Chem 352 - Spring 2011 Quiz 4

1.	Th	e word "gluconeogenesis" translates as "to create new sugar".
	a.	In mammals, what organ is the primary site for gluconeogenesis?
	b.	What is the primary purpose for having this organ synthesize new glucose?
	c.	The final reaction in glycolysis is catalyzed by the enzyme <i>pyruvate kinase</i> and converts phosphoenolpyruvate to pyruvate. Under physiological conditions, this reaction has a very high negative free energy change, therefore, converting pyruvate back into phosphoenolpyruvate in gluconeogenesis requires an alternative pathway. Using <i>structural formulas</i> for the reactants, products and intermediates, write the <i>balance chemical equations</i> for the two reactions in this
		pathway.
	d.	What are the names of the enzymes that catalyze the two reactions described in c?
		i
		ii
	e.	What is the sources of free energy used to drive this reaction?
	f.	What citric acid cycle intermediate is also involved as an intermediate in the conversion of
		pyruvate to phosphoenolpyruvate?

e. If the pentose produced in the pentose phosphate pathway is not required by the cell, what two glycolytic intermediates is it converted to by way of the non-oxidative stage of the pentose phosphate pathway?

i. _____

ii. _____