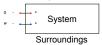

Chem 352 - Lecture 3 The Energetics of Life Question of the Day: "What makes Free Energy free?"	1	
Introduction	2	
Introduction In this lecture we will be looking quantitatively at how living systems obtain, store, and utilize energy. • Bioenergetics is the study of energy transformations (thermodynamics) in biological systems. • We will be using the following thermodynamic state functions, • Enthalpy, H • Entropy, S • Free Energy, G $\Delta H = H_{final} - H_{initial}$ *Chem 352, Lecture 3 - The Energetics of Life 3	3	
Introduction Topics covered will include, • Free Energy • Free Energy and the Second Law of Thermodynamics in an open system • The relationships between Free Energy, the equilibrium state, and the reactant and product concentrations when not at equilibrium. • Free Energy considerations in biological systems	4	
Free Energy	5	

Free Energy

The First Law of Thermodynamics and Enthalpy

- · Thermodynamics is defined in terms of Laws
- The First Law of Thermodynamics states that the total energy of an isolated system is a constant.
- · Since the universe is an isolated system, this means that energy can be converted form one form to another, but it can be neither created nor destroyed.
- This also means for closed system, the change in energy for the system (ΔU_{system}) is equal to the negative change in energy for the surroundings ($-\Delta U_{surroundings}$)

$$\Delta U_{system} = -\Delta U_{surroundings}$$


Chem 352, Lecture 3 - The Energetics of Life 11

11

Free Energy

The First Law of Thermodynamics and Enthalpy

 \bullet There is another way to state this for a \emph{closed} \emph{system}

$$\Delta U_{system} = q + w$$

Chem 352. Lecture 3 - The Energetics of Life 12

12		

Free Energy

The First Law of Thermodynamics and Enthalpy

• If we limit ourselves to pressure-volume work, under conditions of constant pressure.

$$w = -P\Delta V$$

$$\Delta U_{system} = q_P - P\Delta V$$

• The state variable Enthalpy (H) is defined as the heat absorbed by a system under conditions of constant pressure

$$\Delta H_{system} = q_P$$

Chem 352, Lecture 3 - The Energetics of Life 13

13			

Free Energy

The First Law of Thermodynamics and Enthalpy

- The energy content of the foods we eat can be correlated to the heat that is released when they undergo a $combustion\ reaction.$
- The reactions that living system use to extract energy from the foods we eat are primarily combustion-like oxidation reactions.
- · For example, the conversions of the fatty acid, Palmitic acid, to CO₂ and H₂O.

 $\mathrm{CH_{3}(CH_{2})_{14}COOH\,(solid) + 23O_{2}(gas)} \, \longrightarrow \, 16\mathrm{CO_{2}(gas) + 16\,H_{2}O\,(liquid)}$

Chem 352, Lecture 3 - The Energetics of Life 14

Free Energy

 $\boldsymbol{\cdot}$ These heats can be measured using a calorimeter.

 $\boldsymbol{\cdot}$ The one shown here does this at constant pressure . The one shown here does this at constant pressure $\text{CH}_1(\text{CH}_2)_n \text{COOH} \left(\text{solid}\right) + 23\text{O}_2\left(\text{gas}\right) - 3 \text{ IGCO}_2\left(\text{gas}\right) + 16\text{H}_2\text{O} \left(\text{liquid}\right) \\ \Delta H = q_p = -9977.6 \frac{kI}{mcl} \\ \\ \text{These heats are listed as detary Calories on foot packaging.} \\ \text{Total relative observed to raise the lamperature of 1 g of H₂O by 1°C}$

$$\Delta H = q_P = -9977.6 \frac{kJ}{mol}$$

15		

The Driving Force for a Process		
$ullet$ While ΔH can provide us with a measure of how much energy		
is absorbed or release in a process, it cannot tell us whether a process is favorable or not.		
Concept: Reversible processes always occur near a state of		
equilibrium; irreversible processes start some distance from		
equilibrium and drive towards equilibrium.		
A process is <i>favorable</i> if it is irreversible and moving in the		
forward direction.		
 It is unfavorable if it is irreversible and moving in the backward direction 		
Determining whether a process is favorable or not requires		
the Second Law of Thermodynamics, along with considering		
another state variable, Entopy (S).		
Chem 352, Lecture 3 - The Energetics of Life 16		
F F	17	
Free Energy		
Entropy		
Concept: Entropy is a measure of the disorder in a system.		
) [] (=m) [
Scores A resistant		
11 (
Intel state high reference, limitely the source but Leve entropy of Priva stays of 00 Mighter entropy final state. As soldation is at equilibrium because pure varier is added without accorded water references.		
In Ny, meleculous are distributed mining, the system is no brouge continue to move surdowing, their standarding throughout the Ny, cells in at equalitation. It has become among many browness cross the initial volume, more ordered, with all the deposed in less ordered) coccusion distributed in because even cell that are equal to		
one-half of the solution. Cohere of temps concepted. Generality, the solution reacress a new regulitorum, with socrose		
transform missionary stammans throughout the larger craim of the company of the c		
Suggest melapular		
Sucrose molecules are in a disordered are now in a more become more		
state. ordered state. disordered again.		
Chem 352, Lecture 3 - The Energetics of Life 17		
	18	
Free Energy	_	
Entropy		
Entropy is a measure of order		
The more disordered a system is, the greater its		
entropy.		
$S = k_B \ln(W)$		
• where		
• k_B is Boltzman's constant = R/N_A		
k _B is Boltzman's constant = R/N _A W is the number of substates of equal energy		
W is the number of substates of equal energy		
W is the number of substates of equal energy MREE1 Examples of lower entropy and higher entropy states		
Wis the number of substates of equal energy MEA1 Exemples of lower entropy and higher entropy states Lower Entropy Low at 0°C Was a 0°C Low at 0		
Wis the number of substates of equal energy TABLE 3.1 Examples of lower entropy and higher entropy states Lower Entropy Bet at 0 °C Water,		
Wis the number of substates of equal energy TAILE 4.1 Examples of lower entropy and higher-entropy states Lower Entropy Inc., at 0 °C Wise, at 0 °C Wise, at 0 °C Wise, at 0 °C An underedded minuter of youth, whole barrance, honey, and wise districtions, honey, and wise districtions. A flut amonothie 6.6. The same whole barrance, honey, and wise districtions.		
Wis the number of substates of equal energy TABLE 3.1 Examples of lower entropy and higher entropy states Lower Entropy Bet at 0 °C Water,		
Wis the number of substates of equal energy TAILE 4.1 Examples of lower entropy and higher-entropy states Lower Entropy Inc., at 0 °C Wise, at 0 °C Wise, at 0 °C Wise, at 0 °C An underedded minuter of youth, whole barrance, honey, and wise districtions, honey, and wise districtions. A flut amonothie 6.6. The same whole barrance, honey, and wise districtions.		
Wis the number of substates of equal energy TAILE 4.1 Examples of lower entropy and higher-entropy states Lower Entropy Inc., at 0 °C Wise, at 0 °C Wise, at 0 °C Wise, at 0 °C An underedded minuter of youth, whole barrance, honey, and wise distributions, honey, and wise distributions. A flux amonothie 6.6. The same whole barrance, honey, and wise distributions.		
Wis the number of substates of equal energy TAILE 4.1 Examples of lower entropy and higher-entropy states Lower Entropy Inc., at 0 °C Wise, at 0 °C Wise, at 0 °C Wise, at 0 °C An underedded minuter of youth, whole barrance, honey, and wise distributions, honey, and wise distributions. A flux amonothie 6.6. The same whole barrance, honey, and wise distributions.		
Wis the number of substates of equal energy TAILE 3.1 Examples of lower entropy and higher-entropy states Lower Entropy It lies, all 0° With an 0° With an 0° With an 0° With an 0° An unbrinded minister of yogant, whole barrance, honey, and whole barrance, honey, and whole streampers, honey, and whole streampers. A thut smoother is a. The same expectations with other barrance with the desired. Chem 350, Lecture 3 - The Energetics of Life 18	19	
Wis the number of substates of equal energy TAILE 4.1 Examples of lower entropy and higher-entropy states Lower Entropy Inc., at 0 °C Wise, at 0 °C Wise, at 0 °C Wise, at 0 °C An underedded minuter of youth, whole barrance, honey, and wise distributions, honey, and wise distributions. A flux amonothie 6.6. The same whole barrance, honey, and wise distributions.	19	
W is the number of substates of equal energy TABLE 3.1 Examples of Invest entropy and Professoritopy states	19	
W is the number of substates of equal energy TAULE 4.1 Examples of lower entropy and higher entropy dates	19	
W is the number of substates of equal energy TABLE 3.1 Examples of Invest entropy and Professoritopy states	19	
Wis the number of substates of equal energy MILE 1 Exemples of International and Police entirely states	19	
Wis the number of substates of equal energy MILE 1 Exemples of lower enforcy and hybre enforcy tables	19	
Wis the number of substates of equal energy The LEAST Exception of International and Policy and Policy entirely substates	19	
The Second Law of Thermodynamics The entropy of an isolated system will tend to increase to a maximum value. Concept: The fact that the entropy of an isolated system will tend to increase to a maximum value. Concept: The fact that the entropy of an isolated system will tend to increase to a maximum value. Since the universe is an isolated system, it means that for Since the universe is an isolated system will tend to increase to a maximum value.	19	
Wis the number of substates of equal energy The Company of Notes entropy and Notes entropy these	19	
Wis the number of substates of equal energy The Company of Com	19	
• W is the number of substates of equal energy The content of	19	
Wis the number of substates of equal energy The Latter State December of New York December of N	19	
• W is the number of substates of equal energy The content of	19	
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy	19	
Wis the number of substates of equal energy The Latter State December of New York December of N	19	
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy	19	
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy	19	
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy		
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy	19	
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy		
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy		
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy		
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy		
Wis the number of substates of equal energy The content of the		
• W is the number of substates of equal energy **Total 1 Exemples of None enforce and None entropy states Lower Entropy		
• W is the number of substates of equal energy The Committee The Committ		
Wis the number of substates of equal energy The content of the		
• W is the number of substates of equal energy The Committee The Committ		
• W is the number of substates of equal energy The Committee The Committ		
• W is the number of substates of equal energy The Committee The Committ		
• W is the number of substates of equal energy The Committee The Committ		
• W is the number of substates of equal energy The Committee The Committ		
• W is the number of substates of equal energy The Committee The Committ		

16

Free Energy

Free Energy: The Second Law

Biological systems are open system systems because they exchange both energy and matter with their surroundings.

- Concept: In an open system, such as a living cell, ΔS_{universe} must also increase for a process to be favorable.
- Since

$$\Delta S_{universe} = \Delta S_{system} + \Delta S_{surroundings}$$

 This means that the entropy of a system can decrease, as long as there is an overcompensating increase in the entropy of the surroundings.

Chem 352, Lecture 3 - The Energetics of Life 21

21

Free Energy:The Second Law

Free Energy Defined in Terms of Enthalpy and Entropy Changes in the System

- J.Willard Gibbs showed that if the pressure and temperature are held constant for a process, the value -TS_{universe} is a state variable.
- This new state variable is now called the $\it Gibb$'s $\it Free Energy (G)$.

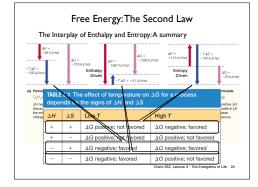
$$\Delta G = - T\Delta S_{universe}$$

* He also showed that $\Delta G_{universe}$ can be determined from ΔH_{system} and $\Delta S_{system}.$

$$\Delta G = \Delta H_{system} - T \Delta S_{system}$$

Chem 352, Lecture 3 - The Energetics of Life 22

22		

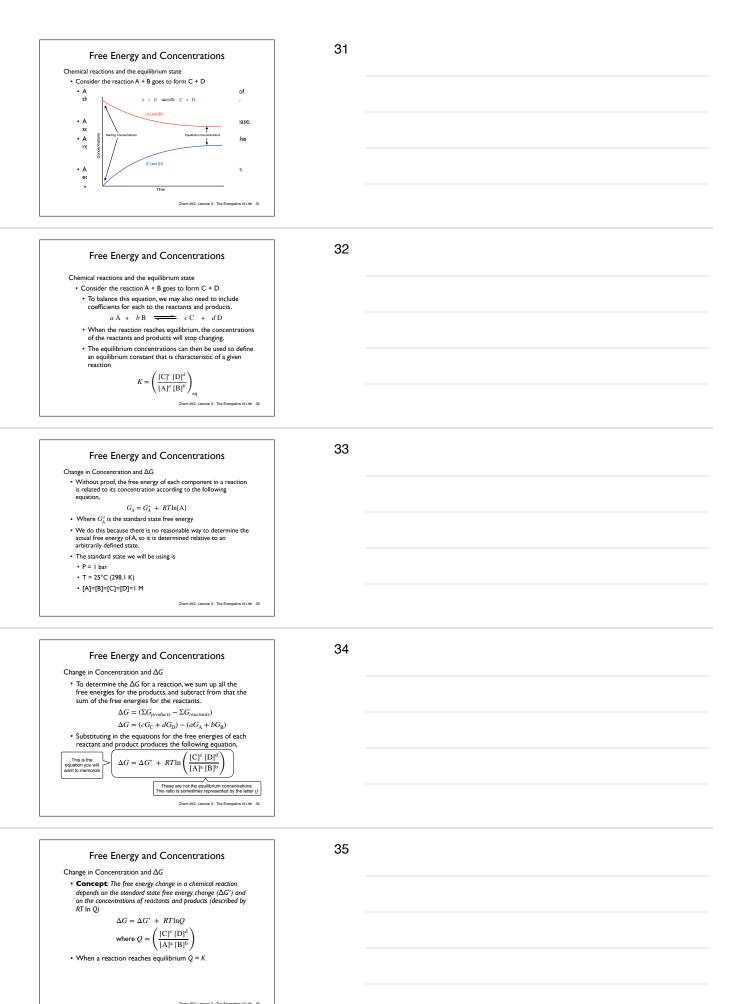

Free Energy:The Second Law

Free Energy Defined in Terms of Enthalpy and Entropy Changes in the System

• Concept: A thermodynamically favored process tends in the direction that minimizes free energy (results in a negative ΔG). This is one way of stating the second law of thermodynamics.

TABLE 3.2 Free energy rules			
If ΔG is	Free energy is	The process is	
Negative	Available to do work	Thermodynamically favorable (and the reverse process is unfavorable)	
Zero	Zero	Reversible; the system is at equilibrium	
Positive	Required to do work	Thermodynamically unfavorable (and the reverse process is favorable)	

Chem 352, Lecture 3 - The Energetics of Life 23



24		

Free Energy: The Second Law			
The Interplay of Enthalpy and Entropy: A summary			
 Concept: Just because a process is favorable it does not mean that it proceeds rapidly. 			
Diamond → Graphite			
Free Energy (G) DG c 0 spontaneous Frogress of reaction Chem 302, Lecture 3 - The Energetics of Life 25			

25		

Free Energy: The Second Law The Interplay of Enthalpy and Entropy: A summary • Concept: Living systems create order from chaos and lead to a decrease in entropy. This is paid for by the expenditure of energy ($\Delta H_{system} = 0$), which increases the entropy of the surroundings ($\Delta S_{surroundings} > 0$). $\Delta S_{system} < 0$ $\Delta S_{surroundings} = -\frac{q_P}{T}$ $= -\frac{\Delta H_{system}}{T}$ $\Delta H_{system} < 0 \text{ and } < T\Delta S_{system}$ Chem 352, Lecture 3 - The Energetics of Life 26	26	
Free Energy: The Second Law Free Energy and Useful Work • Concept: The free energy change, ΔG, is a measure of the maximum useful work obtainable from any reaction. The synthesis of ATP is used by long to the start use. The hydrolysis of ATP releases that every concept or exercise a membrane core processor of the start use. Chem 352, Lecture 3 - The Energistics of Life 27	27	
Free Energy and Concentrations of Reactants and Products.	28	
Free Energy and Concentrations Equilibrium, Le Chatelier's Principle, and the Standard State • Concept: Le Chatelier's Principle state that for any system not at equilibrium, there is a thermodynamic driving force that favors the reestablishing of the equilibrium state. • Living systems exist far from an equilibrium state	29	
Free Energy and Concentrations Chemical reactions and the equilibrium state • Consider the reaction A + B goes to form C + D • If we start with only the reactants A and B, there is only one direction for the reaction to go. A + B • Likewise, if we start with only the products C and D, there is only one direction for the reaction to go ——————————————————————————————————	30	

Free Energy and Concentrations

ΔG versus ΔG°, O versus K, and Homeostasis versus Equilibrium

- Concept: The equilibrium constant K can be calculated from the standard free energy change (ΔG°) and vice vera.
- At equilibrium $\Delta G = 0$, therefore,

whith
$$\Delta G = 0$$
, therefore,
$$\Delta G = \Delta G^* + RT \ln \left(\frac{|C|^c |D|^d}{|A|^a |B|^b} \right)$$

$$0 = \Delta G^* + RT \ln \left(\frac{|C|^c |D|^d}{|A|^a |B|^b} \right)_{eq}$$

$$\Delta G^* = - RT \ln \left(\frac{|C|^c |D|^d}{|A|^b |B|^b} \right)_{eq}$$

Chem 352, Lecture 3 - The Energetics of Life 36

Free Energy and Concentrations

 ΔG versus $\Delta G^{\circ},$ Q versus K, and Homeostasis versus Equilibrium

- Concept: The homeostatic condition, which is far from equilibrium and a characteristic of living cells, must not be confused with true thermodynamic equilibrium.
- The narrow range of conditions, such as pH, temperature, and concentrations of metabolites and ions is referred to as the homeostatic conditions or homeostasis
- Many reactions and processes are not favorable $(\Delta G > 0)$ under homeostatic conditions, therefore, energy is required to maintain homeostasis

Chem 352, Lecture 3 - The Energetics of Life 37

37			

Free Energy and Concentrations

 ΔG versus $\Delta G^{\circ},$ Q versus K, and Homeostasis versus Equilibrium

• Concept: It is ΔG , as determined by the actual concentrations of reactants and products in the cell, and not ΔG , that determines whether or not a reaction is favorable in vivo

TABLE 3.4 Relationships between K , Q , and ΔG for a reaction				
Value of Q	Value of ΔG	Favored Direction		
< <i>K</i>	<0	Forward reaction (formation of products)		
=K	=0	Neither (system at equilibrium)		
>K	>0	Reverse reaction (formation of reactants)		

Chem 352, Lecture 3 - The Energetics of Life 38

38

Free Energy and Concentrations

 ΔG versus $\Delta G^{\circ},$ Q versus K, and Homeostasis versus Equilibrium

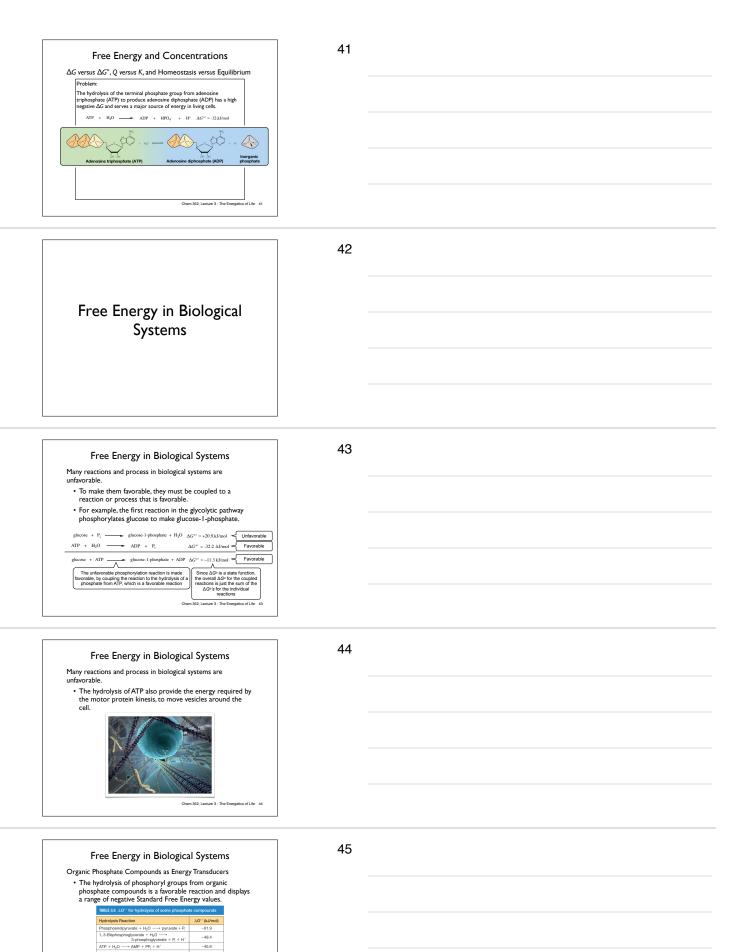
• Concept: Thermodynamically unfavorable reactions become favorable when Q < K and/or when coupled to a strongly favorable (i.e., highly exergonic, $\Delta G << 0$) reaction.

Since
$$\Delta G = \Delta G^{\circ} + RT \ln Q$$

$$\Delta G = RT \ln \left(\frac{Q}{K_{eq}} \right)$$

Chem 352, Lecture 3 - The Energetics of Life 39

39		


Free Energy and Concentrations

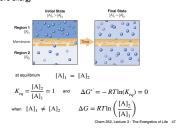
Water, H^{\star} in Buffered Solution, and the "Biochemical Standard State"

- Concept: Biochemists use a slightly different definition for the Standard Free Energy Change (ΔG°)
- Whenever water is a reactant or product in a reaction it activity is set equal to 1, instead of its concentration, ~55M.
- The standard state for [H+] is 1×10^{-7} M instead of 1 M, so its activity at pH 7 becomes 1.

Chem 352, Lecture 3 - The Energetics of Life

40	

Organic Phosphate Compounds as Energy Transducers


 Concept: The phosphoric group transfer potential shows which compounds can phosphorylate others under standard conditions.

drolysis Reaction	ΔG°' (kJ/mol)
nosphoenolpyruvate + H ₂ O pyruvate + P ₁	-61.9
, 3-Bisphosphoglycerate + H ₂ O → 3-phosphoglycerate + P _i + H ⁺	-49.4
$TP + H_2O \longrightarrow ADP + P_1 + H^+$	-32.2
ilucose-1-phosphate + H ₂ O> glucose + P ₁	-20.9

46

Free Energy in Biological Systems

Concentration gradients across membranes are a way that cells store energy

47

Free Energy in Biological Systems

Determining the ΔG° for oxidation/reduction reactions

- Many of the important reactions we will encounter are oxidation/reduction reactions.
- For example, if you imbibe ethanol, the first step in breaking it down occurs in liver where it is oxidized by nicotinamide-adenine dinucleotide (NAD+) to acetaldehyde.

$$CH_3-CH_2-OH + NAD^+ \longrightarrow H_3C-C-H + NADH + H^+$$
 ethanol acetaldehyde

• The ΔG° for oxidation/reduction can be determined from the standard reduction potentials, E° for the electron donor and acceptor in the reaction.

Chem 352, Lecture 3 - The Energetics of Life 48

48

Free Energy-in Biolog political for reducing Fe Determining the ΔG" for oxidation/red	J
Copy Charles the Effective Copy and February Charles the Effective Copy and February Charles the Effective Copy and February Charles an	Sections for from the standard hydrogen electrods (since the progress electrods (since the progress electrods). And in this half-coeff are hit and standard staffers, 11M since the thirty respectively. Chem 302, Lecture 3 - The Energetics of Life 49

49

Free Energy in Biological Systems

Determining the $\Delta \emph{G}^{\circ}$ for oxidation/reduction reactions

 Concept: The greater the standard reduction potential, the greater the tendency of the oxidized form of a redox couple to attract electrons.

Oxidant (e' acceptor)		Reductant (e'clonor)	n	E ~ (V)
H" + a"	\Rightarrow	15H ₂	1	-0.421
NAD" + H" + 2e"	_	NADH	2	-0.315
1,3 Bisphosphoglycerate + 2H + 2e	==	Glyceraldehyde-3-phosphate + P	2	-0.290
FAD + 2H" + 2e"	\rightleftharpoons	FADH ₂	2	-0.219
Acetaldehyde + 2H" + 2e"	-	Ethanol	2	-0.197
Pyruvate + 2H1 + 2e1	-	Luctate	2	-0.185
Fe ³⁺ + e ⁻	\Rightarrow	Fe ² ·	1	+0.769
NO ₂ + 2H' + 2e'	-	H _i O	2	+0.815

The entry for the $H^+_1(t)_0$ couple $E^{**}=-0.451$ V is not zero because it is measured with $[H^+]=1$ M in the reference cell § a., the standard hydrogen electroidy and $[H^+]=50^{\circ}$ M in the test cell.

Chem 352, Lecture 3 - The Energetics of Life 50

50

_	_			_
Free	Energy	in	Biological	Systems

Determining the ΔG° for oxidation/reduction reactions

 The standard reduction potentials for the proton acceptor and proton donor can then be used to determine $\Delta \textit{G}^{\circ}$ using the Nernst equation.

$$\Delta G^{\circ\prime} = -\,n \mathcal{F} \Delta E^{\circ\prime}$$

where \mathscr{F} is Faraday's constant (=96.5 kJ mol⁻¹ V⁻¹) n is the number of electrons being transferred

$$\Delta E^{\circ}{}' = E^{\circ}{}'_{acceptor} - E^{\circ}{}'_{donor}$$

Chem 352, Lecture 3 - The Energetics of Life 51

_	4
~	т.

Free Energy in Biological Systems

Determining the $\Delta G^{\circ \prime}$ for oxidation/reduction reactions

• For the oxidation of ethanol to acetaldehyde by NAD+

The two have reactions are

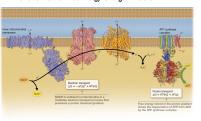
Chem 352, Lecture 3 - The Energetics of Life 52

52

Free Energy in Biological Systems

Determining the ΔG for oxidation/reduction reactions

- For conditions other than standard state condition, ΔG is


$$\Delta G = \Delta G^{\circ \prime} + RT \ln(Q)$$

Chem 352, Lecture 3 - The Energetics of Life 53

53

Free Energy in Biological Systems

A Brief Overview of Free Energy Changes in Cells

54

- Lecture 3 Summary

 The principles of thermodynamics explain how cell-based living systems extract energy from their environment and use it to drive cellular processes
- $\boldsymbol{\cdot}$ Each of these processes must be favorable to occur spontaneously, that is, the free energy change, $\Delta G = \Delta H - T\Delta S$, must be negative ("exergonic") rather than positive ("endergonic")
- Thus, $\Delta G = \Delta G^{\circ\prime}$ + RT lnQ, where $\Delta G^{\circ\prime}$ represents the free energy change under standard biochemical conditions
- Living systems operate far from equilibrium, therefore they require a constant source of external energy to maintain this state.

55

- Lecture 3 Summary ΔG° can be calculated by several methods, including: from the equilibrium constant, Keq, using the equation ΔG° = -RT in K_{eq}
- from the standard reduction potentials for redox reactions $\Delta G^{o\prime} = -n \mathcal{F} \Delta E^{o\prime}$
- $\Delta G^{o*} = -n.5 \Delta E^{o*}$ from the sum of known ΔG^{o*} for single reactions, when they are coupled
 Unfavorable ("endergonic") reactions can be driven forward by coupling them to reactions or processes that have large negative ΔG values (such as hydrolyses of organic phosphate compounds or concentration gradients across membranes).

Chem 352, Lecture 3 - The Energetics of Life 56

56					