa values 1.2 and 6.6. The fully protonated form of α -D-ribose 5-phosphate has the structure shown below.

- A. Draw, in order, the ionic species formed upon titration of this phosphorylated sugar from pH 0.0 to pH 10.0.
- B. Sketch the titration curve for ribose 5-phosphate.

Molecular Resources

- + Marvin
 - A tool for drawing and analyzing small molecules
- + The Protein Data Bank (PDB)
 - A database where you can find and observe the structures of biological macromolecules and aggregates of these molecules.
 - Not limited to proteins

The bicarbonate buffer and regulation of blood pH

Next up

Lecture 3 - Amino Acids and Protein Primary Structure

+ Read Chapter 3 of Moran et al.