

4

Physical Properties of Water Question: List the physical interactions that one water molecule can have with another.

5

Physical Properties of Water Predicting polarities is important for predicting what molecules will dissolve in water. "Like dissolves like" Having polar bonds is required, but not sufficient, for a molecule to be polar. A molecule's geometry is also important.

Chem 352, Lecture 2 - Water 6

6-1

Physical Properties of Water	
 Predicting polarities is important for predicting what molecules will dissolve in water. 	
"Like dissolves like"	
 Having polar bonds is required, but not sufficient, for a molecule to be polar. A molecule's geometry is also important. 	

6-3			

Physical Properties of Water Hydrogen bonding In addition to dipole/dipole interactions, water can also interact with itself, and other molecules, through hydrogen bonding. H-0-H+H-0-H = 0-H - 0 H H H AH H AH = -20 kJ mol⁻¹

7-2

Physical P	Element	radius (Å)	Water
	Hydrogen	1.2	- L
·Hydrogen	Carbon	1.7	0 0
		1.55	(A) (A)
+ In addition	<u>Oxygen</u>	1.52	nteractions,
in adding	Fluorine	1.47	
water ca	Phosphorus	1.8	itself, and
other mo	Sulfur	1.8	drogen
	Chlorine	1.75	arogen
bonding.	Copper	1.4	2.0
δ⊕)=○ _{δ€}		28⊖
l o .	.10nm	·	\sim

7-3

Physical Properties of Water Hydrogen bonding has a big effect on the structure physical properties of water. Studying the 3-dimensional structure of water is very difficult. One of our chemistry department graduates, Prof. Rich Saykally, has made a distinguished career of it.

8

9

14-4

Physical Properties of Water •Water is not a good solvent for all substances. • Substances with non-polar molecules are generally not soluble in water • These molecules are said to be hydrophobic. • When placed in water, hydrophobic molecules will be pushed aside in ways that minimize their contact with water.

15-1

15-3 Physical Properties of Water ·Water is not a good solvent for all substances. Substances with non-polar molecules are generally not soluble in water These molecules are said to be hydrophobic. + When placed in water, hydrophobic molecules will be pushed aside in ways that minimize their contact with water. Chem 352, Lecture 2 - Water 15 16-1 Physical Properties of Water ·Molecules that contain both a 0 - H2 CH2 CH2 CH2 CH2 CH2 CH2 CH2 hydrophobic and a hydrophilic component, are said to be amphipathic. + Amphiphathic molecules are conflicted when placed in water and produce some interesting structures in response. Chem 352, Lecture 2 - Water 16 16-2 Physical Properties of Water ·Molecules that contain both a hydrophobic and a hydrophilic component, are said to be amphipathic. Micelle 16-3 Physical Properties of Water ·Molecules that contain both a hydrophobic and a hydrophilic component, are said to be amphipathic. + Amphiphathic molecules are conflicted when placed in water and produce some interesting structures in response. Chem 352, Lecture 2 - Water 16 17 Noncovalent Interactions ·Summary of intermolecular interactions: Bonding Interactions metals bonding to nonmetals bonding to metals bonding to metals

18 Noncovalent Interactions ·Noncovalent (Nonbonding) can be broadly catalogued into 4 types, + Charge-Charge * Hydrogen bonding * Dipole/Dipole * vander Waals 'They help to stabilize the structures that form. Chem 352, Lecture 2 - Water 18 19-1 Noncovalent Interactions ·Hydrophobic Interactions occur when a solute does not form an adequate number of favorable non covalent interactions with water, hydrophobic interactions drive such processes as, · Protein foldings · DNA double helix formation · Membrane assembly Chem 352, Lecture 2 - Water 19 19-2 Noncovalent Interactions ·Hydron' LAN ad COV Membrane assembly Chem 352, Lecture 2 - Water 19 19-3 Noncovalent Interactions ·Hydrophobic Interactions occur when a solute does not form an adequate number of favorable non covalent interactions with water, * hydrophobic interactions drive such Protein foldings · DNA double helix formation · Membrane assembly Chem 352, Lecture 2 - Water 19 20-1 Noncovalent Interactions Most of the stabilizing noncovalent interactions are electrostatic, Including: + Charge/charge $F = rac{(q+)(q-)}{Dr^2}$ Coulomb's Law

Noncovalent Interactions Most of the stabilizing noncovalent interactions are electrostatic, Including: • Charge/charge $q+ \longleftarrow r$ $q+ \longleftarrow q F = \frac{(q+)(q-)}{Dr^2}$ Coulomb's Law Chem 352, Lecture 2 - Water 20

Noncovalent Inter	ractions
Most of the stabilizing	2001
interactions are elec-	trostatic,
Including: - Charge/charge	D = dielectric constar = 1 in vacuum
q+	——-q-
(4.)V=0	
$F = \frac{(q+)(q-)}{Dr^2}$	Coulomb's Law
Di	Chem 352. Lecture 2 - Water 20

20-3

Most of the stabiliz	2001
Including: + Charge/charge	D = dielectric const = 1 in vacuum = 2 in octane
q+ ·	——→q-
$F = \frac{(q+)(q-)}{Dr^2}$	Coulomb's Law

20-4

20-5

Most of the stabilizing interactions are electronic	
Including: Charge/charge	D = dielectric co = 1 in vacuum = 2 in octane
q+ · · ·	= 80 in water Water has a huge, mitigating effect of
$F = \frac{(q+)(q-)}{Dr^2}$ co	interactions oulomb's Law

Noncovalent Interactions Most of the noncovalent interactions are electrostatic interactions Including: Charge/charge Dipole/dipole Hydrogen bonding

	the noncovalent intercreations	actions
Charge/chDipole/dipHydrogen	ole	
Hydrogen b	onding can be thought of as a special ca e interaction.	se of

22-2

Most o	f the nonc	ovalent in	teractions
Inc • Ch • Dip • Hy	D H Covalent bond ~0.1nm	Hydroger bond ~0.2nm	A —
			Chem 352, Lecture 2 - Water 22

22-3

Most of the nonce	ovaler o-Ho=c/S
are electrostatic i	
Including:	
+ Charge/charge + Dipole/dipole	о-н м
Hydrogen bonding	N-Ho=c
Hydrogen bonding can be the dipole/dipole interaction.	
00000000	N-HO

22-4

Most o	f the no	ncovalen	t interaction	ons
	O COLOR	c interac		90
Inc • Ch ^H • Dir • Hy	N	N-H	H H C C C C C C C C C C C C C C C C C C	-н
Gu	anine I	н′	Cytosine	
			Chem 352, Lect	ire 2 - Water 22

Most of the	noncov	alent interactions
are electrost	DEC. T	0.000
Inc	0	H
+ ChH CN	-<_	, , , , , , , , , , , , , , , , , , ,
+ Hy / N - c)N-	-н n″с−н
N	= c N -	· H 0
Guanine	н/`	Cytosine

Noncovalent Interactions Most of the noncovalent interactions are electrostatic interactions Including: Charge/charge Dipole/dipole Hydrogen bonding vander Waals interactions include dipole/induced dipole induced/induced dipole induced/induced dipole (London Dispersion) electron repulsion

23-1

23-2

Noncovalent Interactions Most of the noncovalent interactions are electrostatic interactions Including: Charge/charge Dipole/dipole Hydrogen bonding vander Waals interactions include dipole/induced dipole induced/induced dipole electron repulsion

Nonco	/alent	Inter	actions	
+ Defined	by a ba			ive)
· elec	Attractive Repulsive force o force	pulsion	Maximum van der Waals attraction	
		Internuci	ear distance	Lecture 2 - Water 24

24-3

24-4

Interaction	Distance	Typical Energy	
	dependence	$\{kJ/mol\}$	Comment
Ion/ion	1/r	± 250	In a vacuum
Ion/ion	1/r	± 3.1	In water
Ion/dipole	$1/r^{2}$	± 15	
Dipole/Dipole	$1/r^{3}$	± 2	Between stationary polar molecules
Dipole/Dipole	$1/r^{6}$	-0.3	Between rotating polar molecules
London (Dispersion)	$1/r^{6}$	-2	Between all types of molecules
Compare to C-C bond		-348	Covalent bond

Interaction	Distance dependence	Typical Energy {kJ/mol}	Comment
Ion/ion	1/r	± 250	In a vacuum
Ion/ion	1/r	± 3.1	In water
Ion/dipole	$1/r^2$	± 15	
Dipole/Dipole	$1/r^3$	±2	Between stationary polar molecules
Dipole/Dipole	$1/r^{6}$	-0.3	Between rotating polar molecules
London (Dispersion)	1/r ⁶	-2	Between all types of molecules
Compare to C-C bond		-348	Covalent bond

25-2

26

27

28-2

28-3

Review Question: What is the vander Waals radius of an atom and how is it	defined?
Alanine H _{1,N} — H CH ₂ Skeletal Ball & Stick	
	28

28-4

Review			ļ
Question: What is the va	nder Waals radius	of an atom and	how is it defined?
	А	lanine	
H ₂ N OH			
Skeletal	Ball & Stick	Stick	
			28

29

Chemical Properties of Water

• Water can self-ionize

• Kw, the ion product for water

• Kw, the ion product for water

• $K_w = H_0 \longrightarrow H$

30-1

Chemical Properties of Water

• Water can self-ionize

• Kw, the ion product for water

• Kw, the ion product for water

• HOH HOH HOH HOH HOH WATER

This can be thought of as an extension of the hydrogen bonding interaction $K_w = [H_3O^+][OH^-]$ $K_w = 1.0 \times 10^{-14} \text{ M}^2$ Chem 352, Lecture 2 - Water 30

30-2

Chemical Properties of Water

• Water can self-ionize
• Kw, the ion product for water

• Kw, the ion product for water

• How he has a self-ionize
• Kw, the ion product for water

• Water can self-ionize
• Kw, the ion product for water

• Water can self-ionize
• Kw, the ion product for water

• Water can self-ionize
• Kw, the ion product for water

• Water can self-ionize
• Ionize contains the contains

31

32

33-1

33-3 Chemical Properties of Water Definitions of Acids and Bases * Operational Definition · Acids, when dissolved in water cause the pH to go down from pH7 Bases, when dissolved in water cause the pH to go up from pH7 Chem 352, Lecture 2 - Water 33 33-4 Chemical Properties of Water Definitions of Acids and Bases * Operational Definition cids, when dissolved in water cause the pH to go down from pH7 Bases, when dissolved in water cause the pH to go up from pH7 pH = -log([H+])Chem 352, Lecture 2 - Water 33 33-5 Chemical Properties of Water Definitions of Acids and Bases * Operational Definition · Acids, when dissolved in water cause the pH to go down from pH7 Bases, when dissolved in water cause the pH to go up from pH7 pH = -log([H+]) $K_w = [H^+][OH^-] = 1.0 \times 10^{-14} M^2$ Chem 352, Lecture 2 - Water 33 33-6 Chemical Properties of Water Definitions of Acids and Bases * Operational Definition · Acids, when dissolved in water cause the pH to go down from pH7 Bases, when dissolved in water cause the pH to go up from pH7 pH = -log([H+]) $K_w = [H^+][OH^-] = 1.0 \times 10^{-14} M^2$ For pure water, $[H^+] = [OH^-] = 1.0 \times 10^{-7} M$ Chem 352, Lecture 2 - Water 33 34-1 Chemical Properties of Water Definitions of Acids and Bases * Arrhenius Definition Chem 352, Lecture 2 - Water 34

34-2 Chemical Properties of Water Definitions of Acids and Bases * Arrhenius Definition • Acids, when dissolved in water release H+ Chem 352, Lecture 2 - Water 34 34-3 Chemical Properties of Water Definitions of Acids and Bases * Arrhenius Definition · Acids, when dissolved in water release H+ ions. Bases, when dissolved in water release [OH-] ions. Chem 352, Lecture 2 - Water 34 34-4 Chemical Properties of Water Definitions of Acids and Bases * Arrhenius Definition • Acids, when dissolved in water release H+ ions. Bases, when dissolved in water release [OH-] ions. $K_w = [H^+][OH^-] = 1.0 \times 10^{-14} M^2$ Chem 352, Lecture 2 - Water 34 34-5 Chemical Properties of Water Definitions of Acids and Bases * Arrhenius Definition • Acids, when dissolved in water release H+ ions. Bases, when dissolved in water release [OH-] ions. $K_w = [H^+][OH^-] = 1.0 \times 10^{-14} M^2$ $\left[H^{-} \right] = \frac{K_{_{W}}}{\left[OH^{-} \right]} = \frac{\left(1.0 \times 10^{-14} \ M^{2} \right)}{\left[OH^{-} \right]}$ Chem 352, Lecture 2 - Water 34 35-1 Chemical Properties of Water Definitions of Acids and Bases * Brønsted-Lowrey Definition Chem 352, Lecture 2 - Water 35

Chemical Properties of Water Definitions of Acids and Bases Brønsted-Lowrey Definition Acids, donate a proton (H+ ion) from a base.	35-2	
Chemical Properties of Water Definitions of Acids and Bases * Brønsted-Lowrey Definition * Acids, donate a proton (H+ ion) from a base. * Bases, accept a proton (H+ ion) from an acid.	35-3	
Chemical Properties of Water • pH of a strong acid or a strong base Chem 352, Lecture 2 - Water 36	36-1	
Chemical Properties of Water • pH of a strong acid or a strong base • When a strong acid is dissolved in water it completely dissociates its H+ ions.	36-2	
Chemical Properties of Water • pH of a strong acid or a strong base • When a strong acid is dissolved in water it completely dissociates its H+ ions. • When a strong base is dissoved in water, it completely dissociates it OH- ions.	36-3	

37 Chemical Properties of Water + pH of a strong acid and a strong base Neutralization of an acid by a base Chem 352, Lecture 2 - Water 37 38 Chemical Properties of Water + pH of a strong acid and a strong base + Neutralization of an acid by a base + Titration curve for a strong acid. Chem 352, Lecture 2 - Water 38 39 Chemical Properties of Water Neutralization of an acid with a base (pH titration) · Titrations can be used to determine the unknown concentration of an acid Chem 352, Lecture 2 - Water 39 40 Chemical Properties of Water + pH of a strong acid and a strong base + Neutralization of an acid by a base + Titration curve for a strong acid. + Titration curve for a weak acid. Chem 352, Lecture 2 - Water 40 41 Chemical Properties of Water * Titration curve for a weak acid 12 10 표 8 0.5 Equivalents of OH igorius Chem 352, Lecture 2 - Water 41

Chemical Properties of Water

- + pH of a strong acid and a strong base
- Neutralization of an acid by a base
- + Titration curve for a strong acid.
- Titration curve for a weak acid.
- + Calculating the pH of a weak acid solution.

Chem 352, Lecture 2 - Water 42

42			

Chemical Properties of Water ·pH of a weak acid solution

Chem 352, Lecture 2 - Water 43

43-1				

Chemical Properties of Water

·pH of a weak acid solution + 0.01 M acetic acid

$$[H^+] \approx \sqrt{K_a C}$$

$$pH \approx \frac{1}{2} (pK_a - \log(C))$$

Chem 352, Lecture 2 - Water 43

43-2		

Chemical Properties of Water

* Titration curve for a weak acid

Chem 352, Lecture 2 - Water 44

Chemical Properties of Water

* Titration curve for a weak acid

TABLE 2.4 Dissociation constants and pK_a values of weak acids in aqueous solutions at 25°C				
Acid	K _a (M)	p <i>K</i> _a		
HCOOH (Formic acid)	1.77×10^{-4}	3.8		
CH ₃ COOH (Acetic acid)	1.76×10^{-5}	4.8		
CH ₃ CHOHCOOH (Lactic acid)	1.37×10^{-4}	3.9		
H ₃ PO ₄ (Phosphoric acid)	7.52×10^{-3}	2.2		
H ₂ PO ₄ [⊕] (Dihydrogen phosphate ion)	6.23×10^{-8}	7.2		
HPO₄ (Monohydrogen phosphate ion)	2.20×10^{-13}	12.7		
H ₂ CO ₃ (Carbonic acid)	4.30×10^{-7}	6.4		
HCO ₃ [⊙] (Bicarbonate ion)	5.61×10^{-11}	10.2		
NH ₄ ⊕ (Ammonium ion)	5.62×10^{-10}	9.2		

Chem 352, Lecture 2 - Water 45

Chemical Properties of Water

 $CH_3NH_3{}^{\scriptsize\textcircled{\tiny\dag}}\ (\text{Methylammonium ion})$

- pH of a strong acid and a strong base
- · Neutralization of an acid by a base
- + Titration curve for a strong acid.
- + Titration curve for a weak acid.
- Calculating the pH of a weak acid solution.
- * The Henderson-Hasselbalch Equation and Buffers

Chem 352, Lecture 2 - Water 46

46

47

Chemical Properties of Water

·Henderson-Hasselbalch Equation

$$HA + H_2O \rightarrow A^- + H_3O^+$$

$$K_a = \frac{A^- - H_3O^+}{HA}$$

$$pH = pK_a + \log\left(\frac{A^-}{HA}\right)$$

Chem 352, Lecture 2 - Water 47

Chemical Properties of Water

·Titration curve for a weak acid

Chem 352, Lecture 2 - Water 48

48

Chemical Properties of Water

Problem:

For a lactic acid buffer (pKa = 3.9)

A. What is the concentration of a buffer that contains 0.25 M lactic acid (CH₃CH(OH)COOH) and 0.15 M lactate (CH₃CH(OH)COO-)?

B. What is the pH of this buffer?

49

Chem 352, Lecture 2 - Water 49

50-2			

50	-3				

Pro	olem: (Check your work with Marvin)
are	y phosphorylated sugars (phosphate esters of sugars) metabolic intermediates. the two ionizable -OH groups
ribo	he phosphate group of the monophosphate ester of se (ribose 5-phosphate) have pKa values 1.2 and 6.6. Th y protonated form of α -D-ribose 5-phosphate has the
	cture shown below.
	oraw, in order, the ionic species formed upon titration of his phosphorylated sugar from pH 0.0 to pH 10.0.
B. 5	iketch the titration curve for ribose 5-phosphate.

51			

Marvin A tool for drawing and analyzing small molecules The Protein Data Bank (PDB) A database where you can find and observe the structures of biological macromolecules and aggregates of these molecules. Not limited to proteins

52		

53-3	

Lecture 3 - Ar	nino Acids a	and Protein
		ind Trotoin
Primary Struct Read Chapter		al
Redu Chapter	3 of Morali el	di.

54		