

Chem 352 - Lecture 6 Enzymes: Biological Catalysts

Question for the Day: Describe how to easily determine the number of reactions that one enzyme molecule is capable catalyzing in one second.

1

Outline

- 8.1 Enzymes as Biological Catalysts
- 8.2 The Diversity of Enzyme Function
- 8.3 Chemical Reaction Rates and the Effects of Catalysts
- 8.4 How Enzymes Act as Catalysts : Principles and Examples
- 8.5 Coenzymes, Vitamins, and Essential Metals
- 8.6 The Kinetics of Enzymatic Catalysts
- 8.7 Enzyme Inhibition
- 8.8 The Regulation of Enzyme Activity
- 8.9 Covalent Modifications Used to Regulate Enzyme Activity

Chem 352, Lecture 6 - Enzymes 2

2

8.1 Enzymes as Biological Catalysts

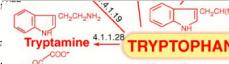
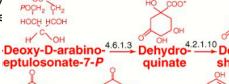
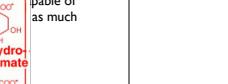
3

Enzymes as Catalysts

Enzymes are biological catalysts

catalyst |kətəl-ist|
noun
a substance that increases the rate of a chemical reaction without itself undergoing any permanent chemical change.
• figurative a person or thing that precipitates an event : *the governor's speech acted as a catalyst for debate*.
ORIGIN early 20th cent.: from **catalysis**, on the pattern of **analyst**.
(New Oxford American Dictionary)

4

Enzymes as Catalysts

Enzyme are biological catalysts

- Nearly every reaction in a living cell is catalyzed by an enzyme.
- Most enzymes are proteins.
- The **substitutes** **TRYPTOPHAN** **4.1.1.28** **Iridium** **4.2.1.20**
- Enzymes **increase** the rate of reaction as a **catalyst**.
- **Dehydroquinate** **4.6.1.3** **Dehydroshikimate** **2.1.1.10** **Iridium** **4.2.1.20** **capable of** **as much**
- **Fumaryl-2,4-dioctoate** **5.2.1.2** **Maleyl-2,4-dioctoate** **1.13.11.5** **Homogentisate** **5.2.1.2**

5

Chem 352, Lecture 6 - Enzymes 5

Enzymes as Catalysts

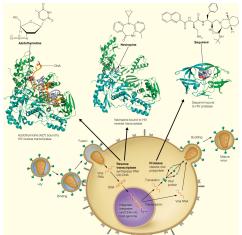
Enzymes can exhibit:

- High specificity
- High substrate specificity
- High reaction specificity
- Stereospecificity
- They can couple energetically unfavorable reactions with those that are favorable.
- They serve as control points in metabolic pathways.

Question:

Explain why it should be a relatively simple task for an enzyme to distinguish between L-alanine and D-alanine.

6



Enzymes as Catalysts

Enzymes are often the target for drug therapies.

7

Enzymes as Catalysts

In this lecture will discuss

- The **classification** and **nomenclature** of enzymes
- The analysis of the **kinetics** of enzyme-catalyzed reactions
- and learn what this can tell us about the mechanisms of enzyme catalyzed reactions.
- The **regulation** of enzyme activity by inhibitors and activators
- A case study: Serine Proteases

8

8.1 The Diversity of Enzyme Function

9

Enzyme Classes and Nomenclature

Common names use the suffix **-ase**

nominal name often describes the substrate as well as

the reaction that the enzyme catalyzes.

the **coining** or **choosing** of names for things, esp. in a science or other discipline

for example:

- the **liver pyruvate kinase** **is** **catalyzes** the **transfer** of a **phosphate group** **chemical** **coenzyme** **from** **liver** **pyruvate** **and** **ATP**
- formal term or terms applied to someone or something: "customers" was **preferred** over **customers**
- **alcohol dehydrogenase** **removes** an equivalent of a **hydrogen** **molecule**, H_2 , **from** **an alcohol** **such** **as** **ethanol**.

nomenclatural [*nōmənəl'*kliə ch ɔrl̩] [*nōmənəl'*kliətʃərɔrl̩] [-kl̩atʃərɔrl̩] [-kl̩atʃərɔrl̩] | adjective

ORIGIN early 17th cent.: from French, from Latin *nomenclatura*, from

nomen 'name' + *clatura* 'calling, summoning' (from *calare* 'to call').

10

Enzyme Classes and Nomenclature

There is also a systematic nomenclature that names enzymes using numbers


- The **Tryptamine** 4.1.1.28
- The **TRYPTOPHAN** 4.2.1.20
- The **Dehydro-quininate** 4.2.1.10
- The **Dehydro-shikimate** 4.2.1.20
- The **Deoxy-D-arabinofuculose-7-P** 4.6.1.3
- The **Inositol** 4.2.1.20
- The **Fumaryl acetoacetate** 5.2.1.2
- The **Maleyl acetoacetate** 1.1.3.11.5
- The **Homogentisate** 1.1.3.11.5

Chem 352, Lecture 6 - Enzymes 11

11

Enzyme Classes and Nomenclature

TABLE 6.1 Examples of each of the major classes of enzymes

Class	Example (reaction type)	Reaction Catalyzed
1. Oxidoreductases	Alcohol dehydrogenase (oxidation with NAD ⁺)	
2. Transferases	Hexokinase (transphosphorylation)	
3. Hydrolases	Carnitinepalmitoyl A (peptide bond cleavage)	
4. Lyases	Pyruvate decarboxylase (decarboxylation)	
5. Isomerases	Malate isomerase (di-ester isomerization)	
6. Ligases	Pyruvate carboxylase (carboxylation)	

Chem 352, Lecture 6 - Enzymes 12

12

Enzyme Nomenclature

Systematic names use numbers

- pyruvate kinase - EC 2.7.1.40
- alcohol dehydrogenase - EC 1.1.1.1

Chem 352, Lecture 6 - Enzymes 13

13

Enzyme Classes

Oxidoreductases (1.)

- Catalyze oxidation-reduction reactions
- For example
 - lactate dehydrogenase
 - lactate:NAD oxidoreductase (EC 1.1.1.27)

Distinguishing features:

- Many (dehydrogenases) involve addition or removal of H₂ as H₂- + H+

Chem 352, Lecture 6 - Enzymes 14

14

Enzyme Classes

Transferases (2.)

- Catalyze the transfer of a group from one molecule to another
- For example
 - L-alanine amino transferase
 - L-alanine:2-oxoglutarate aminotransferase (EC 2.6.1.2)

Distinguishing features:

- Look for double-replacement reactions

Chem 352, Lecture 6 - Enzymes 15

15

Enzyme Classes

Hydrolases (3.)

- Catalyze a specific reaction, where water is the acceptor and the substrate is the donor. The reactions lead to the hydrolysis of a molecule.
- For example:
 - pyruvate kinase
 - carbonic anhydrase
- Distinguishing features:
 - Look for addition and elimination reactions involving the loss or formation of a double bond

Chem 352, Lecture 6 - Enzymes 16

Enzyme Classes

Lyases (4.)

- Catalyze a lysis of a substrate, which is nonoxidative, nonhydrolytic and generates a double bond.
- For example
 - pyruvate decarboxylase
 - pyruvate decarboxylase, 2-oxo-acid carboxy-lyase (EC 4.1.1.1)
- Distinguishing features:
 - Look for addition and elimination reactions involving the loss or formation of a double bond

Chem 352, Lecture 6 - Enzymes 17

Enzyme Classes

Isomerase (5.)

- Catalyze a conversion between two isomers.
- Sometimes referred to as an rearrangement reaction.
- For example
 - alanine racemase
 - alanine racemase (EC 5.1.1.1)
- Distinguishing features:
 - Look for reactions that have only a single substrate and a single product.

Chem 352, Lecture 6 - Enzymes 18

Enzyme Classes

Ligase (6.)

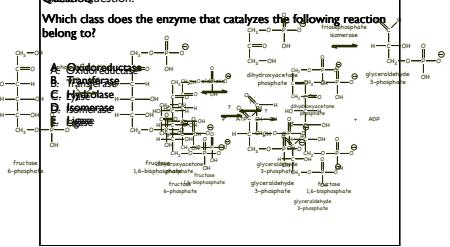
- Catalyze the ligation or joining of two molecules.
- This reaction usually requires a source of chemical energy, which is often provided by the hydrolysis of ATP to ADP and Pi
- For example
 - glutamine synthetase
 - L-glutamate ammonia ligase (EC 6.3.1.2)
- Distinguishing features:
 - Look for a combination of two reactions

Chem 352, Lecture 6 - Enzymes 19

Enzyme Classes

Question:

Which class does the enzyme that catalyzes the following reaction belong to?


A. Oxidoreductase

B. Transferase

C. Hydrolase

D. Isomerase

E. Ligase

Chem 352, Lecture 6 - Enzymes 20

8.3 Chemical Reaction Rates and Effects of Catalysts

Reaction Rates and Catalysts

Observing the kinetics of a reaction can reveal details about the mechanism of the reaction

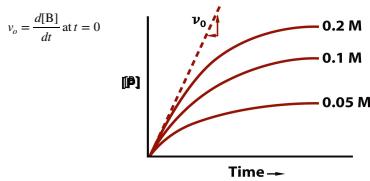
Starting with the kinetics of non-catalyzed reactions

- The rate, or velocity, v , of a reaction, is monitored by observing the change in the concentration of either the substrate (reactant) or the product of the reaction.

$$\text{Rate} = v = \frac{\text{change in concentration of A or B}}{\text{change in time}}$$

$$v = \frac{dB}{dt} = -\frac{dA}{dt}$$

Chem 352, Lecture 6 - Enzymes 22



Reaction Rates and Catalysts

Kinetics of non-catalyzed reactions

- Typically it is the substrate dependence of the initial rate, v_0 , that is determined.

Chem 352, Lecture 6 - Enzymes 23

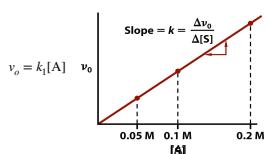
Reaction Rates and Catalysts

The rate equation for this relationship can take on different forms with respect to the substrate or product concentrations, for example:

$$v = \frac{d[B]}{dt} = -\frac{d[A]}{dt} = k_1[A]^n$$

- where k_1 is the rate constant
- and n is the order of the reaction
 - $n = 1$, first order;
 - $n = 2$, second order
 - $n = 0$, zero order

Chem 352, Lecture 6 - Enzymes 24



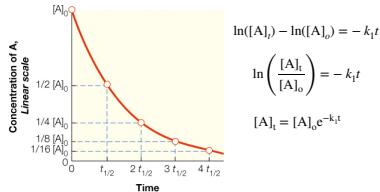
Reaction Rates and Catalysts

Kinetics of non-catalyzed reactions

- For first-order reactions, v_0 is proportional to $[A]$.

- In this case, k_1 is called the first order rate constant and has dimension of s^{-1} .

Chem 352, Lecture 6 - Enzymes 25



Reaction Rates and Catalysts

Kinetics of non-catalyzed reactions

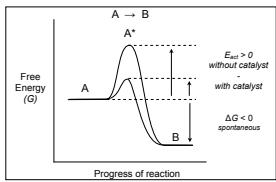
- Deriving an expression that gives $[A]$ as function of time for a first order reaction.

Chem 352, Lecture 6 - Enzymes 26

26

Reaction Rates and Catalysts

Kinetics of non-catalyzed reactions


- For a second order reaction, v_o has a quadratic dependence on $[A]$.
$$A + A \rightarrow C$$
$$v_o = k_1[A]^2$$

or
$$A + B \rightarrow C$$
$$v_o = k_1[A][B]$$
- v_o is the second order rate constant and has units of $M^{-1}s^{-1}$.
- For a zero order reaction, v_o is independent of $[A]$
- $v_o = k_1$

Chem 352, Lecture 6 - Enzymes 27

27

Reaction Rates and Catalysts

Catalysts speed up reactions by lowering the free energy of the transition state.

Chem 352, Lecture 6 - Enzymes 28

28

8.4 How Enzymes Act as Catalysts

29

Catalysts Speed Up Reactions

We will focus on two ways that enzyme catalysts do this.

- Chemical Mode: The enzyme provides **chemical catalysts**
- Binding Mode: The **binding of substrates** and **transition state intermediates** lowers the entropy for the reaction and helps to stabilize the transition states.

30

Chem 352, Lecture 6 - Enzymes 30

Chemical Modes of Enzymatic Catalysis

Functional groups present at the active site of an enzyme can play a catalytic role.

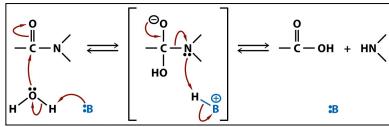
31

Chem 352, Lecture 6 - Enzymes 31

Chemical Modes of Enzymatic Catalysis

The most common catalytic groups come from the polar amino acid side chains, which are embedded in a non-polar environment of the active site

TABLE 6.1		Group	pKa	Amino acids
Amino acid		Terminal α -carboxyl	3-4	
		Side-chain carboxyl	4-5	
		Imidazole	6-7	
		Terminal α -amino	7.5-9	
		Thiol	8-9.5	
		Phenol	9.5-10	
		ω -Amino	\sim 10	ω of acyl groups ω of ligands
		Guanidino	\sim 12	protein transfer
		Hydroxymethyl	\sim 16	ω of acyl groups


Chem 352, Lecture 6 - Enzymes 32

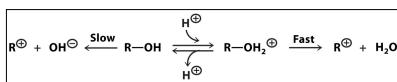
32

Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

- Example: General base catalysis can assist in the cleavage of a peptide bond.

General acid-base catalysis involves a molecule besides water that acts as a proton donor or acceptor during the enzymatic reaction.

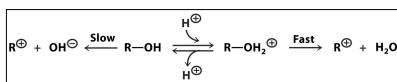

Chem 352, Lecture 6 - Enzymes 33

33

Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

- Example: General acid catalysis can assist in a dehydration reaction.
- OH_2 makes a better leaving group than OH

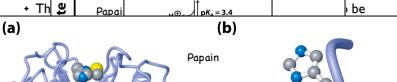

Chem 352, Lecture 6 - Enzymes 34

34

Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis

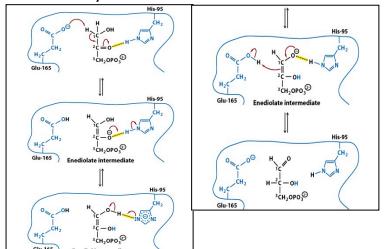
- Example: General acid catalysis can assist in a dehydration reaction.
- OH_2 makes a better leaving group than OH


Chem 352, Lecture 6 - Enzymes 34

35

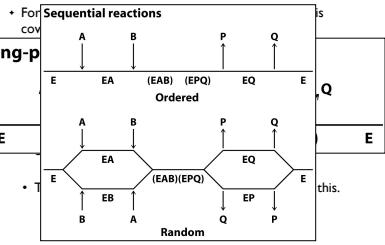
Chemical Modes of Enzymatic Catalysis

Acid/Base catalysis


- Example: General acid catalysis can assist in a dehydration reaction.
- OH_2 makes a better leaving group than OH

Chem 352, Lecture 6 - Enzymes 35

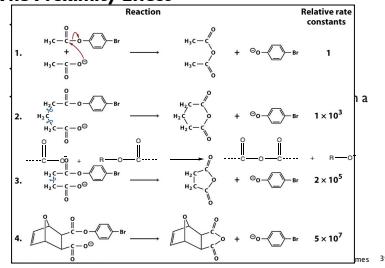
Chemical Modes of Enzymatic Catalysis


Acid/Base catalysis

Chem 352, Lecture 6 - Enzymes 36

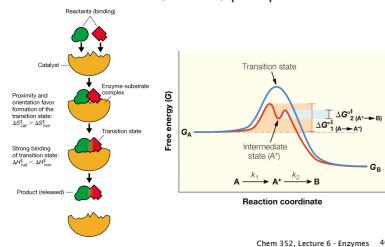
Chemical Modes of Enzymatic Catalysis

Covalent bond catalysis


Chemical Modes of Enzymatic Catalysis

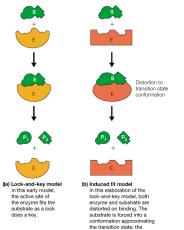
- Acid/Base catalysis and covalent bond catalysis can account for approximately 10 to 100 fold increases in the reaction rates
- However, 10⁸ fold increases are observed
- The Binding Modes of Enzyme Catalysis can account for this difference.
- Enzymes can bind substrates and orient them relative to one another and to catalytic groups on the enzyme.
- They can also help stabilize the transition state.

Chem 352, Lecture 6 - Enzymes 38


Binding Modes of Enzymatic

The Proximity Effect

Binding Modes of Enzymatic Catalysis

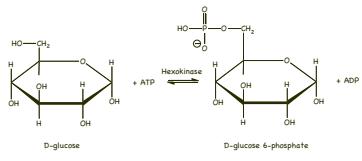

- The favorable binding of the transition state helps to lower the activation barrier and, therefore, speed up a reaction.

Binding Modes of Enzymatic Catalysis

"Lock and Key" vs "Induced Fit" models

- In the late 1890's Emil Fischer, with his "lock and key" model, predicted what we know now to be the contribution of substrate binding to enzyme catalysis.
- In the 1958, Daniel Koshland proposed an alternative "induced fit" model, which envisages the enzyme distorting the shape of the substrate to more closely resemble the transition state.

Chem 352, Lecture 6 - Enzymes 41

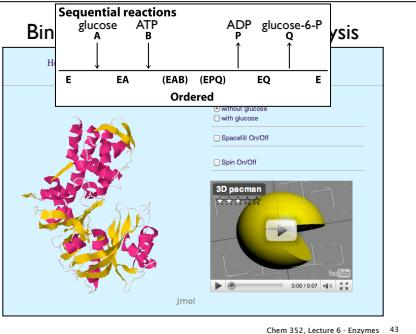


Binding Modes of Enzymatic Catalysis

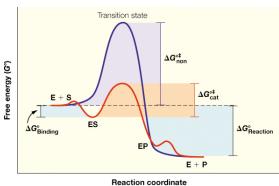
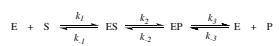
"Induced fit" model

- In the "induced fit" model, substrate binding induces conformational changes in the enzyme.
- Hexokinase provides a good example of "induced fit"

Chem 352, Lecture 6 - Enzymes 42



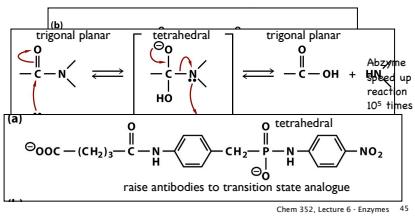
Chem 352, Lecture 6 - Enzymes 43

Binding Modes of Enzymatic Catalysis

Flattening the Transition State

Chem 352, Lecture 6 - Enzymes 44



Binding Modes of Enzymatic Catalysis

Catalytic Antibodies (Abzymes)

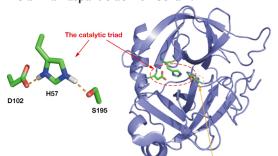
- Transition state analogues have been used to create antibodies having catalytic activity.

Chem 352, Lecture 6 - Enzymes 45

Serine Proteases - A Case Study

Case studies of enzyme catalyzed reactions presented in the textbook:

- **Lysozyme**
 - Cleaves the polysaccharide found in bacterial cell walls.
- **Chymotrypsin**
 - A Serine protease that cleaves the polypeptide backbone during protein digestion.


46

Chem 352, Lecture 6 - Enzymes 46

Serine Proteases - A Case Study

Serine proteases are a group of enzymes that cleave peptide bonds.

- There are many different serine proteases
- All contain a serine side chain in their active site, along with a histidine and an aspartic acid sidechain.

47

Chem 352, Lecture 6 - Enzymes 47

Serine Proteases - A Case Study

Serine proteases nicely illustrate many of the tricks that can be used to speed up chemical reactions

- Catalytic modes of enzymatic catalysis
 - Acid/base catalysis
 - Covalent catalysis
- Binding modes of enzymatic catalysis
 - Proximity effect
 - Transition state stabilization

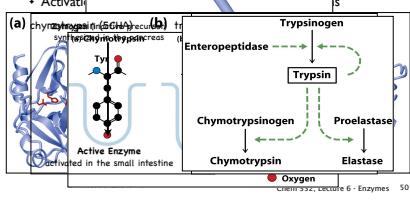
48

Chem 352, Lecture 6 - Enzymes 48

Serine Proteases - A Case Study

They also illustrate

- Importance of protein folding in creating a functional protein
- Substrate specificity
- Activation through irreversible covalent modifications


49

Chem 352, Lecture 6 - Enzymes 49

Serine Proteases - A Case Study

They also illustrate

- Importance of folding to creating a functional protein
- Substrate specificity
- Activation


50

Chem 352, Lecture 6 - Enzymes 50

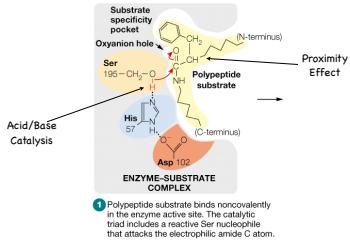
Serine Proteases - A Case Study

Step-by-Step through the catalytic cycle

- The serine protease breaks the overall reaction down into two cycles with two transition state.

Chem 352, Lecture 6 - Enzymes 51

51



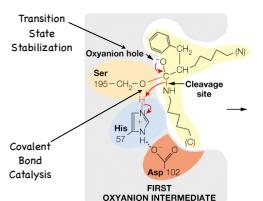
Serine Proteases - A Case Study

Step-by-Step through the catalytic cycle

- 1 Polypeptide substrate binds noncovalently in the enzyme active site. The catalytic triad includes a reactive Ser nucleophile that attacks the electrophilic, amide C atom.

Chem 352, Lecture 6 - Enzymes 52

52



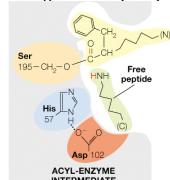
Serine Proteases - A Case Study

Step-by-Step through the catalytic cycle

- 2 The resulting tetrahedral oxyanion is stabilized by H-bonding interactions with the oxyanion hole.

Chem 352, Lecture 6 - Enzymes 53

53



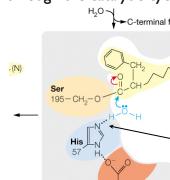
Serine Proteases - A Case Study

Step-by-Step through the catalytic cycle

- 3 Collapse of the tetrahedral intermediate and H⁺ transfer from His57 lead to cleavage of the C–N bond. The N-terminal peptide is bound through acyl linkage to serine.

H₂O → C-terminal fragment Chem 352, Lecture 6 - Enzymes 54

54



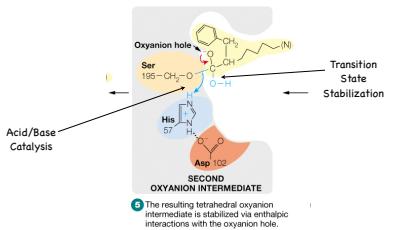
Serine Proteases - A Case Study

Step-by-Step through the catalytic cycle

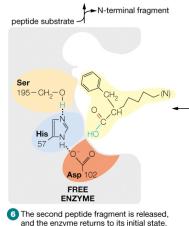
- 4 A water molecule then binds to the active site and attacks the acyl ester carbon.

Chem 352, Lecture 6 - Enzymes 55

55

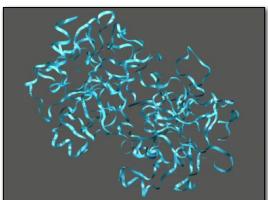


Serine Proteases - A Case Study


Step-by-Step through the catalytic cycle

56

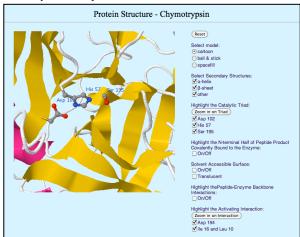
Serine Proteases - A Case Study


Step-by-Step through the catalytic cycle

57

Serine Proteases - A Case Study

Step-by-Step through the catalytic cycle



Chem 352, Lecture 6 - Enzymes 58

58

Serine Proteases - A Case Study

Substrate Specificity

59

8.5 Coenzymes, Vitamins, and Essential Metals

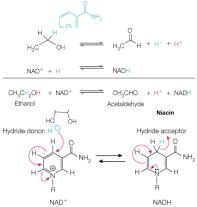
60

Coenzymes

Enzyme cofactors are non-protein components of enzymes that contributes to an enzyme's activity.

They include,

- Metal ions
- Coenzymes that are organic molecules
- Many of which are derived from vitamins


TABLE 8.3 Some important coenzymes and related vitamins			
Vitamin	Coenzyme	Reactions involving the coenzyme	Section in which coenzyme is introduced
Thiamine (vitamin B ₁)	Thiamine pyrophosphate	Activation and transfer of aldehydes	Section 15.2
Riboflavin (vitamin B ₂)	FAD (Flavin mononucleotide); Flavin adenine dinucleotide	Oxidation-reduction	Section 15.2
Niacin (vitamin B ₃)	Nicotinamide adenine dinucleotide; Nicotinamide adenine dinucleotide phosphate	Oxidation-reduction	Section 11.3
Pantothenic acid (vitamin B ₅)	Coenzyme A	Act group activation and transfer; Removal/reduction involving alpha-hydroxyl activation	Section 15.2
Pyridoxine (vitamin B ₆)	Pyridoxal phosphate	Coenzyme activation and transfer	Section 15.2
Biotin (vitamin B ₇)	Biotin	Act group activation	Section 15.2
Urate acid	Uroporphyrin	Act group activation; oxidation-reduction	Section 15.2
Folic acid (vitamin B ₉)	Sebastoyl phosphate	Reduction; transfer of single-carbon functional groups	Section 16.4
Vitamin B ₁₂	Adenosyl cobalamin; methyl cobalamin	Homocysteine and methyl group transfer	Section 16.4

61

Coenzymes

Example: Nicotinamide Adenine Dinucleotide (NAD⁺)

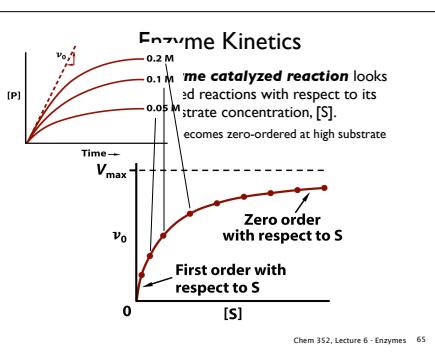
- It comprises two ribonucleotides
- Adenosine
- Nicotinamide
- They are joined at their 5' ends by a pyrophosphate bridge
- The nicotinamide base is derived from the B vitamin niacin
- NAD⁺ serves in oxidation/reduction reactions as the oxidation agent
- For example, the oxidation of ethanol to acetaldehyde by the enzyme alcohol dehydrogenase.

Chem 352, Lecture 6 - Enzymes 61

62

Metals as Enzyme Cofactors

Metal ions also play important roles in facilitating enzyme catalyzed reactions.

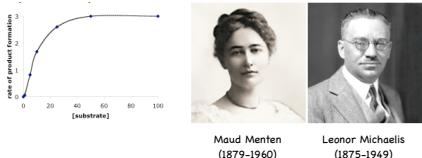

TABLE 8.4 Metals and trace elements important as enzymatic cofactors		
Metal	Example of Enzyme	Role of Metal
Fe	Cytochrome oxidase	Oxidation-reduction
Cu	Ascorbic acid oxidase	Oxidation-reduction
Zn	Alcohol dehydrogenase	Helps bind NAD ⁺
Mn	Histidine ammonia lyase	Aids in catalysis by electron withdrawal
Co	Glutamate mutase	Co is part of cobalamin coenzyme
Ni	Urease	Catalytic site
Mo	Xanthine oxidase	Oxidation-reduction
V	Nitrate reductase	Oxidation-reduction
Se	Glutathione peroxidase	Replaces S in one cysteine in active site
Mg	Many kinases	Helps bind ATP

Chem 352, Lecture 6 - Enzymes 63

63

8.6 The Kinetics of Enzyme Catalysis

64

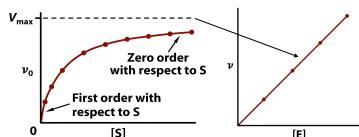

Chem 352, Lecture 6 - Enzymes 65

65

Enzyme Kinetics

A Model for kinetics of enzyme-catalyzed reactions was worked out by Maud Menten and Leonor Michaelis

- Michaelis-Menten model for enzyme catalyzed reactions (1912).

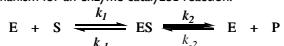

Chem 352, Lecture 6 - Enzymes 66

66

Enzyme Kinetics

They saw for enzyme-catalyzed reactions

- A first-order enzyme concentration, $[E]$, dependence at high substrate concentrations $[S]$, where kinetics is zero-order with respect to $[S]$.



Chem 352, Lecture 6 - Enzymes 67

67

Enzyme Kinetics

- Based on these observations, they proposed the following mechanism for an enzyme catalyzed reaction:

- The overall rate of the reaction is therefore determined by the conversion of enzyme-substrate complex, ES, to product:
- Also, by looking at only the initial rate, v_0 , the k_2 back reaction can be ignored, because $[P] = 0$.
- The overall rate will then depend on the step going from $[ES]$ to $[E] + [P]$

$$v_0 = k_2[ES]$$

- Michaelis and Menten next came up with an expression for $[ES]$ as a function of $[S]$ to substitute into this expression to come up with one for v_0 as a function of $[S]$.

Chem 352, Lecture 6 - Enzymes 68

68

Enzyme Kinetics

$E + S \xrightleftharpoons[k_{-1}]{k_1} ES \xrightleftharpoons[k_2]{k_2} E + P$

- The also proposed that the concentration of ES quickly reaches a steady state, in which
 - the rate at which ES is formed, ($= k_1[E][S]$)
 - is equal to the rate at which ES is consumed ($= k_{-1}[ES] + k_2[ES]$):

$$k_{-1}[ES] + k_2[ES] = k_1[E][S]$$

$$\text{Solving for } [ES] \text{ gives: } [ES] = \frac{k_1[E][S]}{k_{-1} + k_2}$$

Chem 352, Lecture 6 - Enzymes 69

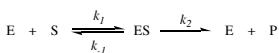
69

Enzyme Kinetics

- The rate constants are combined to produce a single constant, K_M , called the Michaelis-Menten constant.

$$K_M = \frac{k_{-1} + k_2}{k_1}$$

- The expression for $[ES]$ now becomes


$$[ES] = \frac{[E][S]}{K_M}$$

Chem 352, Lecture 6 - Enzymes 70

70

Enzyme Kinetics

71

- Before this expression for $[ES]$ can be substituted into the expression for v_0 , the unknown variable $[E]$ needs to be eliminated as well.
- $[E]$ is the free enzyme concentration, which is equal to the total enzyme concentration, $[E]_T$, minus the enzyme-substrate concentration, $[ES]$.

$$[E] = [E]_T - [ES]$$

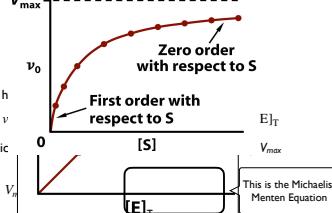
Chem 352, Lecture 6 - Enzymes 71

Enzyme Kinetics

72

- Substitution of this expression for $[E]$ into the one derived before for $[ES]$ gives an expression for $[ES]$ as a function of $[S]$:

$$\begin{aligned} [ES] &= \frac{([E]_T - [ES])[S]}{K_M} \\ &= \frac{[E]_T[S] - [ES][S]}{K_M} \\ &= \frac{[E]_T[S]}{K_M} - \frac{[ES][S]}{K_M} \\ &= \frac{[E]_T[S]}{K_M} - \frac{[ES][S]}{K_M} \\ &[ES] + \frac{[ES][S]}{K_M} = \frac{[E]_T[S]}{K_M} \end{aligned}$$


$$\begin{aligned} [ES] &= \frac{[E]_T[S]}{K_M + [S]} \\ &[ES] = \frac{[E]_T[S]}{K_M + [S]} \end{aligned}$$

Chem 352, Lecture 6 - Enzymes 72

Enzyme Kinetics

73

- Substitution of this expression for $[ES]$ into the one for v_0 gives us the v vs $[S]$ graph:

Chem 352, Lecture 6 - Enzymes 73

Enzyme Kinetics

74

- The form of the Michaelis-Menten Equation,

$$v_0 = \frac{V_{max}[S]}{K_M + [S]}$$

$$y = \frac{ax}{b+x}, \text{ where } a \text{ and } b \text{ are}$$

should look familiar to us, it is the equation we saw with the O_2 binding curve for t

$$Y_{O_2} = \frac{P_{O_2}}{P_{S_0} + P_{O_2}}, \text{ where } Y_{O_2} \text{ is the fraction}$$

- This should not surprise us since v_0 is proportional to $[ES]$, which is proportional to the fraction of enzyme that is bound with substrate.

Chem 352, Lecture 6 - Enzymes 74

Enzyme Kinetics

75

TABLE 5.1 Examples of catalytic constants		
V_{max}	k_{cat}	V_{max} and k_{cat}
K_M contain		k_{cat} is the
k_{cat}		instant, k_{cat} at high
V_{max} is v_0		
$k_{cat} = k_2$		
substrat		
It is d		
k_{cat} had		
number		
unit tim		
Also k_{cat}		

The table lists the following data:

Enzyme	$k_{cat} (s^{-1})$
panatin	10
Ribonuclease	10^2
Carboxypeptidase	10^2
Trypsin	10^3 (to 10^4)
Acetylcholinesterase	10^3
Kinases	10^3
Dehydrogenases	10^3
Transaminases	10^3
Carbonic anhydrase	10^6
Superoxide dismutase	10^9
Catalase	10^{10}

Notes:

- Each catalase molecule can catalyze 10 million reactions per second.

*The catalytic constants are given only as orders of magnitude.

Chem 352, Lecture 6 - Enzymes 75

Enzyme Kinetics

76

K_M

- K_M , the Michaelis-Menten constant, can be used to gauge the enzyme's affinity for its substrate.

$$K_M = \frac{k_{-1} + k_2}{k_1}$$

- When $k_2 \ll k_1$, K_M becomes equal to the dissociation constant for the enzyme-substrate complex

$$K_d = \frac{k_{-1}}{k_1} \approx K_M \quad ES \xrightleftharpoons{k_2} E + S$$

- The assumption that $k_2 \ll k_1$ is usually a reasonable one to make.
- A small K_M indicates strong binding of the substrate to enzyme.
- A large K_M indicates weak binding of substrate to enzyme.

Chem 352, Lecture 6 - Enzymes 76

Enzyme Kinetics

77

k_{cat}/K_M

- k_{cat} and K_M can be combined to create a parameter called the **catalytic efficiency** or **catalytic proficiency**.
- k_{cat}/K_M represents the second order rate constant at low $[S]$
- Higher value k_{cat}/K_M that is both good at forming e good at converting

TABLE 8.1 Michaelis-Menten parameters for selected enzymes, arranged in order of increasing efficiency as measured by k_{cat}/K_M				
Enzyme	Reaction Catalyzed	K_M (mM)	k_{cat} (s $^{-1}$)	k_{cat}/K_M (mM $^{-1}$ s $^{-1}$)
Chymotrypsin	$Ac-Pro-Gly \xrightarrow{H_2O} Ac-Pro + Gly$	1.5×10^{-2}	0.14	9.3
Pepsin	$Pro-Gly \xrightarrow{H_2O} Pro + Gly$	3×10^{-4}	0.5	1.7×10^3
Tyrosine-RNA synthetase	$Tyrosine + tRNA \rightarrow Tyrosyl-tRNA$	9×10^{-2}	7.0	8.4×10^2
Ribonuclease	$Chlorophyll \xrightarrow{H_2O} Chlorophyll + phosphate$	7.0×10^{-2}	7.0×10^2	1.0×10^3
Carboxic anhydrase	$HCO_3^- + H^+ \rightarrow H_2O + CO_2$	2.0×10^{-2}	4×10^2	1.5×10^3
Furinase	$Protein \xrightarrow{H_2O} Protein$	5×10^{-4}	8×10^2	1.6×10^3

Chem 352, Lecture 6 - Enzymes 77

Enzyme Kinetics

78

k_{cat}/K_M can be used to assess "catalytic perfection"

- When $k_{cat}/K_M \approx 10^8 \text{ M}^{-1}\text{s}^{-1}$ it indicates that the reaction is **diffusion-rate limited**.
- This means that there are no changes that can be made to the enzyme to make the reaction go any faster.
- The reaction rate is now dependent on how often a substrate molecule can migrate by diffusion into the active site of the enzyme.

TABLE 8.3 Michaelis-Menten parameters for selected enzymes, arranged in order of increasing efficiency as measured by k_{cat}/K_M				
Enzyme	Reaction Catalyzed	K_M (mM)	k_{cat} (s $^{-1}$)	k_{cat}/K_M (mM $^{-1}$ s $^{-1}$)
Chymotrypsin	$Ac-Pro-Gly \xrightarrow{H_2O} Ac-Pro + Gly$	1.5×10^{-2}	0.14	9.3
Pepsin	$Pro-Gly \xrightarrow{H_2O} Pro + Gly$	3×10^{-4}	0.5	1.7×10^3
Tyrosine-RNA synthetase	$Tyrosine + tRNA \rightarrow Tyrosyl-tRNA$	9×10^{-2}	7.0	8.4×10^2
Ribonuclease	$Chlorophyll \xrightarrow{H_2O} Chlorophyll + phosphate$	7.0×10^{-2}	7.0×10^2	1.0×10^3
Carboxic anhydrase	$HCO_3^- + H^+ \rightarrow H_2O + CO_2$	2.0×10^{-2}	4×10^2	1.5×10^3
Furinase	$Protein \xrightarrow{H_2O} Protein$	5×10^{-4}	8×10^2	1.6×10^3

Chem 352, Lecture 6 - Enzymes 78

Enzyme Kinetics

79

Determining K_M and V_{max} from the v_0 versus $[S]$ plot:

- V_{max} is the maximum v_0 at high $[S]$
- K_M is the $[S]$ value when v_0 is at the half maximum, $v_0 = V_{max}/2$

Chem 352, Lecture 6 - Enzymes 79

Enzyme Kinetics

80

Problem:

Initial velocities have been measured for the reaction of α -chymotrypsin with tyrosine benzyl ester $[S]$ at six different substrate concentrations. Use the data below to make a reasonable estimate of the V_{max} and K_M for this substrate.

$[S]$ (mM)	v_0 (mM/min)
0.015	5.43
0.030	10.3
0.050	16.1
0.10	27.4
0.25	47.9
0.40	59.4
0.60	68.1
0.80	73.5

Use Excel to plot these data

Chem 352, Lecture 6 - Enzymes 80

Enzyme Kinetics

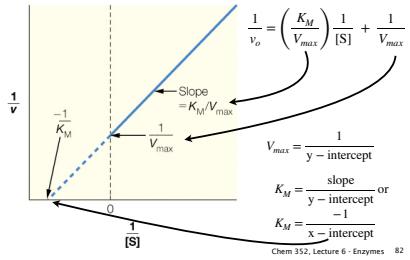
Determining K_M and V_{max} :

- From the double-reciprocal plot (Lineweaver-Burke plot)
- Taking the reciprocal of the Michaelis-Menten equation and plotting $1/v_o$ versus $1/[S]$ produces a straight line.
- where slope, $m = K_M/V_{max}$
- and y-intercept, $b = 1/V_{max}$

$$v_o = \frac{V_{max}[S]}{K_M + [S]}$$

$$\frac{1}{v_o} = \frac{K_M}{V_{max}[S]} + \frac{1}{V_{max}}$$

$$\frac{1}{v_o} = \left(\frac{K_M}{V_{max}} \right) \frac{1}{[S]} + \frac{1}{V_{max}}$$


$$y = m \cdot x + b$$

Chem 352, Lecture 6 - Enzymes 81

81

Enzyme Kinetics

Lineweaver-Burke Plot

Chem 352, Lecture 6 - Enzymes 82

82

Enzyme Kinetics

Problem:

Initial velocities have been measured for the reaction of α -chymotrypsin with tyrosine benzyl ester $[S]$ at six different substrate concentration. Use the data below to make a reasonable estimate of the V_{max} and K_M for this substrate.

$[S]$ (mM)	v_o (mM/min)
0.015	5.43
0.030	10.3
0.050	16.1
0.10	27.4
0.25	47.9
0.40	59.4
0.60	68.1
0.80	73.5

Chem 352, Lecture 6 - Enzymes 83

83

Enzyme Kinetics

Summary:

V_{max}

- It is the velocity observed when an enzyme is fully saturated with substrate at high $[S]$
- Is the maximum velocity in the Michaelis-Menten plot.
- It can be used to determine K_{cat} .
- It can be determined from the y-intercept in a Lineweaver-Burke plot (y -intercept = $1/V_{max}$).

Chem 352, Lecture 6 - Enzymes 84

84

Enzyme Kinetics

Summary:

K_M

- It is a measure of how strongly an enzyme is able to bind to the substrate.
- It is equal to the substrate concentration that produces a half-maximum velocity ($v_o = V_{max}/2$) in the Michaelis-Menten plot.
- It can be determined from either the slope-y-intercept, or from the x-intercept of a Lineweaver-Burke plot (x -intercept = $-1/K_M$).

Chem 352, Lecture 6 - Enzymes 85

85

Enzyme Kinetics

Summary:

TABLE 5.1 Examples of catalytic constants	
Enzyme	$k_{cat}(s^{-1})$
Papain	10
Ribonuclease	10 ²
Carboxypeptidase	10 ³
Tryptase	10 ⁵ (to 10 ⁶)
Chymotrypsin	10 ⁶
Lysozyme	10 ⁷
Kinase	10 ⁸
Dehydrogenases	10 ⁹
Transaminases	10 ⁹
Carbonic anhydrase	10 ¹⁰
Superoxide dismutase	10 ¹⁰
Catalase	10 ¹¹

^bThe catalytic constants are given only as orders of magnitude.

86

Enzyme Kinetics

Summary:

TABLE 5.2 Catalytic efficiencies of some enzymes			
	Nonenzymatic rate constant (k_1/k_2 s ⁻¹)	Enzymatic rate constant (k_2/k_1 M ⁻¹ s ⁻¹)	an enzyme rate by it
• It is a enzym binds comp conv			
Carbonic anhydrase	10^{-1}	7×10^5	
Chymotrypsin	4×10^{-9}	9×10^7	
Chloromate mutase	10^{-3}	2×10^6	
Thiole phosphate isomerase	4×10^{-10}	4×10^6	
Cysteine cathepsin	10^{-10}	3×10^5	
• k_{cat} limi			
Adenosine deaminase	2×10^{-10}	10^7	
Mandarinase necrose	3×10^{-13}	10^6	
β -Amylase	7×10^{-14}	10^7	
Fumarylacetoacetate lyase	10^{-13}	10^6	
Arginase, carbamoyl phosphate	9×10^{-16}	10^6	
Mutant phosphatase	10^{-15}	3×10^7	
Oxidative β -phosphate decarboxylase	3×10^{-16}	6×10^7	
ture 6 - Enzymes			

³² P-phosphate dilution	3×10^{16}	6×10^7	1	2	3
radioactivity (cpm)	1.2	1.2	1.2	1.2	1.2

87

Enzyme Kinetics

Summary:

(K _{cat} /K _M)/K _n			
TABLE 5.2 Catalytic proficiencies of some enzymes			
	Nonenzymatic rate constant (k_0 in s ⁻¹)	Enzymatic rate constant (k_{cat} in M ⁻¹ s ⁻¹)	Catalytic proficiency
Carboxylic anhydride	10 ⁻¹	7 × 10 ⁵	7 × 10 ⁶
Chloroformate	4 × 10 ⁻²	9 × 10 ⁵	2 × 10 ⁶
Chloromethyl ketone	10 ⁻²	2 × 10 ⁵	2 × 10 ¹¹
Fluorophenyl isonitroso	4 × 10 ⁻³	4 × 10 ⁵	10 ¹²
Cysteine desulfoxide	10 ⁻¹⁰	3 × 10 ⁵	3 × 10 ¹⁶
Adenosine deaminase	2 × 10 ⁻¹⁰	10 ⁵	5 × 10 ¹⁶
Mandelate racemase	3 × 10 ⁻¹³	10 ⁵	3 × 10 ¹⁸
B-Amylase	7 × 10 ⁻¹⁴	10 ⁷	10 ²⁶
Fumate	10 ⁻¹³	10 ⁵	10 ²¹
Arginine decarboxylase	9 × 10 ⁻¹⁶	10 ⁵	10 ³¹
Alkaline phosphatase	10 ⁻¹⁵	3 × 10 ⁷	3 × 10 ²²
Orthidate 5'-phosphate	3 × 10 ⁻¹⁶	6 × 10 ⁷	3 × 10 ²²

Table 1. The effect of the concentration of Fe^{2+} on the rate of reduction of Fe^{3+} by Fe^{2+} in the presence of Fe^{2+} and Fe^{3+} at 25°C and $\text{pH} = 2.0$

88

Enzyme Kinetics

Summary: Which of the following parameters that characterize an enzyme catalyzed reaction, tells you how many reactions that one enzyme molecule can process per second, on average?

- A. K_M
- B. k_{cat}
- C. V_{max}
- D. k_{cat}/K_M
- E. μ

Chem 352, Lecture 6 - Enzymes 89

89

Enzyme Kinetics

Summary: Which tells you the initial velocity of the reaction when the enzyme is fully

- A. K_M
- B. k_{cat}
- C. V_{max}
- D. k_{cat}/K_M

Chem 352: Lecture 6: Enzymes 90

90

Summary: Which tells you the initial velocity of the reaction when the enzyme is fully

- A. K_M
- B. k_{cat}
- C. V_{max}
- D. k_{cat}/K_M

Enzyme Kinetics

Summary:

Which tells you something about the affinity of the enzyme molecule for its substrate?

- A. K_M
- B. k_{cat}
- C. V_{max}
- D. k_{cat}/K_M
- E. v_0

91

Enzyme Kinetics

Summary:

Which tells you whether the enzyme is catalytically perfect (and, what does that even mean?)

- A. K_M
- B. k_{cat}
- C. V_{max}
- D. k_{cat}/K_M
- E. v_0

92

Enzyme Kinetics

Problem:

Initial velocities have been measured for the reaction of α -chymotrypsin with tyrosine benzyl ester $[S]$ at six different substrate concentration. Use the data below to make a reasonable estimate of the V_{max} and K_M for this substrate.

Use Excel to re-plot this data as a $1/v_0$ vs $1/[S]$ Lineweaver-Burk Plot

$[S]$ (mM)	v_0 (mM/min)
0.015	5.43
0.030	10.3
0.050	16.1
0.10	27.4
0.25	47.9
0.40	59.4
0.60	68.1
0.80	73.5

93

Enzyme Kinetics

Problem:

Given the enzyme concentration used in this experiment was $72\mu\text{M}$,

- A. What is the *turnover number* in units of s^{-1} for chymotrypsin when it is fully saturated with the substrate?
- B. Is chymotrypsin, under the conditions used in this experiment, displaying catalytic perfection?

94

8.7 Enzyme Inhibition

95

Enzyme Inhibition

Enzyme Inhibition and Activation

- The binding of small molecules can inhibit enzyme activity
 - These include
 - Metabolites
 - Can be part of normal metabolic regulation.
 - Allosteric inhibition
 - Drugs
 - Toxins
 - Covalent modification of the enzyme
 - Inhibition can be reversible or irreversible

Chem 352, Lecture 6 - Enzymes 96

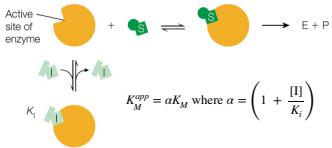
96

Enzyme Inhibition

Reversible Enzyme Inhibition involves reversible binding of an inhibitor to the enzyme

- Competitive inhibition $E + I \xrightleftharpoons{I/K_i} EI$
 - Inhibitor binds only to the free enzyme, E
- Uncompetitive inhibition $ES + I \xrightleftharpoons{I/K_i} ESI$
 - Inhibitor binds only to the enzyme-substrate complex, ES
- Mixed inhibition $E + I \xrightleftharpoons{I/K_i} EI$
 - An inhibitor can bind to both the free enzyme, E, or the enzyme/substrate complex, ES $ES + I \xrightleftharpoons{I/K_i} ESI$

$$K_i = K_d = \frac{[E][I]}{[EI]} \text{ or } \frac{[ES][I]}{[ESI]}$$


Chem 352, Lecture 6 - Enzymes 97

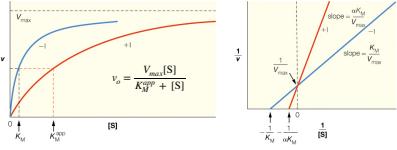
97

Enzyme Inhibition

Competitive inhibition

- The inhibitor binds to the same site as the substrate and increases the apparent K_M .

- Drugs are often designed to be competitive inhibitors.


Chem 352, Lecture 6 - Enzymes 98

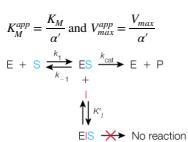
98

Enzyme Kinetics

Competitive Inhibition

- Has the following affects on the Michaelis-Menten and Lineweaver-Burke plots.

- High substrate concentrations can overcome the effects of the inhibitor.

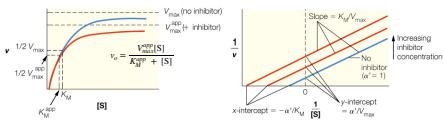

Chem 352, Lecture 6 - Enzymes 99

99

Enzyme Inhibition

Uncompetitive inhibition

- The inhibitor binds to a site that forms after the substrate binds.
- Inhibitor binding decreases both the V_{max} and K_M .

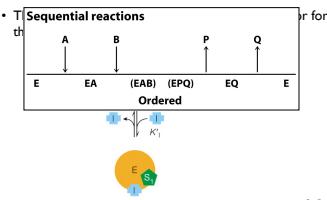

Chem 352, Lecture 6 - Enzymes 100

100

Enzyme Kinetics

Uncompetitive Inhibition

- Has the following affects on the Michaelis-Menten and Lineweaver-Burke plots.

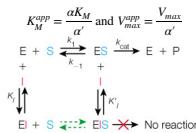

Chem 352, Lecture 6 - Enzymes 101

101

Enzyme Inhibition

Uncompetitive Inhibition

- Often the site where the inhibitor binds is a site where a second substrate would bind in a sequentially ordered reaction.

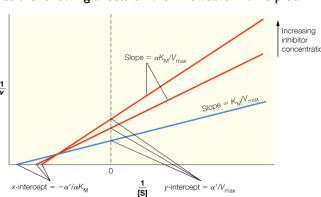

Chem 352, Lecture 6 - Enzymes 102

102

Enzyme Inhibition

Mixed inhibition

- The inhibitor can bind to both the free enzyme, E, and to the enzyme-substrate complex, ES.
- Inhibitor binding decreases the V_{max} .
- But it has a more complex effect on K_M , where binding to E increases K_M , while binding to ES decreases K_M .

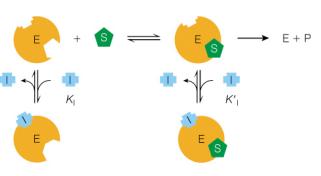

Chem 352, Lecture 6 - Enzymes 103

103

Enzyme Kinetics

Mixed Inhibition

- Has the following affects on the Lineweaver-Burke plot.

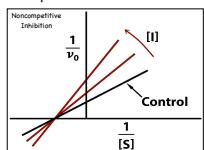

Chem 352, Lecture 6 - Enzymes 104

104

Enzyme Inhibition

Mixed Inhibition

- Often the site where the inhibitor binds is a site somewhere removed from the active site where the substrate binds.
- This type of inhibition is often referred to as *allosteric inhibition*.

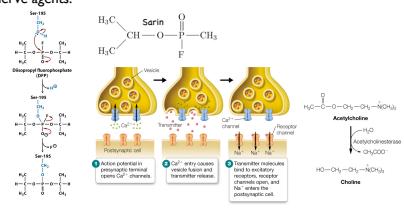

Chem 352, Lecture 6 - Enzymes 105

105

Enzyme Inhibition

Mixed Inhibition

- In, the special case where the binding affinity of the inhibitor to both the free enzyme and the enzyme substrate complex are the same ($\alpha = \alpha'$), then there is no apparent effect on K_m .
- This is called **noncompetitive inhibition** and produces a Lineweaver-Burke plot that looks like this.

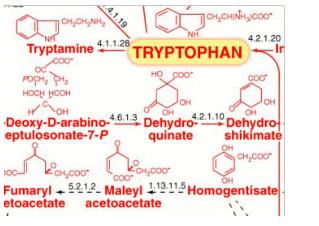


Chem 352, Lecture 6 - Enzymes 106

106

Enzyme Kinetics

Irreversible Enzyme Inhibition occurs through covalent modification, and its a strategy used in designing pesticides and nerve agents.


Chem 352, Lecture 6 - Enzymes 107

107

8.7 The Regulation of Enzyme Activity

Regulation of Enzyme Activity

Concept: Regulation of enzyme activity is essential for the efficient and orderly flow of metabolism.

Chem 352, Lecture 6 - Enzymes 109

109

Regulation of Enzyme Activity

Substrate-Level Control

- When the substrate concentrations are low, $[S] \ll K_m$, then the rate of the reaction is first-order with respect to $[S]$.
- The rate of the reaction will depend on the substrate concentration.

Product Inhibition

- If the concentration of the product of a reaction builds up due to a slowdown in the flow of intermediates through a pathway, then the binding of the product to enzyme will inhibit the further production of that product.

110

Chem 352, Lecture 6 - Enzymes 110

Regulation of Enzyme Activity

Enzymes that lie at key points along a metabolic pathway can also be regulated by metabolites that are neither as substrate or product of that enzyme.

- For example, consider a pathway that leads to the synthesis of metabolite E.

- If, in addition to being the product of this pathway, if E also served as an inhibitor of Enzyme I, then it could serve to shut down the pathway leading to its synthesis when its levels were high.

- This is type of regulation is called **feedback inhibition**.

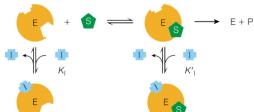
Chem 352, Lecture 6 - Enzymes 111

111

Regulation of Enzyme Activity

Enzymes that lie at key points along a metabolic pathway can also be regulated by metabolites that are neither as substrate or product of that enzyme.

- There are other scenarios where the buildup of a metabolite may signal the need to activate another pathway.
- The binding of metabolites to regulatory enzymes can also serve to activate them

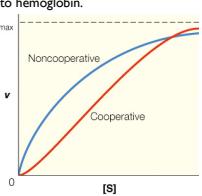

Chem 352, Lecture 6 - Enzymes 112

112

Regulation of Enzyme Activity

Allosteric Enzymes

- Are enzymes that can be inhibited or activated by metabolites that are neither their substrates or products.
- Typically the binding of these allosteric effectors is at a site that is removed from the active site, and their binding leads to a conformational changes in the enzyme that affects its activity.
- This is what we saw with the mixed inhibitor model of reversible enzyme inhibition.

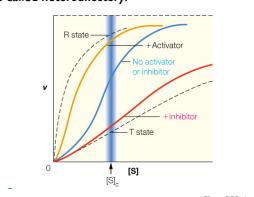

Chem 352, Lecture 6 - Enzymes 113

113

Regulation of Enzyme Activity

Allosteric Enzymes

- The enzymes typically have multiple subunits with multiple active sites, which display cooperative substrate binding, similar what we saw with O₂ binding to hemoglobin.
- The binding of substrate to one active site can increase the activity at another site.
- This is called **homoolsterism**.
- As with Hb, this shifts the steepest part of the activity curve away from the y-axis.


Chem 352, Lecture 6 - Enzymes 114

114

Regulation of Enzyme Activity

Allosteric Enzymes

- The binding of inhibitors and activators can then shift this curve to the right (inhibition) or left (activation).
- This is called **heteroolsterism**.

Chem 352, Lecture 6 - Enzymes 115

115

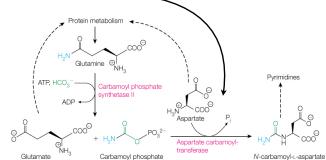
Regulation of Enzyme Activity

Allosteric Enzymes

- The enzyme, aspartate carbamoyltransferase (ATCase) is a classic example.
- ATCase is a multisubunit enzyme comprising 6 catalytic subunits and 6 regulatory subunits arranged as two catalytic trimers plus three regulatory dimers.

Chem 352, Lecture 6 - Enzymes 116

116



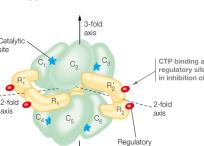
Regulation of Enzyme Activity

Allosteric Enzymes

- ATCase catalyses the first reaction in the pathway leading to the synthesis of the pyrimidine ribonucleotide, cytidine triphosphate (CTP)

Chem 352, Lecture 6 - Enzymes 117

117



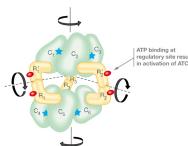
Regulation of Enzyme Activity

Allosteric Enzymes

- When CTP levels rise, it binds to the regulatory subunits and stabilize the tense (T) state and thereby inhibits the synthesis of additional pyrimidine bases.

Chem 352, Lecture 6 - Enzymes 118

118



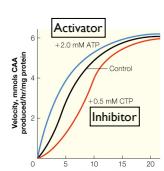
Regulation of Enzyme Activity

Allosteric Enzymes

- On the other hand, when purine nucleotide concentrations rise it signals an inadequate supply of pyrimidines for RNA synthesis, as a purine, ATP serves as an activator by bind to the regulatory subunits and switching to switch ATCase to its relaxed (R) state.

Chem 352, Lecture 6 - Enzymes 119

119



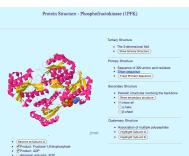
Regulation of Enzyme Activity

Allosteric Enzymes

- The regulatory effects of the CTP and ATP are reflected in the Michaelis-Menten plots for ATCase in the presence and absence of these effectors.

Chem 352, Lecture 6 - Enzymes 120

120



Enzyme Kinetics

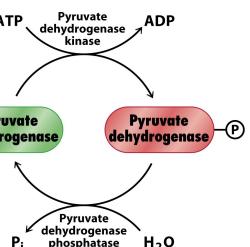
121

Allosteric Enzymes

- The enzyme phosphofructokinase, PFK, which is found in the glycolytic pathway, is another good example.
- The enzyme phosphorylates fructose-6-phosphate to fructose-1,6-bisphosphate. Using ATP.
- ADP is a product of this reaction, but it is also an activator of PFK, because one of the overall purposes of the glycolytic pathway is to produce ATP from ADP and inorganic phosphate, P_i .
- Hi ADP levels signals a cell's need for ATP.

Chem 352, Lecture 6 - Enzymes 121

8.8 Covalent Modification Used to Regulate Enzyme Activity

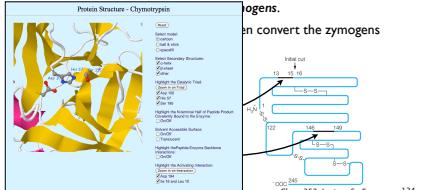

122

Regulation by Covalent Modifications

Covalent modification is irreversible.

Reversible phosphorylation of enzymes is an example of regulation.

- It provides a local level of regulation of enzyme activity.
- Is often linked to control of metabolism at the systemic level.


Chem 352, Lecture 6 - Enzymes 123

123

Regulation by Covalent Modifications

Irreversible modifications are used to activate enzymes in a specific location

- For example, a number of proteolytic enzymes are synthesized in an inactive form in the pancreases.

124

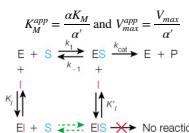
Enzyme Inhibition

125

Problem 8.14:

The steady-state kinetics of an enzyme are studied in the absence and presence of an inhibitor (inhibitor A). The initial rate is given as a function of substrate concentration in the following table.

v_0 [mmol/L·min ⁻¹]		
[S] (mmol/L)	No Inhibitor	Inhibitor A
1.25	2.72	0.98
2.50	2.04	1.17
2.50	2.63	1.47
5.00	3.33	1.96
10.00	4.17	2.38

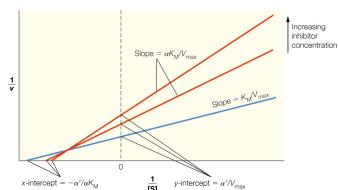

A. What kind of inhibition (competitive, uncompetitive, or mixed) is involved.
B. Determine V_{max} and K_m in the absence and presence of the inhibitor.

Chem 352, Lecture 6 - Enzymes 125

Enzyme Inhibition

Mixed inhibition

- The inhibitor can bind to both the free enzyme, E, and to the enzyme-substrate complex, ES.
- Inhibitor binding decreases the V_{max} .
- But it has a more complex effect on K_M , where binding to E increases K_M , while binding to ES decreases K_M

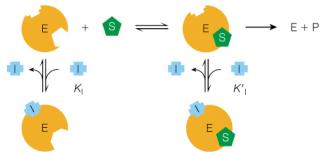

Chem 352, Lecture 6 - Enzymes 126

126

Enzyme Kinetics

Mixed Inhibition

- Has the following affects on the Lineweaver-Burke plot.

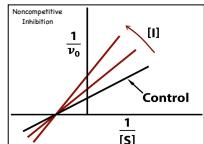

Chem 352, Lecture 6 - Enzymes 127

127

Enzyme Inhibition

Mixed Inhibition

- Often the site where the inhibitor binds is a site somewhere removed from the active site where the substrate binds.
- This type of inhibition is often referred to as *allosteric inhibition*.


Chem 352, Lecture 6 - Enzymes 128

128

Enzyme Inhibition

Mixed Inhibition

- In, the special case where the binding affinity of the inhibitor to both the free enzyme and the enzyme substrate complex are the same ($\alpha = \alpha'$), then there is no apparent effect on K_M .
- This is called *noncompetitive inhibition* and produces a Lineweaver-Burke plot that looks like this.

Chem 352, Lecture 6 - Enzymes 129

129

Enzyme Inhibition

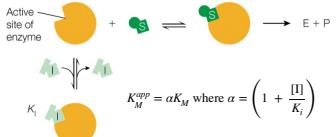
Problem 8.15:

The same enzyme as in Problem 14 is studied in the presence of a different inhibitor (inhibitor B).

Noncompetitive Inhibition				
		1/[S]		
		1/[S]		
[S] (mM)	No Inhibitor	Inhibitor A	3 mM Inhibitor B	5 mM Inhibitor B
1.25	1.72	0.98	1.25	1.01
1.67	2.04	1.17	1.54	1.26
2.50	2.63	1.47	2.00	1.72
5.00	3.33	1.96	2.86	2.56
10.00	4.17	2.38	3.70	3.49

- What kind of inhibitor is inhibitor B?
- Determine the apparent V_{max} and K_M at each inhibitor concentration.
- Estimate K_i from these data.

Chem 352, Lecture 6 - Enzymes 130


130

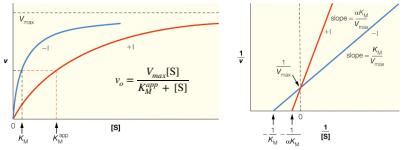
Enzyme Inhibition

131

Competitive inhibition

- The inhibitor binds to the same site as the substrate and increases the apparent K_M .

- Drugs are often designed to be competitive inhibitors.


Chem 352, Lecture 6 - Enzymes 131

Enzyme Kinetics

132

Competitive Inhibition

- Has the following affects on the Michaelis-Menten and Lineweaver-Burke plots.

- High substrate concentrations can overcome the effects of the inhibitor

Chem 352, Lecture 6 - Enzymes 132